Skip to main content

Impacts and Its Adaptation of Global Change

  • Chapter
  • First Online:
Contemporary Ecology Research in China

Abstract

It is important research fields of global change ecology to study the influence that global climate change has on ecosystem and agroforestry, environmental factor such as water resources. And it is also important scientific basis on which to cope with climate change , to manage ecosystem adaptively and to make relevant policies. If the change of the earth system’s strength power is the ultimate concern of global climate change study, it will be to focus on questions to recognize the change of ecosystem’s structure, process, and function motivated by climate change and human activities. The earth feeds on massive diverse natural ecosystem, and diverse semi-natural semi-artificial ecosystem, which is already a result of a long-term adaption of the earth to natural environment and human activities. In that case, the adaption research of the ecosystem to the environment change plays a key role in humans getting to know what influence global changes may have on the supporting capacity of earth system. This chapter mainly concerns about the ecosystem’s adaptability. It is defined as the adaptive abilities of lowering environment changes’ negative influence and making good use of favorable opportunities when environment changes but the ecosystem tries to maintain its main functions. And this balance mechanism and adaptability of ecosystem is a basis on which to judge the influence degrees of global changes on ecosystem’s structure and function. To dig into this question, we generally study from two different perspectives, one of which is global changes’ influence on the ecosystem, and the other one is the ecosystem’s responses to these changes, which is the principal framework of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://cdm.unfccc.int/Projects/projsearch.html.

  2. 2.

    http://www.forestry.gov.cn/main/175/content-631662.html.

  3. 3.

    http://www.forestry.gov.cn/main/95/content-628083.html.

  4. 4.

    http://www.forestry.gov.cn/Zhuanti/content_2012tjzh/517913.html.

  5. 5.

    http://www.forestry.gov.cn/Zhuanti/content_apec/499030.html.

References

  • Agrell, J., Kopper, B., McDonald, E. P., & Lindroth, R. L. (2005). CO2 and O3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria). Global Change Biology, 11, 588–599.

    Article  Google Scholar 

  • Battaglia, M., & Beadle, C. (1996). Loughhead S. Photosynthetic temperature responses of Eucalyptus globulus and Eucalyptus nitens. Tree Physiology, 16, 81–89.

    Article  Google Scholar 

  • Berry, J., & Björkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31, 491–543.

    Article  Google Scholar 

  • Chang, J., Wang, X., Zhang, X., et al. (2009). Alpine timberline dynamics in relation to climatic variability in the northern Daxing’an mountains. Journal of Mountain Science, 27(6), 703–711.

    Google Scholar 

  • Chen, F. J., Ge, F., & Parajulee, M. N. (2005a). Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis. Environmental Entomology, 34(1), 37–46.

    Article  Google Scholar 

  • Chen, W., Liu, Y., & Ma, Z. (2002). The seasonal characteristics of climatic change trend in China from 1951 to 1997. Plateau Meteorology, 21(3), 251–257.

    Google Scholar 

  • Chen, F. J., Wu, G., Ge, F., Parajulee, M. N., & Shrestha, R. B. (2005b). Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance and feeding of an insect herbivore, cotton bollworm Helicoverpa armigera (Hubner). Entomologia Experimentalis et Applicata, 115, 341–350.

    Article  CAS  Google Scholar 

  • Cui, H., Su, J., & Ge, F. (2011). Advances in research on the effect of elevated ozone concentration on insects. Chinese Journal of Applied Entomology, 48(5), 1130–1140.

    Google Scholar 

  • Cui, H., Sun, Y., Su, J., Ren, Q., Li, C., & Ge, F. (2012). Elevated O3 reduces the fitness of Bemisia tabaci via enhancement of the SA dependent defense of the tomato plant. Arthropod-Plant Interactions, 6, 425–437.

    Article  Google Scholar 

  • Cunningham, S. C., & Read, J. (2002). Comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature. Oecologia, 133, 112–119.

    Article  Google Scholar 

  • Dang, Z. H., & Chen, F. J. (2011). Responses of insects to rainfall and drought. Chinese Journal of Applied Entomology, 48(5), 1161–1169.

    Google Scholar 

  • Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., & Ghalambor, C. K. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6668–6672.

    Article  CAS  Google Scholar 

  • Ding, Y., Ren, G., Shi, G., et al. (2006). National assessment report of climate change (I): Climate change in China and its future trend. Advances in Climate Change Research, 2, 3–8.

