Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1025 Accesses

Abstract

In this chapter, the basic characteristics of terahertz electromagnetic wave and terahertz applications are briefly introduced. Challenges in general, to develop solid-state terahertz devices including emitters and detectors are discussed by comparing the existing principles and actual devices. The focus of this thesis is then refined to the understanding of the self-mixing mechanism and the development of practical detectors based on field-effect transistors or those alike. The outline of this thesis is given at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Introduction of terahertz radiation from Wikipedia (2014). http://en.wikipedia.org/wiki/Terahertz_radiation. Accessed 17 Sept 2014

  2. Zhang, X.C., Xu, J.Z.: Introduction to THz Wave Photonics. Springer, Heidelberg (2010)

    Book  Google Scholar 

  3. Tonnuchi, M.: Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2007)

    Article  Google Scholar 

  4. JLab generates high-power terahertz light (2014). http://cerncourier.com/cws/article/cern/28777. Accessed 10 Jan 2014

  5. The electromagnetic spectrum (2014). http://envisat.esa.int/support-docs/em-spectrum/em-spectrum.html. Accessed 25 March 2014

  6. Chen, Y.Q., Liu, H.B., Deng, Y.Q., Schauki, D., Fitch, M.J., Osiander, R., Dodson, C., Spicer, J.B., Shur, M., Zhang, X.C.: THz spectroscopic investigation of 2,4-dinitrotoluene. Chem. Phys. Lett. 400, 357–361 (2004)

    Article  Google Scholar 

  7. Shen, Y.C., Lo, T., Taday, P.F., Cole, B.E., Tribe, W.R., Kemp, M.C.: Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 24116 (2005)

    Google Scholar 

  8. Liu, H.B., Chen, Y.Q., Bastiaans, G.J., Zhang, X.C.: Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Opt. Express 14(1), 415–423 (2006)

    Article  Google Scholar 

  9. Funk, D.J., Calgaro, F., Averitt, R.D., Asaki, M.L.T., Taylor., A.J.: THz transmission spectroscopy and imaging: application to the energetic materials PBX 9501 and PBX 9502. Appl. Spectrosc. 58(4), 428–431 (2004)

    Google Scholar 

  10. Kemp, M.C., Taday, P.F., Cole, B.E., Cluff, J.A., Fitzgerald, A.J., Tribe, W.R.: Security applications of terahertz technology. Proc. SPIE 5070, 44 (2003)

    Article  Google Scholar 

  11. Choi, M.K., Bettermann, A., van der Wiede, D.W.: Potential for detection of explosive and biological hazards with electronic terahertz systems. Philosophical transactions. Math. Phys. Eng. Sci. 362, 337 (2004)

    Google Scholar 

  12. Fergusona, B., Wanga, S., Zhong, H., Abbottc, D., Zhanga, X.C.: Powder retection with T-ray imaging. Proc. SPIE 5070, 7 (2003)

    Article  Google Scholar 

  13. Arnone, D.D., Ciesla, C.M., Corchia, A., Egusa, S., Pepper, M., Chamberlain, J.M., Bezant, C., Linfield, E.H.: Application of terahertz (THz) technology to medical imaging. Proc. SPIE 3828, 209 (1999)

    Article  Google Scholar 

  14. Cho, G.C., Han, P.Y., Zhang, X.C.: Time-domain transillumination of biological tissues with terahertz pulses. Opt. Lett. 25(4), 242–244 (2000)

    Article  Google Scholar 

  15. Mickan, S.P., Menikh, A., Liu, H., Mannella, C.A., MacColl, R., Abbott, D., Munch, J.: Label-free bioafnity detection using terahertz technology. Phys. Med. Biol. 47, 3789 (2002)

    Article  Google Scholar 

  16. Alexandrov, B.S., Gelev, V., Bishop, A.R., Usheva, A., Rasmussen, K.O.: DNA breathing dynamics in the presence of a terahertz field. Phys. Lett. A 374(10), 1214–1217 (2010)

    Article  MATH  Google Scholar 

  17. Swanson, E.S.: Modelling DNA response to THz radiation. Phys. Rev. E 83(4), 040901 (2010)

    Article  Google Scholar 

  18. Kleine-Ostmann, T., Nagatsuma, T.: A review on terahertz communications research. J. Infrared Millimeter Terahz Waves 32(2), 143–171 (2011)

