Skip to main content

Low Labeling 13C Metabolic Flux Analysis of Saccharomyces cerevisiae Using Gas Chromatography–Combustion–Isotope Ratio Mass Spectrometry

  • Conference paper
  • First Online:
Advances in Applied Biotechnology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 333))

Abstract

The applicability of gas chromatography–combustion–isotope ratio mass spectrometry (GC–C–IRMS) for the quantification of 13C enrichment of proteinogenic amino acids in metabolic tracer experiments was evaluated in this paper. We measured the 13C enrichment of proteinogenic amino acids in hydrolyzates using GC–C–IRMS from a series of parallel batch cultivations of Saccharomyces cerevisiae, which was cultured by mixtures of natural glucose and [1−13C] glucose, containing 0, 0.5, 1, and 2 % [1−13C] glucose, respectively. By decreasing the [1−13C] glucose content, kinetic isotope effects played an increasing role but could be corrected. The 13C metabolic algorithm and matrix algorithms were optimized in this study. The central metabolism of vivo fluxes were determined by the calculation method optimization. The obtained flux distribution was similar to published results, which obtained from GC–MS method using conventional high labeling (99 %). The GC–C–IRMS-based method involves low labeling (0.5 %) degree of expensive tracer substrate, and suits well for larger laboratory and industrial pilot-scale fermentations.

G. Li and Q. Zhong are joint first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9(1):68–86

    Article  CAS  Google Scholar 

  2. Bailey JE (1991) Toward a science of metabolic engineering. Science 252(5013):1668–1675

    Article  CAS  Google Scholar 

  3. Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum over expression and modification of G6P dehydrogenase. J Biotechnol 132(2):99–109

    Article  CAS  Google Scholar 

  4. Becker J, Klopprogge C, Wittmann C (2008) Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum. Microb Cell Fact 7(1):8

    Article  Google Scholar 

  5. Boghigian BA, Seth G, Kiss R, Pfeifer BA (2010) Metabolic flux analysis and pharmaceutical production. Metab Eng 12(2):81–95

    Article  CAS  Google Scholar 

  6. Christensen B, Nielsen J (1999) Isotopomer analysis using GC-MS. Metab Eng 1(4):282–290

    Article  CAS  Google Scholar 

  7. Dauner M, Sauer U (2000) GC/MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16(4):642–649

    Article  CAS  Google Scholar 

  8. Godin J, Faure M, Breuille D, Hopfgartner GR, Fay L (2007) Determination of 13C isotopic enrichment of valine and threonine by GC-C-IRMS after formation of the N (O,S)-ethoxycarbonyl ethyl ester derivatives of the amino acids. Anal Bioanal Chem 388(4):909–918

    Article  CAS  Google Scholar 

  9. Hans M, Heinzle E, Wittmann C (2001) Quantification of intracellular amino acids in batch cultures of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 56(5–6):776–779

    Article  CAS  Google Scholar 

  10. Heinzle E, Yuan Y, Kumar S, Wittmann C, Gehre M, Richnow H et al (2008) Analysis of 13C labeling enrichment in microbial culture applying metabolic tracer experiments using gas chromatography combustion isotope ratio mass spectrometry. Anal Biochem 380(2):202–210

    Article  CAS  Google Scholar 

  11. Iwatani S, Yamada Y, Usuda Y (2008) Metabolic flux analysis in biotechnology processes. Biotechnol Lett 30(5):791–799

    Article  CAS  Google Scholar 

  12. llney M, Wiechert W, Kownatzki D, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. Biotechnol Bioeng 66(2):86–103

    Google Scholar 

  13. Maaheimo H, Fiaux J, Cakar ZP et al (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids. Eur J Biochem 268(8):2464–2479

    Article  CAS  Google Scholar 

  14. Marx A, de Graaf AA, Wiechert W et al (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49(2):111–129

    Article  CAS  Google Scholar 

  15. Meier-Augenstein W (1999) Use of gas chromatography-combustion-isotope ratio mass spectrometry in nutrition and metabolic research. Curr Opin Clin Nutr Metab Care 2(6):465–470