    Google Scholar 

  • Dong, Z. K., & Ge, F. (2011). The fitness of insects in response to climate warming Chinese. Journal of Applied Entomology, 48(5), 1141–1148.

    Google Scholar 

  • Ferris, R., Long, L., Bunn, S. M., et al. (2002). Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar. Tree Physiology, 22, 633–640.

    Article  CAS  Google Scholar 

  • Frankhauser, S. (1996). The Potential Costs of Climate Change Adaptation. In J. B. Smith, et al. (Eds.), Adapting to climate change: An international perspective (pp. 80–96). New York: Springer.

    Chapter  Google Scholar 

  • Gange, A. C., & Brown, V. K. (1989). Effects of root herbivory by an insect on a foliar-feeding species, mediated through changes in the host plant. Oecologia, 81(1), 38–42.

    Article  CAS  Google Scholar 

  • Guo, K., Hao, S. G., Sun, O. J., & Kang, L. (2009). Differential responses to warming and increased precipitation among three contrasting grasshopper species. Global Change Biology, 15(10), 2539–2548.

    Article  Google Scholar 

  • Hamerlynck, E. P., Huxman, T. E., Loik, M. E., & Smith, S. D. (2000). Effects extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave Desert evergreen shrub, Larreatridentata. Plant Ecology, 148, 185–195.

    Article  Google Scholar 

  • Hao, Z., Zheng, J., & Tao, X. (2001). A study on northern boundary of winter wheat during climate warming: A case study in Liaoning Province. Progress in Geography, 20, 254–261.

    Google Scholar 

  • Hikosaka, K., Murakami, A., & Hirose, T. (1999). Balancing carboxylation and regeneration of ribulose-1,5-bisphosphate in leaf photosynthesis in temperature acclimation of an evergreen tree, Quercus myrsinaefolia. Plant Cell & Environment, 22, 841–849.

    Article  CAS  Google Scholar 

  • Holopainen, J. K. (2002). Aphid response to elevated ozone and CO2. Entomologia Experimentalis et Applicata, 104, 137–142.

    Article  CAS  Google Scholar 

  • Holopainen, J. K., Kainulainen, P., & Oksanen, J. (1995). Effects of gaseous air pollutants on aphid performance on Scots pine and Norway spruce seedling. Water Air and Soil pollution, 85, 1431–1436.

    Article  CAS  Google Scholar 

  • Hou, Y., Liu, Q., Yan, H., et al. (2007). Variation trends of China terrestrial vegetation net primary productivity and its responses to climate factors in 1982–2000. Chinese Journal of Applied Ecology, 18(7), 1546–1553.

    Google Scholar 

  • Houghton, J. T. (2001). Climate change 2001: The scientific basis (p. 2001). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Huang, M., Ji, J., & Peng, L. (2008). The response of vegetation net primary productivity to climate change during 1981–2000 in the Tibetan Plateau. Climatic and Environmental Research, 13(5), 608–616.

    Google Scholar 

  • Huang, L., Ren, Q., Sun, Y., Ye, L., Cao, H., & Ge, F. (2012). Lower incidence and severity of tomato virus in elevated CO2 is accompanied by modulated plant induced defence in tomato. Plant Biology, 14, 905–913.

    Article  CAS  Google Scholar 

  • Hussain, M., Kubiske, M. E., & Connor, K. F. (2001). Germination of CO2-enriched Pinus taeda L. seeds and subsequent seedling growth responses to CO2 enrichment. Functional Ecology, 15, 344–350.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2001a). Third assessment report.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2001b). Fourth assessment report.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2007a). Climate change 2007: The physical science basis: Summary for policy makers. Report of Working Group I of the Intergovernmental Panel on Climate Change. http://www.ipcc.ch/pub/spm18-02.pdf

  • IPCC. (2007b). Climate change 2007: Synthesis Report. Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jackson, D. M., Rufty, T. W., Heagle, A. S., et al. (2000). Survival and development of tobacco hornworm larvae on tobacco plants grown under elevated levels of ozone. Journal of Chemical Ecology, 26, 1–19.

    Article  CAS  Google Scholar 

  • Jaffe, D., & Ray, J. (2007). Increase in surface ozone at rural sites in the western US. Atmospheric Environment, 41, 5452–5463.

    Article  CAS  Google Scholar 

  • Jin, Z., Ge, D., Shi, C., et al. (2002). Several strategies of food crop production in the northeast China plain for adaptation to global climate change: A modeling study. Acta Agronomica Sinica, 28, 24–31.