    Article  Google Scholar 

  19. Jha, K.R., Singh, G.: Terahertz Planar Antennas for Next Generation Communication. Springer, Heidelberg (2014)

    Book  Google Scholar 

  20. Ishigaki, K., Shiraishi, M., Suzuki, S., Asada, M., Nishiyama, N., Arai, S.: Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes. Electron. Lett. 48(10), 582–583 (2012)

    Article  Google Scholar 

  21. Zhong, H., Xu, J.Z., Xie, X., Yuan, T., Reightler, R., Madaras, E., Zhang, X.C.: Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens. J. 5(2), 203–208 (2005)

    Article  Google Scholar 

  22. Sanchez, A.R., Karpowicz, N., Xu, J.Z., Zhang, X.C.: Damage and defect inspection with terahertz waves. In: Proceedings of the 4th International Workshop on Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, vol. 4, p. 67 (2006)

    Google Scholar 

  23. Benford, D.J., Amato, M.J., Mather, J.C., Moseley Jr, S.H., Leisawitz, D.T.: Mission concept for the single aperture far-infrared (safir) observatory. Appl. Sp. Sci. 294(3), 177–212 (2004)

    Article  Google Scholar 

  24. Siegel, P.H.: THz applications for outer and inner space. In: Proceedings of the 17th International Zurich Symposium on Electromagnetic Compatibility, vol. 17, p. 1 (2006)

    Google Scholar 

  25. Solomon, S.: The mystery of the antarctic ozone “hole”. Rev. Geophys. 26(1), 131–148 (1988)

    Article  Google Scholar 

  26. Pereira, M.F., Shulika, O.: Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (using terahertz), pp. 153–165. Springer, Heidelberg (2014)

    Google Scholar 

  27. Vijayraghavan, K., Jiang, Y., Jang, M., Jiang, A., Choutagunta, K., Vizbaras, A., Demmerle, F., Boehm, G., Amann, M.C., Belkin, M.A.: Broadly tunable terahertz generation in mid-infrared quantum cascade lasers. Nat. Commun. 4, 2021 (2013)

    Article  Google Scholar 

  28. Ito, H., Nakajima, F., Furuta, T., Ishibashi, T.: Continuous THz-wave generation using antenna-integrated uni-travelling photodiodes. Semicond. Sci. Technol. 20, S191–S198 (2005)

    Article  Google Scholar 

  29. Popov, V.V.: Plasmon excitation and plasmonic detection of terahertz radiation in the grating-gate field-effect-transistor Structures. J. Infrared Millimeter Terahz Waves 32, 1178–1191 (2011)

    Article  Google Scholar 

  30. Salmon, N.A.: Scene simulation for passive and active millimetre and submillimetre wave imaging for security scanning and medical applications. Proc. SPIE 5619, 129 (2004)

    Article  Google Scholar 

  31. The FEL program at Jefferson Lab (2014). https://www.jlab.org/FEL/. Accessed 6 Jan 2014

  32. Inguscio, M., Evenson, K.M., Moruzzi, G., Jennings, D.A.: A review of frequency measurements of optically pumped lasers from 0.1 to 8 THz. J. Appl. Phys. 60, R161 (1986)

    Article  Google Scholar 

  33. Williams, B.S.: Terahertz quantum-cascade lasers. Nat. Photonics 1, 517 (2007)

    Article  Google Scholar 

  34. Haddad, G.I., East, J.R., Eisele, H.: Two-terminal active devices for terahertz sources. Int. J. High Speed Electron. Syst. 13, 395 (2003)

    Article  Google Scholar 

  35. Tretyakov, M.Y., Volokhov, S.A., Golubyatnikov, G.Y., Karyakin, E.N., Krupnov, A.F.: Compact tunable radiation source at 180–1500 GHz frequency range. Int. J. Infrared Millimeter Waves 20(8), 1443–1451 (1999)

    Article  Google Scholar 

  36. Crowe, T.W., Porterfield, D.W., Hesler, J.L., Bishop, W.L., Kurtz, D.S., Kai, H.: Terahertz sources and detectors. Proc. SPIE 5790, 271 (2005)

    Article  Google Scholar 

  37. Mikulics, M., Schieder, R., Michael, E.A., Stutzki, J., Gusten, R., Marso, M., van der Hart, A., Bochem, H.P., Luth, H., Kordos, P.: Traveling-wave photomixer with recessed interdigitated contacts on low-temperature-grown GaAs. Appl. Phys. Lett. 88, 041118 (2006)

