Skip to main content

Molekulare Struktur und Regulation prokaryotischer Gene

  • Chapter
Genetik
  • 29k Accesses

Zusammenfassung

Bakterien (und Archaeen) sind einzellige Organismen ohne Zellkern und unterscheiden sich dadurch grundsätzlich von den Eukaryoten; sie werden häufig gemeinsam als Prokaryoten bezeichnet und stellen die kleinste unabhängige Lebensform dar. Ihre doppelsträngige DNA ist im Allgemeinen ringförmig angeordnet und wird als »Bakterienchromosom« bezeichnet. Bakterielle Genome schwanken in ihrer Größe erheblich: Das kleinste Bakterienchromosom von Mycoplasma genitalium umfasst 580 kb; das bisher größte sequenzierte Chromosom von Bakterien, Bradyrhizobium japonicum, enthält 9,1 Mb. Neben dem Chromosom besitzt die Bakterienzelle meist noch extrachromosomale DNA in Form von Plasmiden, die in unterschiedlicher Kopienzahl in der Zelle vorliegen und auf denen häufig Gene lokalisiert sind, die der Zelle zusätzliche Fähigkeiten vermitteln (Abschn. 4.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Amundsen SK, Smith GR (2003) Interchangeable parts of the Escherichia coli recombination machinery. Cell 112:741–744

    Article  CAS  PubMed  Google Scholar 

  • Anderson J, Strelkowa N, Stan GB et al. (2012) Engineering and ethical perspectives in synthetic biology. EMBO Rep 13:584–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annaluru N, Muller H, Mitchell LA et al. (2014) Total synthesis of a functional designer eukaryotic chromosome. Science 344:55–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arber W, Dussoix D (1962) Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage ?. J Mol Biol 5:18–36

    Article  CAS  PubMed  Google Scholar 

  • Arber W, Linn S (1969) DNA modification and restriction. Annu Rev Biochem 38:467–500

    Article  CAS  PubMed  Google Scholar 

  • Benzer S (1957) The elementary unit of heredity. In: McElry WD, Glas B (Hrsg) The Chemical Basis of Heredity. John Hopkins Press, Baltimore/MD, 70–93

    Google Scholar 

  • Berg HC (1975) How bacteria swim. Sci Am 233:36–44

    Article  CAS  PubMed  Google Scholar 

  • Berlyn MKB (1998) Linkage map of Escherichia coli K-12, edition 10: the traditional map. Microbiol Mol Biol Rev 62:814–984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blattner FR, Plunkett G 3rd, Block CA et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  CAS  PubMed  Google Scholar 

  • Boccard F, Esnault E, Valens M (2005) Spatial arrangement and macrodomain organization of bacterial chromosomes. Mol Microbiol 57:9–16

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet C, Forterre P, Gribaldo S (2011) Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol 14: 274–281

    Article  PubMed  Google Scholar 

  • Campbell A (2003) The future of bacteriophage biology. Nat Rev Genet 4:471–477

    Article  CAS  PubMed  Google Scholar 

  • Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2:241–249

    Article  CAS  PubMed  Google Scholar 

  • Cohen SN, Chang ACY, Boyer HB et al. (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Sci USA 70:3240–3244

    Article  CAS  Google Scholar 

  • Connolly B, West S (1990) Genetic recombination in Escherichia coli: Holliday junctions made by RecA protein are resolved by fractionated cell-free extracts. Proc Natl Acad Sci USA 87:8476–8480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd IB, Shearwin KE, Egan JB (2005) Revisited gene regulation in bacteriophage ?. Curr Opin Genet Dev 15:145–152

    Article  CAS  PubMed  Google Scholar 

  • Dorman CJ, Deighan P (2003) Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Gen Dev 13:179–184

    Article  CAS  Google Scholar 

  • Ebersbach G, Gerdes K (2005) Plasmid segregation mechanisms. Annu Rev Genet 39:453–479

    Article  CAS  PubMed  Google Scholar 

  • Eggleston AK, West SC (1997) Recombination initiation: easy as A, B, C, D..?? Curr Biol 7:R745–R749

    Article  Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR et al. (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98:13437–13442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evguenieva-Hackenberg E (2005) Bacterial ribosomal RNA in pieces. Mol Microbiol 57:318–325

    Article  CAS  PubMed  Google Scholar 

  • Folkhard W, Leonard KR, Malsey S et al. (1979) X-ray diffraction and electron microscope studies on the structure of bacterial F pili. J Mol Biol 130:145–160

    Article  CAS  PubMed  Google Scholar 

  • Forsberg KJ, Reyes A, Wang B et al. (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C et al. (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W, Müller-Hill B (1966) Isolation of the lac repressor. Proc Natl Acad Sci USA 56:1891–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodner B, Hinkle G, Gattung S et al. (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323–2328