    Google Scholar 

  • Jondrup, P. M., Barnes, J. D., & Port, G. R. (2002). The effect of ozone fumigation and different Brassica rapa lines on the feeding behaviour of Pieris brassicae larvae. Entomologia Experimentalis et Applicata, 104, 143–151.

    Article  CAS  Google Scholar 

  • Jordan, D. B., & Ogren, W. L. (1984). The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase: Dependence on ribulose bisphosphate concentration, pH and temperature. Planta, 161, 308–313.

    Article  CAS  Google Scholar 

  • Labate, C. A., & Leegood, R. C. (1988). Limitation of photosynthesis by changes in temperature. Planta, 173, 519–527.

    Article  CAS  Google Scholar 

  • Li, Y., Yang, X., Wang, W., et al. (2010). The possible effects of global warming on cropping systems in China V: The possible effects of climate warming on geographical shift in safe northern limit of tropical crops and the risk analysis of cold damage in China. Scientia Agricultura Sinica, 43(12), 2477–2484.

    Google Scholar 

  • Liu, H., Gu, H., Tang, Z., et al. (2002). Tree photosynthesis on alpine timberline and its relationships to environmental factors in the eastern part of temperate China. Journal of Mountain Science, 20(1), 32–36.

    Google Scholar 

  • Liu, Z., Hubbard, K. G., Lin, X., et al. (2013a). Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global Change Biology, 19, 3481–3492.

    Google Scholar 

  • Liu, Y., Liu, Y., & Guo, L. (2010a). Impact of climatic change on agricultural production and response strategies in China. Chinese Journal of Eco-agriculture, 18(4), 905–910.

    Article  CAS  Google Scholar 

  • Liu, Y., Wang, E., Yang, X., et al. (2010b). Contributions of climatic and crop varietal changes to crop production in the north China plain, since 1980s. Global Change Biology, 16, 2287–2299.

    Article  Google Scholar 

  • Liu, Z., Yang, X., Chen, F., et al. (2013b). The effects of past climate change on the northern limits of maize planting in northeast China. Climatic Change, 117, 891–902.

    Article  Google Scholar 

  • Liu, Z., Yang, X., Hubbard, K. G., et al. (2012). Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biology, 18, 3441–3454.

    Article  Google Scholar 

  • Liu, Z., Yang, X., Wang, W., et al. (2010). The possible effects of global warming on cropping systems in China IV: The possible impact of future climatic warming on the northern limits of spring maize in three provinces of northeast China. Scientia Agricultura Sinica, 43(11), 2280–2291.

    Google Scholar 

  • Long, S. P., Ainsworth, E. A., et al. (2006). Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312, 1918–1921.

    Article  CAS  Google Scholar 

  • Luomala, E. M., Laitinen, K., Sutinen, S., et al. (2005). Stomatal density, anatomy and nutrient concentrations of scots pine needles are affected by elevated CO2 and temperature. Plant Cell & Environment, 28, 733–749.

    Article  CAS  Google Scholar 

  • Ma, W., Fang, J., Yang, Y., et al. (2010). Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Science China Life Science, 40(7), 632–641.

    Google Scholar 

  • Ma, S., Wang, Q., & Luo, X. (2008). Effect of climate change on maize (Zea mays) growth and yield based on stage sowing. Acta Ecologica Sinica, 28(5), 2131–2139.

    Google Scholar 

  • Ma, Q., Yan, J., & Du, J. (2011). Spatial and temporal variations of climate productivity in the area of pastoral transition of Datong City. Resources & Environment, 27(7), 641–645.

    Google Scholar 

  • Masters, G. J., Brown, V. K., & Gange, A. C. (1993). Plant mediated interactions between above- and below-ground insect herbivores. Oikos, 66(1), 148–151.

    Article  Google Scholar 

  • Mondor, E. B., Tremblay, M. N., Awmack, C. S., & Lindroth, R. L. (2004). Divergent pheromone-mediated insect behaviour under global atmospheric change. Global Change Biology, 10, 1820–1824.

    Article  Google Scholar 

  • Parmensan, C. (1996). Climate and species’ range. Nature, 382, 765–766.

    Article  Google Scholar 

  • Peng, S., & Ren, H. (2000). The north-south transect of eastern China (NSTEC) for global changes studies. GCTE News, 2000(16), 6.

    Google Scholar 

  • Percy, K. E., Awmack, C. S., Lindroth, R. L., et al. (2002). Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature, 420, 403–407.

