Skip to main content

Gravimetric Forward and Inverse Modeling Methods of the Crustal Density Structures and the Crust-Mantle Interface

  • Chapter
  • First Online:
Planetary Exploration and Science: Recent Results and Advances

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 1272 Accesses

Abstract

The numerical models and results of the gravimetric interpretation of the crustal density structures and the Moho geometry are presented. The numerical scheme applied utilizes the gravimetric forward and inverse modeling derived in a frequency domain. Methods for a spectral analysis and synthesis of the gravity and crustal structure models are applied in the gravimetric forward modeling of the gravity field generated by the major known crustal density structures. The gravimetric inversion scheme is formulated by means of a linearized Fredholm integral equation of the first kind. In numerical results we show the gravitational contributions of crustal density structures and the refined gravity field quantities, which have a minimum as well as maximum correlation with the Moho geometry. The resulting gravimetric Moho model is finally presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Airy GB (1855) On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys. Roy Soc (Lond) Ser B 145:101–104

    Google Scholar 

  • Arabelos D, Mantzios G, Tsoulis D (2007) Moho depths in the Indian ocean based on the inversion of satellite gravity data. In: Huen W, Chen YT (eds) Solid Earth, ocean science and atmospheric science, vol 9, Advances in geosciences. World Scientific Publishing, Hackensack, pp 41–52

    Google Scholar 

  • Bagherbandi M (2012) A comparison of three gravity inversion methods for crustal thickness modelling in Tibet plateau. Asian J Earth Sci 43(1):89–97

    Article  Google Scholar 

  • Bagherbandi M, Sjöberg LE (2012) Non-isostatic effects on crustal thickness: a study using CRUST2.0 in Fennoscandia. Phys Earth Planet Inter 200–201:37–44

    Article  Google Scholar 

  • Bagherbandi M, Tenzer R (2013) Comparative analysis of Vening Meinesz-Moritz isostatic models using the constant and variable crust-mantle density contrast – a case study of Zealandia. J Earth Syst Sci 122(2):339–348

    Article  Google Scholar 

  • Bagherbandi M, Tenzer R, Sjöberg LE, Novák P (2013) Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction. J Geodyn 66:25–37

    Article  Google Scholar 

  • Bassin C, Laske G, Masters TG (2000) The current limits of resolution for surface wave tomography in North America. Eos Trans AGU 81:F897

    Google Scholar 

  • Braitenberg C, Zadro M (1999) Iterative 3D gravity inversion with integration of seismologic data. Boll Geofis Teor Appl 40(3/4):469–476

    Google Scholar 

  • Braitenberg C, Mariani P, Reguzzoni M, Ussami N (2010) GOCE observations for detecting unknown tectonic features. In: Proceedings of the ESA living planet symposium, 28 June–2, July 2010, Bergen, Norway, ESA SP-686

    Google Scholar 

  • ÄŒadek O, Martinec Z (1991) Spherical harmonic expansion of the earth’s crustal thickness up to degree and order 30. Stud Geophs Geod 35:151–165

    Article  Google Scholar 

  • Cutnell JD, Kenneth WJ (1995) Physics, 3rd edn. Wiley, New York

    Google Scholar 

  • Eckhardt DH (1983) The gains of small circular, square and rectangular filters for surface waves on a sphere. Bull Geodyn 57:394–409

    Article  Google Scholar 

  • Ekholm S (1996) A full coverage, high-resolution, topographic model of Greenland, computed from a variety of digital elevation data. J Geophys Res B10(21):961–972

    Google Scholar 

  • Eshagh M, Bagherbandi M, Sjöberg LE (2011) A combined global Moho model based on seismic and gravimetric data. Acta Geodaetica et Geophysica Hungarica 46(1):25–38

    Article  Google Scholar 

  • Gladkikh V, Tenzer R (2011) A mathematical model of the global ocean saltwater density distribution. Pure Appl Geophys 169(1–2):249–257

    Google Scholar 

  • Hayford JF (1909) The figure of the earth and isostasy from measurements in the United States. USCGS, Washington, DC

    Google Scholar 

  • Hayford JF, Bowie W (1912) The effect of topography and isostatic compensation upon the intensity of gravity, USCGS, special publication, no. 10. G.P.O., Washington, DC

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman W.H., New York

    Google Scholar 

  • Heiskanen WA, Vening Meinesz FA (1958) The Earth and its gravity field. McGraw-Hill Book Company, Inc., New York

    Google Scholar 

  • Hinze WJ (2003) Bouguer reduction density, why 2.67. Geophysics 68(5):1559–1560