    Article  CAS  PubMed  Google Scholar 

  • van Gool AJ, Shah, Mézard C et al. (1998) Functional interactions between the Holliday junction resolvase and the branch migration motor of Escherichia coli. EMBO J 17:1838–1845

    Article  PubMed  PubMed Central  Google Scholar 

  • Groth AC, Calos MP (2004) Pahe integrases: biology and applications. J Mol Biol 335:667–678

    Article  CAS  PubMed  Google Scholar 

  • Hayes F, Barillà D (2006) The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nat Rev Microbiol 4: 133–143

    Article  CAS  PubMed  Google Scholar 

  • Hershey AD, Chase M (1951) Genetic recombination and heterozygosis in bacteriophage. Cold Spring Harb Symp Quant Biol 16:471–479

    Article  CAS  PubMed  Google Scholar 

  • Hershey AD, Rotman R (1949) Genetic recombination between host-range and plaque-type mutants of bacteriophage in single bacterial cells. Genetics 34:44–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hillebrand A, Wurm R, Menzel A et al. (2005) The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies. Biol Chem 386:523–534

    Article  CAS  PubMed  Google Scholar 

  • Himmelreich R, Hilbert H, Plagen H et al. (1996) Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucl Acids Res 24:4420–4449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R (1974) Molecular aspects of genetic exchange and gene conversion. Genetics 78:273–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Houdt R, Givskov M, Michiels CW (2007) Quorum sensing in Serratia. FEMS Microbiol Rev 31:407–424

    Article  CAS  PubMed  Google Scholar 

  • Ioannou PA, Amemiya CT, Garnes J et al. (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet 6:84–89

    Article  CAS  PubMed  Google Scholar 

  • Irwin N, Ptashne M (1987) Mutants of the catabolite activator protein of Escherichia coli that are specifically deficient in the gene activator function. Proc Natl Acad Sci USA 60:1282–1287

    Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  • Jacob F, Wollman EL (1958) Genetic and physical determinations of chromosomal segments in Escherichia coli. Symp Soc Exp Biol 12: 75–92

    CAS  PubMed  Google Scholar 

  • Jacob F, Wollman EL (1961) Sexuality and the Genetics of Bacteria. Academic Press, New York

    Google Scholar 

  • Kempken F, Kempken R (2004) Gentechnik bei Pflanzen - Chancen und Risiken, 2. Aufl. Springer, Berlin

    Google Scholar 

  • Kleinschmidt AK, Lang D, Jacherts D et al. (1962) Darstellung und Längenmessung des gesamten Desoxyribonukleinsäure-Inhaltes von T2-Bakteriophagen. Biochim Biophys Acta 61:857–864

    CAS  PubMed  Google Scholar 

  • Kück U (2005) Praktikum der Molekulargenetik. Springer, Berlin Kumari A, Pasini P, Daunert S (2008) Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples. Anal Bioanal Chem 391:1619–1627

    Google Scholar 

  • Lacroix B, Tzfira T, Vainstein A et al. (2006) A case of promiscuity: Agrobacterium's endless hunt for new partners. Trends Genet 22:29–37

    Article  CAS  PubMed  Google Scholar 

  • Lamarck JB (1809) Philosophie zoologique (2 Bände). Dentu, Paris Lederberg EM, Lederberg J (1953) Genetic studies of lysogenicity in Escherichia coli. Genetics 38:51–64

    Google Scholar 

  • Lederberg J (1947) Gene recombination and linked segregations in Escherichia coli. Genetics 32:502–525

    Google Scholar 

  • Lederberg J, Cavalli LL, Lederberg EM (1952) Sex compatibility in Escherichia coli. Genetics 37:720–730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lederberg J, Tatum EL (1946) Novel genotypes in mixed cultures of biochemical mutans of Escherichia coli. Cold Spring Harb Symp Quant Biol 11: 113–114

    Article  Google Scholar 

  • Lee G, Saito I (1998) Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216:55–65

    Article  CAS  PubMed  Google Scholar 

  • Lewis RJ, Brannigan JA, Offen WA et al. (1998) An evolutionary link between sporulation and prophage induction in the structure of a repressor:antirepressor complex. J Mol Biol 283:907–912

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, West SC (2004) Happy hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol 5:937–946

    Article  CAS  PubMed  Google Scholar 

  • Lukowski R, Weber S, Weinmeister P et al. (2005) Cre/loxP-vermittelte konditionale Mutagenese des cGMP-Signalwegs in der Maus. BIOspektrum 11:287–290

