Binomialkoeffizienten sind (fast) nie Potenzen

Chapter

Zusammenfassung

Im Nachklang zu Bertrands Postulat wollen wir jetzt ein sehr schönes Resultat über Binomialkoeffizienten besprechen. Im Jahr 1892 verschärfte Sylvester das Bertrandsche Postulat auf die folgendeWeise:

Ist n ≥ 2k, so hat mindestens eine der Zahlen n, n − 1, . . . , n − k +1 einen Primteiler p, der größer als k ist.

Man beachte, dass dies für n = 2k genau das Bertrandsche Postulat ergibt. Erdős gab 1934 einen kurzen und elementaren Beweis des Satzes von Sylvester, der auch aus dem BUCH stammt und auf ähnlichen Überlegungen wie im letzten Kapitel beruht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für MathematikFreie Universität Berlin Fachbereich Mathematik und InformatBerlinDeutschland
  2. 2.Diskrete GeometrieFreie Universität Berlin Institut für MathematikBerlinDeutschland

Personalised recommendations