    Article  Google Scholar 

  • Lythe MB, Vaughan DG (2001) BEDMAP consortium: BEDMAP; a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res B Solid Earth Planets 106(6):11335–11351

    Article  Google Scholar 

  • Mayer-Guerr T, Rieser D, Höck E, Brockmann JM, Schuh W-D, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. Presented at GGHS2012, Venice, October

    Google Scholar 

  • Moritz H (1990) The figure of the Earth. Wichmann H, Karlsruhe

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geodyn 74:128–162

    Article  Google Scholar 

  • Oldenburg DW (1974) The inversion and interpretation of gravity anomalies. Geophysics 39:526–536

    Article  Google Scholar 

  • Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. In: Kiliçoglu A, Forsberg R (eds) Gravity field of the Earth. Proceedings of the 1st international symposium of the International Gravity Field Service (IGFS), Harita Dergisi, Special issue no. 18, General Command of Mapping, Ankara, Turkey

    Google Scholar 

  • Pratt JH (1855) On the attraction of the Himalaya mountains and of the elevated regions beyond upon the plumb-line in India. Trans Roy Soc (Lond) Ser B 145:53–100

    Google Scholar 

  • Sampietro D (2011) GOCE exploitation for Moho modeling and applications. In: Proceedings of the 4th international GOCE user workshop, 31 March–1 April 2011, Munich, Germany

    Google Scholar 

  • Sampietro D, Reguzzoni M, Braitenberg C (2013) The GOCE estimated Moho beneath the Tibetan Plateau and Himalaya. In: Rizos C, Willis P (eds) International association of geodesy symposia, Earth on the edge: science for a sustainable planet. Proceedings of the IAG general assembly, 28 June–2 July 2011, Melbourne, Australia, vol 139. Springer, Berlin

    Google Scholar 

  • Sjöberg LE (2009) Solving Vening Meinesz-Moritz Inverse Problem in Isostasy. Geophys J Int 179(3):1527–1536

    Article  Google Scholar 

  • Sjöberg LE, Bagherbandi M (2011) A method of estimating the Moho density contrast with a tentative application by EGM08 and CRUST2.0. Acta Geophys 58:1–24

    Google Scholar 

  • Tenzer R, Chen W (2014) Expressions for the global gravimetric Moho modeling in spectral domain. Pure Appl Geophys 171(8):1877–1896

    Article  Google Scholar 

  • Tenzer R, Hamayun K, Vajda P (2009a) Global maps of the CRUST2.0 crustal components stripped gravity disturbances. J Geophys Res 114(B):05408

    Article  Google Scholar 

  • Tenzer R, Hamayun K, Vajda P (2009b) A global correlation of the step-wise consolidated crust-stripped gravity field quantities with the topography, bathymetry, and the CRUST2.0 Moho boundary. Contrib Geophys Geodesy 39(2):133–147

    Google Scholar 

  • Tenzer R, Gladkikh V, Vajda P, Novák P (2012a) Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv Geophys 33(5):817–839

    Article  Google Scholar 

  • Tenzer R, Hamayun K, Novák P, Gladkikh V, Vajda P (2012b) Global crust-mantle density contrast estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G. Pure Appl Geophys 169(9):1663–1678

    Article  Google Scholar 

  • Tenzer R, Novák P, Gladkikh V (2012c) The bathymetric stripping corrections to gravity field quantities for a depth-dependant model of the seawater density. Mar Geod 35:198–220

    Article  Google Scholar 

  • Tenzer R, Bagherbandi M, Hwang C, Chang ETY (2013) Moho interface modeling beneath Himalayas, Tibet and central Siberia using GOCO02S and DTM2006.0. Special issue on geophysical and climate change studies in Tibet, Xinjiang, and Siberia from satellite geodesy. Terres Atmos Ocean Sci 24(4):581–590

    Article  Google Scholar 

  • Vening Meinesz FA (1931) Une nouvelle méthode pour la réduction isostatique régionale de l’intensité de la pesanteur. Bull Geod 29:33–51

    Article  Google Scholar 

  • Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Young D (1971) Iterative solutions of large linear systems. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tenzer, R., Chen, W. (2015). Gravimetric Forward and Inverse Modeling Methods of the Crustal Density Structures and the Crust-Mantle Interface. In: Jin, S., Haghighipour, N., Ip, WH. (eds) Planetary Exploration and Science: Recent Results and Advances. Springer Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45052-9_4

Download citation

Publish with us

Policies and ethics