    CAS  Google Scholar 

  • Luria SE, Delbrück M (1943) Mutations in bacteria from virus sensitivity to virus resistance. Genetics 28:491–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mell JC, Redfield RJ (2014) Natural competence and the evolution of DNA uptake specificity. J Bacteriol 196:1471–1483

    Article  PubMed  PubMed Central  Google Scholar 

  • Merino E, Jensen RA, Yanofsky C (2008) Evolution of bacterial trp operons and their regulation. Curr Opin Microbiol 11:78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meselson MS, Radding CM (1975) A general model for genetic recombination. Proc Natl Acad Sci USA 72:358–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meselson M, Weigle JJ (1961) Chromosome breakage accompanying genetic recombination in bacteriophage. Proc Natl Acad Sci USA 47:857–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller-Hill B (1990) The isolation of the lac repressor. Bioessays 12:41–43

    Article  PubMed  Google Scholar 

  • Munk K (2001) Grundstudium Biologie: Genetik. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Nakajima N, Ozeki H, Shimura Y (1981) Organization and structure of an E. Coli tRNA operon containing seven tRNA genes. Cell 23:239–249

    Article  CAS  PubMed  Google Scholar 

  • Nathans D, Smith HO (1975) Restriction endonucleases in the analysis and restructuring of DNA molecules. Annu Rev Biochem 44:273–293

    Article  CAS  PubMed  Google Scholar 

  • Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novotny C, Carnahan J, Brinton CC Jr (1969) Mechanical removal of F pili, type I pili, and flagella from Hfr and RTF donor cells and the kinetics of their reappearance. J Bacteriol 98:1294–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuji N, Iyehara H, Hideshima Y (1974) Isolation and characterization of an Escherichia coli ruv mutant which forms nonseptate filaments after low doses of ultraviolet light radiation. J Bacteriol 117:337–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ptashne M (2006) Lambda's switch: lessons from a module swap. Curr Biol 16:R459–R462

    Article  Google Scholar 

  • Reading NC, Sperandino V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11

    Article  CAS  PubMed  Google Scholar 

  • Redfield RJ (2001) Do bacteria have sex? Nat Rev Genet 2:634–639

    Article  CAS  PubMed  Google Scholar 

  • Roberts RJ, Belfort M, Bestor T et al. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucl Acids Res 31:1805–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg SM (2001) Evolving responsively: adaptive mutation. Nat Rev Genet 2:504–515

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Coulson AR, Friedmann T et al. (1978) The nucleotide sequence of bacteriophage ?X174. J Mol Biol 125:225–246

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Coulson AR, Hong GF et al. (1982) Nucleotide sequence of bacteriophage ? DNA. J Mol Biol 162:729–773

    Article  CAS  PubMed  Google Scholar 

  • Seyffert W (2003) Lehrbuch der Genetik, 2. Aufl. Spektrum Akademischer Verlag, Heidelberg Sherman JM, Wing HU (1937) Attempts to reveal sex in bacteria; with some light on fermentative variability in the coli-aerogenes group. J Bacteriol 33:315–321

    Google Scholar 

  • Shizuya H, Birren B, Kim UJ et al. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuman HA, Silhavy TJ (2003) The art and design of genetic screens: Escherichia coli. Nat Rev Genet 4:419–431

    Article  CAS  PubMed  Google Scholar 

  • Smith JD, Arber W, Kühnlein U (1972) Host specificity of DNA produced by E. coli. XIV. The role of nucleotide methylation in in vivo B-specific modification. J Mol Biol 63:1–8

    Article  CAS  PubMed  Google Scholar 

  • Suckow J, Markiewicz P, Kleina LG et al. (1996) Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J Mol Biol 261:509–523

    Article  CAS  PubMed  Google Scholar 

  • Tatum EL, Lederberg J (1947) Gene recombination in the bacterium Escherichia coli. J Bact 53:673–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thanbichler M, Shapiro L (2006) Chromosome organization and segregation in bacteria. J Struct Biol 156:292–303

    Article  CAS  PubMed  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    Article  CAS  PubMed  Google Scholar 

  • Willenbrock H, Ussery DW (2007) Prediction of highly expressed genes in microbes based on chromatin accessibility. BMC Mol Biol 8:11 (doi: 10.1186/1471-2199-8-11)

    Google Scholar 

  • Xie G, Keyhani NO, Bonner CA et al. (2003) Ancient origin of the tryptophan operon and the dynamics of evolutionary change. Microbiol Mol Biol Rev 67:303–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanofsky C (2004) The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis. Trends Genet 20:367–374

    Article  CAS  PubMed  Google Scholar 

  • Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bact 64: 679–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graw, J. (2015). Molekulare Struktur und Regulation prokaryotischer Gene. In: Genetik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44817-5_4

Download citation

Publish with us

Policies and ethics