    Article  CAS  Google Scholar 

  • Qin, D., Ding, Y., Su, J., et al. (2005). Assessment of climate change and environment changed in China (I): Climate and environment changes in China and their projection. Advances in Climate Change Research, 1, 4–9.

    Google Scholar 

  • Sha, W., Shao, X., Huang, M. (2002). Climate warming and its impact on natural geographical boundaries since 1980s. Science in China (Series D), 32(4), 317–326.

    Google Scholar 

  • State Forestry Administration, P.R. China. (2009a). China forestry resource. Beijing: China Forestry Publishing House.

    Google Scholar 

  • State Forestry Administration, P.R. China. (2009b). The forestry action plan to address climatic change. Beijing: China Forestry Publishing House.

    Google Scholar 

  • Steinger, T., Gall, R., & Schmid, B. (2000). Maternal and direct effects of elevated CO2 on seed provisioning, germination and seedling growth in Bromus erectus. Oecologia, 12, 475–480.

    Article  Google Scholar 

  • Stige, L. C., Chan, K. S., Zhang, Z. B., Frank, D., & Stenseth, N. C. (2007). Thousand-year-long Chinese time series reveals climatic forcing of decadal locust dynamics. In Proceedings of the National Academy of Sciences of the United States of America.

    Google Scholar 

  • Su, B., Han, X., Li, L., Huang, J., Bai, Y., & Qu, C. (2000). Responses of y δ13C value and water use efficiency of plant species to environmental gradients along the grassland zone of northeast China transect. Acta Phytoecologica Sinica, 24(6), 648–655.

    Google Scholar 

  • Sun, Y., Chen, F. J., & Ge, F. (2009). Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum. Environmental Entomology, 38, 26–34.

    Article  CAS  Google Scholar 

  • Sun, R., & Qijiang, Z. (2001). Effect of climate change of terrestrial net primary productivity in China. Journal of Remote Sensing, 5(1), 58–62.

    Google Scholar 

  • Sun, Y., Yin, J., Chen, F., Wu, G., & Ge, F. (2011). How does atmospheric elevated CO2 affect crop pests and their natural enemies: The examples in China? Insect Science, 18(4), 393–400.

    Article  Google Scholar 

  • Sun, X., & Zhao, X. (2009). Assessment of ecological risk to climate change of the farming-pastoral zigzag zone in northern China. Acta Scientiarum Naturalium Universitatis Pekinensis, 45(4), 713–720.

    Google Scholar 

  • Sun, H., & Zheng, D. (1998). Tibetan Plateau’s forming, evolving and development. Guangzhou: Guangdong Science & Technology Press.

    Google Scholar 

  • Teng, N. J., Wang, J., Chen, T., et al. (2006). Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytologist, 172, 92–103.

    Article  CAS  Google Scholar 

  • Tjoelker, M. G., et al. (2001). Modelling respiration of vegetation: Evidence for a general temperature-dependent Q 10. Global Change Biology, 7, 223–230.

    Article  Google Scholar 

  • Tol, R. S. J., Frankhauser, S., & Smith, J. B. (1997). The Scope for adaptation to climate change: What can we learn from the Literature? Institute for Environmental Studies. Amsterdam: Vrije University.

    Google Scholar 

  • Vinzargan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 8, 3431–3442.

    Google Scholar 

  • Wang, S., Jingning, C., Zhu, J., et al. (2002). Stuadies on climate change in China. Climatic and Environmental Research, 7(2), 137–145.

    CAS  Google Scholar 

  • Wang, S., Zhou, G., Gao, S., et al. (2003). Distribution of soil labile carbon along the northeast china transect and its response to climatic change. Acta Phytoecologica Sinica, 27(6), 780–785.

    CAS  Google Scholar 

  • Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environment, 33, 510–525.

    Article  CAS  Google Scholar 

  • Wu, Z., Jin, Y., Liu, J., et al. (2003). Response of vegetation distribution to global climate change in northeast China. Scientia Geographica Sinica, 23(5), 564–570.

    Google Scholar 

  • Xiong, W., Ju, H., Xu, Y., et al. (2006). Regional simulation of wheat yield in China under the climatic change conditions. Chinese Journal of Eco-agriculture, 14(2), 164–167.

    Google Scholar 

  • Xiong, W., Xu, Y., Lin, E., et al. (2005). Regional simulation of maize yield under IPCC SRES A2 and B2 scenarios. Chinese Journal of Agrometeorology, 26(1), 11–15.