    Article  CAS  Google Scholar 

  16. Nanchen A, Fuhrer T, Sauer U (2007) Determination of metabolic flux ratios from 13C-experiments and gas chromatography-mass spectrometry data. In: Weckwerth W (ed) Metabolomics. Springer, Berlin, pp 177–197

    Google Scholar 

  17. Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 55(6):831–840

    Article  CAS  Google Scholar 

  18. Schmidt K, Marx A, de Graaf AA et al (1998) 13C tracer experiments and metabolite balancing for metabolic flux analysis: comparing two approaches. Biotechnol Bioeng 58(2/3):254–257

    Google Scholar 

  19. van der Werf MTJ, Takors R et al (2007) Standard reporting requirements for biological samples in metabolomics experiments: microbial and in vitro biology experiments. Metabolomics 3(3):189–194

    Article  Google Scholar 

  20. Velagapudi VR, Wittmann C, Schneider K et al (2007) Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function. J Biotechnol 132(4):395–404

    Article  CAS  Google Scholar 

  21. Wiechert W, de Graaf AA (1996) In vivo stationary flux analysis by 13C labeling experiments. In: Scheper T (ed) Metabolic engineering. Springer, Berlin, pp 109–154

    Google Scholar 

  22. Wittmann C (2007) Fluxome analysis using GC-MS. Microb Cell Fact 6(1):6

    Article  Google Scholar 

  23. Wittmann C, Kim HM, Heinzle E (2004) Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale. Biotechnol Bioeng 87(1):1–6

    Article  CAS  Google Scholar 

  24. Wittmann C, Heinzle E (1999) Mass spectrometry for metabolic flux analysis. Biotechnol Bioeng 62(6):739–750

    Article  CAS  Google Scholar 

  25. Wittmann C, Heinzle E (2001) Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum. Eur J Biochem 268(8):2441–2455

    Article  CAS  Google Scholar 

  26. Wittmann C, Heinzle E (2008) Metabolic network analysis and design in Corynebacterium glutamicum. In: Burkovski A (ed) Corynebacteria-genomics and molecular biology. Caister Academic Press, Norfolk, pp 79–112

    Google Scholar 

  27. Yang TH, Bolten CJ, Coppi MV et al (2009) Numerical bias estimation for mass spectrometric mass isotopomer analysis. Anal Biochem 388(2):192–203

    Article  CAS  Google Scholar 

  28. Yang TH, Frick O, Heinzle E (2008) Hybrid optimization for 13C metabolic flux analysis using systems parametrized by compactification. BMC Syst Biol 2(1):29

    Article  Google Scholar 

  29. Yang TH, Wittmann C, Heinzle E (2004) Metabolic network simulation using logical loop algorithm and Jacobian matrix. Metab Eng 6(4):256–267

    Article  CAS  Google Scholar 

  30. Yuan Y, Yang TH, Heinzle E (2010) 13C metabolic flux analysis for larger scale cultivation using gas chromatography-combustion-isotope ratio mass spectrometry. Metab Eng 12(4):392–400

    Article  CAS  Google Scholar 

  31. Frick O, Wittmann C (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13 C flux analysis. Microbial Cell Factories 4(1):1–16

    Google Scholar 

  32. Andreas KG, Margarida MDS, Bjarke C et al (2000) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183(4):1441–1451

    Google Scholar 

Download references

Acknowledgments

Our research was supported by Ministry of Science and Technology Support Project (12th five year plan, Project Number: 2012BAK17B11) and Natural Science Foundation of China (Project Number: 311101333), express cordial acknowledgment here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-ding Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhong, Qd., Li, Gh., Zhao, Dd., Wang, Db., Shen, Sg., Xiong, Zh. (2015). Low Labeling 13C Metabolic Flux Analysis of Saccharomyces cerevisiae Using Gas Chromatography–Combustion–Isotope Ratio Mass Spectrometry. In: Zhang, TC., Nakajima, M. (eds) Advances in Applied Biotechnology. Lecture Notes in Electrical Engineering, vol 333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46318-5_45

Download citation

Publish with us

Policies and ethics