    Article  Google Scholar 

  38. Reklaitis, A., Reggiani, L.: Monte Carlo study of hot-carrier transport in bulk wurtzite GaN and modeling of a near-terahertz impact avalanche transit time diode. J. Appl. Phys. 95, 7925 (2004)

    Article  Google Scholar 

  39. Ward, J., Schlecht, E., Chattopadhyay, G., Maestrini, A., Gill, J., Maiwald, F., Javadi, H., Mehdi, I.: Capability of THz sources based on Schottky diode frequency multiplier chains. In: 2004 IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1587–1590 (2004)

    Google Scholar 

  40. Suzuki, S., Asada, M., Teranishi, A., Sugiyama, H., Yokoyama, H.: Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature. Appl. Phys. Lett. 97, 242102 (2010)

    Article  Google Scholar 

  41. Feiginov, M., Sydlo, C., Cojocari, O., Meissner, P.: Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz. Appl. Phys. Lett. 99, 233506 (2011)

    Article  Google Scholar 

  42. Britnell, L., Gorbachev, R.V., Geim, A.K., Ponomarenko, L.A., Mishchenko, A., Greenaway, M.T., Fromhold, T.M., Novoselov, K.S., Eaves, L.: Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013)

    Article  Google Scholar 

  43. Terahertz gas lasers of Coherent, Inc (2012). http://www.cohr.com/downloads/opticallypumpedlaser.pdf. Accessed 10 March 2012

  44. Kohler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A., Dhillon, S.S., Sirtori, C.: High-performance continuous-wave operation of superlattice terahertz quantum-cascade lasers. Appl. Phys. Lett. 82, 1518 (2003)

    Article  Google Scholar 

  45. Williams, B.S., Kumar, S., Qin, Q., Hu, Q., Reno, J.L.: High-temperature and high-power terahertz quantum-cascade lasers. Proc. SPIE 6485, 64850M (2007)

    Article  Google Scholar 

  46. Walther, C., Fischer, M., Scalari, G., Terazzi, R., Hoyler, N., Faist, J.: Quantum cascade lasers operating from 1.2 to 1.6 THz. Appl. Phys. Lett. 91, 131122 (2007)

    Article  Google Scholar 

  47. Wade, A., Fedorov, G., Smirnov, D., Kumar, S., Williams, B.S., Hu, Q., Reno, J.L.: Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K. Nat. Photonics 3, 41 (2009)

    Article  Google Scholar 

  48. Brown, E.R.: THz Generation by photomixing in ultrafast photoconductors. Int. J. High Speed Electron. Syst. 13, 497 (2003)

    Article  Google Scholar 

  49. Yu, C.H., Zhang, B., Lu, W., Shen, S.C., Liu, H.C., Fang, Y.Y., Dai, J.N., Chen, C.Q.: Strong enhancement of terahertz response in GaAs/AlGaAs quantum well photodetector by magnetic field. Appl. Phys. Lett. 97, 022102 (2010)

    Article  Google Scholar 

  50. Richards, P.L.: Bolometers for infrared and millimeter waves. J. Appl. Phys. 76, 1 (1994)

    Article  MathSciNet  Google Scholar 

  51. Kuzmin, L., Fominsky, M., Kalabukhov, A., Golubey, D., Tarasov, M.: Capacitively coupled hot-electron nanobolometer with SIN tunnel junctions. Proc. SPIE 4855, 217 (2002)

    Article  Google Scholar 

  52. Stevenson, T.R., Hsieh, W.T., Mitchell, R.R., Isenberg, H.D., Stahle, C.M., Cao, N.T., Schneider, G., Travers, D.E. Harvey M.S., Wollack, E.J., Henry, R.M.: Silicon hot-electron bolometers with single-electron transistor readout. Nucl. Instrum. Methods Phys. Res., Sect. A 559, 591 (2006)

    Google Scholar 

  53. Ariyoshi, S., Otani, C., Dobroiu, A., Sato, H., Kawase, K., Shimizu, H.M., Taino, T., Matsuo, H.: Terahertz imaging with a direct detector based on superconducting tunnel junctions. Appl. Phys. Lett. 88, 203503 (2006)

    Article  Google Scholar 

  54. Golay cells by MICROTECH instuments, Inc (2014). http://www.mtinstruments.com/thzdetectors/index.htm. Accessed 12 May 2014