    Google Scholar 

  • XU, X. (2004). Response of net primary productivity (NPP) of Sichuan vegetations to global climate changes. Chinese Journal of Ecology, 23(6), 19–24.

    Google Scholar 

  • Xu, Z., & Zhou, G. (2005a). Effects of water stress on carbon allocation in the perennial grass Leymus chinensis under two nocturnal temperatures. Physiologia Plantarum, 123, 272–280.

    Article  CAS  Google Scholar 

  • Xu, Z., & Zhou, G. (2005b). Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant and Soil, 269, 131–139.

    Article  CAS  Google Scholar 

  • Xu, Z., & Zhou, G. (2006). Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta, 224, 1080–1090.

    Article  CAS  Google Scholar 

  • Xu, Z., & Zhou, G. (2007). Relationship between carbon and nitrogen and environmental regulation in plants under global change—From molecule to ecosystem. Journal of Plant Ecology, 31(4), 738–747.

    Article  CAS  Google Scholar 

  • Xu, Z. Z., Zhou, G. S., & Shimizu, H. (2009). Effects of soil drought with nocturnal warming on leaf stomatal traits and mesophyll cell ultrastructure of a perennial grass. Crop Science, 49, 1843–1851.

    Article  Google Scholar 

  • Xu, Z., Zhou, G., Xiao, C., & Wang, Y. (2004). Responses of two dominated desert shrubs to soil drought under doubled CO2 condition. Acta Ecologica Sinica, 24(10), 2186–2191.

    Google Scholar 

  • Xu, X., Zhou, G., Xiao, C., & Wang, Y. (2005). Interactive effects of doubled atmospheric CO2 concentrations and soil drought on whole plant carbon allocation in two dominant desert shrubs. Acta Phytoecologica Sinica, 29(2), 281–288.

    CAS  Google Scholar 

  • Xue, C., Liu, R., & Wu, Q. (2010). Effect of climate warming on rice growing stages in Xinyang. Chinese Journal of Agrometeorology, 31(3), 353–357.

    CAS  Google Scholar 

  • Yamasaki, T., Yamakawa, T., Yamane, Y., Koike, H., Satoh, K., & Katoh, S. (2002). Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiology, 128, 1087–1097.

    Article  CAS  Google Scholar 

  • Yang, L., Han, M., & Li, J. (2001). Plant diversity change in grassland communities along a grazing disturbance gradient in the northeast China transect. Acta Phytoecologica Sinica, 25(1), 110–114.

    Google Scholar 

  • Yang, L., Han, M., Zhou, G., & Li, J. (2007). The changes of water-use efficiency and stoma density of Leymus chinensis along northeast China transect. Acta Ecologica Sinica, 27(1), 16–24.

    Article  Google Scholar 

  • Yang, X., Liu, Z., Chen, F. (2010a). The possible effects of global warming on cropping systems in ChinaI: The possible effects of climate warming on northern limits of cropping systems and cop yields in China. Scientia Agricultura Sinica, 43(2), 329–336.

    Google Scholar 

  • Yang, X., Liu, Z., & Chen, F. (2011a). The possible effect of climate warming on northern limits of cropping system and crop yield in China. Agricultural Sciences in China, 10, 585–594.

    Article  Google Scholar 

  • Yang, X., Liu, Z., & Chen, F. (2011b). The possible effects of global warming on cropping systems in China VI: Possible effects of future climate change on northern limits of cropping system in China. Scientia Agricultura Sinica, 44, 1562–1570.

    Google Scholar 

  • Yang, Y., & Piao, S. (2006). Variations in grassland vegetation cover in relation to climatic factors on the Tibetan plateau. Journal of Plant Ecology, 30(1), 1–8.

    Article  Google Scholar 

  • Yang, S., Sheng, S., Zhao, X., et al. (2010b). Impacts of climate change and its variability on rice production in the middle and lower valley of the Yangtze River, China. Chinese Journal of Rice Science, 36(9), 1519–1528.

    Google Scholar 

  • Ye, J. (2010). Response of vegetation net primary productivity to climate change on the Tibetan Plateau. Lanzhou: Lanzhou University.

    Google Scholar 

  • Yin, J., Sun, Y., Wu, G., & Ge, F. (2010). Effects of elevated CO2 associated with maize, a C4 plant, on multiple generations of cotton bollworms Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Entomologia Experimentalis et Applicata, 136, 12–20.

    Article  CAS  Google Scholar 

  • Yoram, Y. T., & Jonathan, Y. T. (2005). Global warming, Bergmann’s rule and body size in the masked shrew Sorex cinereus Kerr in Alaska. Journal of Animal Ecology, 74, 803–808.

    Article  Google Scholar 

  • Yu, H., & Xu, J. (2009). Effects of climate change on vegetations on Qinghai-Tibet Plateau : A review. Chinese Journal o f Ecology, 28(4), 747–754.

    Google Scholar 

  • Yuan, B., Guo, J., Zhao, J., et al. (2011). Possible impacts of climate change on agricultural production in China and its adaptation countermeasures. Agricultural Science & Technology, 12(3), 420–425.

    Google Scholar 

  • Yuan, F., Han, X., Ge, J., et al. (2008). Net primary productivity of Leymus chinensis steppe in Xilin River basin of Inner Mongolia and its responses to global climate change. Chinese Journal of Applied Ecology, 19(10), 2168–2176.

    CAS  Google Scholar 

  • Zhan, X., Yu, G., Sheng, W., & Fang, H. (2012). Foliar water use efficiency and nitrogen use efficiency of dominant plant species in main forests along the north-south transect of east China. Chinese Journal of Applied Ecology, 23(3), 587–594.

    CAS  Google Scholar 

  • Zhang, Z. B., Cazelles, B., Tian, H. D., Stige, L. C., Brauning, A., & Stenseth, N. C. (2009). Periodic temperature-associated drought/flood drives locust plagues in China. Proceedings of the Royal Society B-Biological Sciences, 276(1658), 823–831.

    Article  Google Scholar 

  • Zhang, X., Gao, Q., Yang, D., Zhou, G., Ni, J., & Wang, Q. (1997). A gradient analysis and prediction on the northeast China transect (NECT) for global change study. Acta Botanica Sinica, 39(9), 785–799.

    Google Scholar 

  • Zhang, G., Ouyang, H., Zhang, X., et al. (2010a). Vegetation change and its responses to climatic variation based on eco-geographical regions of Tibetan Plateau. Geographical Research, 29(11), 2004–2016.

    Google Scholar 

  • Zhang, Z. B., Tian, H. D., Cazelles, B., Kausrud, K. L., Bräuning, A., Guo, F., & Stenseth, N. C. (2010b). Periodic climate cooling enhanced natural disasters and wars in China during AD 0–1900. Proceedings of the Royal Society B-Biological Sciences, 277, 3745–3753.

    Article  Google Scholar 

  • Zhang, Y., & Zhou, G. (2008). Terrestrial transect study on driving mechanism of vegetation changes. Science in China (Series D), 51(7), 984–991.

    Article  Google Scholar 

  • Zhao, J., Yan, X., & Jia, G. (2008). Simulating the responses of forest net primary productivity and carbon budget to climate change in northeast China. Acta Ecological Sinica, 28(1), 92–102.

    Google Scholar 

  • Zhao, J., Yang, X., Liu, Z., et al. (2010). The possible effects of global warming on cropping systems in China II: The characteristics of climatic variables and the possible effect on northern limits of cropping systems in South China. Scientia Agricultura Sinica, 43(9), 1860–1867.

    Google Scholar 

  • Zhou, T., Shi, P., & Wang, S. (2003). Impacts of climate change and human activities on soil carbon storage in China. Acta Geographica Sinica, 58(5), 727–734.

    Google Scholar 

  • Zhou, G., Wang, Y., & Wang, S. (2002). Responses of grassland ecosystems to precipitation and land use along northeast China transect. Journal of Vegetation Science, 13, 361–368.

    Article  Google Scholar 

  • Zhu, W., Pan, Y., Yang, Y., et al. (2007). The effects of climate changes on the net primary productivity of natural vegetation in the China land. Scientific Bulletin, 52(21), 2535–2541.

    Google Scholar 

  • Ziska, L. H., Morris, C. F., & Goins, E. W. (2004). Quantitative and qualitative evaluation of selected wheat varieties released since 1903 to increasing atmospheric carbon dioxide: Can yield sensitivity to carbon dioxide be a factor in wheat performance? Global Change Biology, 10, 1810–1819.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg and Higher Education Press

About this chapter

Cite this chapter

Shi, P. et al. (2015). Impacts and Its Adaptation of Global Change. In: Li, W. (eds) Contemporary Ecology Research in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48376-3_16

Download citation

Publish with us

Policies and ethics