  55. Golay cells by TYDEX (2014). http://www.tydexoptics.com/en/products/thz_optics/golay_cell/. Accessed 11 Apr 2014

  56. Pyroelectric detectors by gentec-eo (2014). http://www.spectrumdetector.com/. Accessed17 Jun 2014

  57. Chahal, P., Morris, F., Frazier, G.: Zero bias resonant tunnel Schottky contact diode for wide-band direct detection. IEEE Electron Device Lett. 26(12), 894–896 (2005)

    Article  Google Scholar 

  58. Sun, J.D., Sun, Y.F., Wu, D.M., Cai, Y., Qin, H., Zhang, B.S.: High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl. Phys. Lett. 100, 013506 (2012)

    Article  Google Scholar 

  59. Kachorovskii, V.Y., Shur, M.S.: Field effect transistor as ultrafast detector of modulated terahertz radiation. Solid State Electron. 52(2), 182–185 (2008)

    Article  Google Scholar 

  60. Tauk, R., Teppe, F., Boubanga, S., Coquillat, D., Knap, W.: Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power. Appl. Phys. Lett. 89, 253511 (2006)

    Article  Google Scholar 

  61. Boppel, S., Lisauskas, A., Mundt, M., Seliuta, D., Minkevičius, L., Kašalynas, I., Valušis, G., Mittendorff, M., Winnerl, S., Krozer, V., Roskos, H.G.: CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz. IEEE Trans. Microwave Theory Tech. 60, 3834 (2012)

    Article  Google Scholar 

  62. Bolometers by Infrared Laboratories, Inc (2014). http://www.infraredlaboratories.com/Bolometers.html. Accessed 27 Jun 2014

  63. Zhou, J.W., Farooqui, K., Timbie, P.T., Wilson, G.W., Allen, C.A., Moseley, S.H., Mott, D.B.: Monolithic silicon bolometers as sensitive MM-wave detectors. IEEEMTT-S Int. Microwave Symp. Digest 3, 1347 (1995)

    Google Scholar 

  64. Golay, M.J.E.: Theoretical consideration in heat and infra-red detection, with particular reference to the pneumatic detector. Rev. Sci. Instrum. 18, 347 (1947)

    Article  Google Scholar 

  65. Schottky-barrier-diode detectors by Virginia Diodes, Inc (2015). http://www.vadiodes.com/index.php/en/products/detectors. Accessed 27 May 2015

  66. Dyakonov, M.I., Shur, M.S.: Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465 (1993)

    Article  Google Scholar 

  67. Dyakonov, M., Shur, M.S.: Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices 43(3), 380–387 (1996)

    Article  Google Scholar 

  68. Sun, Y.F., Sun, J.D., Zhou, Y., Tan, R.B., Zeng, C.H., Xue, W., Qin, H., Zhang, B.S., Wu, D.M.: Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas. Appl. Phys. Lett. 98, 252103 (2011)

    Article  Google Scholar 

  69. Sun, J.D., Qin, H., Lewis, R.A., Sun, Y.F., Zhang, X.Y., Cai, Y., Wu, D.M., Zhang, B.S.: Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector. Appl. Phys. Lett. 100, 173513 (2012)

    Article  Google Scholar 

  70. Sun, J.D., Sun, Y.F., Zhou, Y., Zhang, Z.P., Lin, W.K., C.H., Zeng, Wu, D.M., Zhang, B.S., Qin, H., Li, L.L., Xu, W.: Enhancement of terahertz coupling efficiency by improved antenna design in GaN/AlGaN HEMT detectors. AIP Conf. Proc. 1399, 893 (2011)

    Google Scholar 

  71. Zhou, Y., Sun, J.D., Sun, Y.F., Zhang, Z.P., Lin, W.K., Lou, H.X., Zeng, C.H., Lu, M., Cai, Y., Wu, D.M., Lou, S.T., Qin, H., Zhang, B.S.: Characterization of a room temperature terahertz detector based on a GaN/AlGaN HEMT. J. Semicond. 32(4), 064005 (2011)

    Article  Google Scholar 

  72. Sun, J.D., Qin, H., Lewis, R.A., Yang, X.X., Sun, Y.F., Zhang, Z.P., Li, X.X., Zhang, X.Y., Cai, Y., Wu, D.M., Zhang, B.S.: The effect of symmetry on resonant and nonresonant photoresponses in a field-effect terahertz detector. Appl. Phys. Lett. 106, 031119 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, J. (2016). Introduction. In: Field-effect Self-mixing Terahertz Detectors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48681-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48681-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48679-5

  • Online ISBN: 978-3-662-48681-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics