Skip to main content

The Bose-Hubbard Model is QMA-complete

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

Abstract

The Bose-Hubbard model is a system of interacting bosons that live on the vertices of a graph. The particles can move between adjacent vertices and experience a repulsive on-site interaction. The Hamiltonian is determined by a choice of graph that specifies the geometry in which the particles move and interact. We prove that approximating the ground energy of the Bose-Hubbard model on a graph at fixed particle number is QMA-complete. In our QMA-hardness proof, we encode the history of an n-qubit computation in the subspace with at most one particle per site (i.e., hard-core bosons). This feature, along with the well-known mapping between hard-core bosons and spin systems, lets us prove a related result for a class of 2-local Hamiltonians defined by graphs that generalizes the XY model. By avoiding the use of perturbation theory in our analysis, we circumvent the need to multiply terms in the Hamiltonian by large coefficients.

Reference [1] is a detailed technical version of this extended abstract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Childs, A.M., Gosset, D., Webb, Z.: The Bose-Hubbard model is QMA-complete. arXiv:1311.3297

    Google Scholar 

  2. Bookatz, A.D.: QMA-complete problems. arXiv:1212.6312

    Google Scholar 

  3. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. American Mathematical Society (2002)

    Google Scholar 

  4. Kempe, J., Regev, O.: 3-Local Hamiltonian is QMA-complete. Quantum Inf. Comput. 3(3), 258–264 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Kempe, J., Kitaev, A., Regev, O.: The complexity of the local Hamiltonian problem. SIAM J. Comput. 35(5), 1070–1097 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Oliveira, R., Terhal, B.M.: The complexity of quantum spin systems on a two-dimensional square lattice. Quantum Inf. Comput. 8(10), 900–924 (2008)

    MATH  MathSciNet  Google Scholar 

  7. Aharonov, D., Gottesman, D., Irani, S., Kempe, J.: The power of quantum systems on a line. Commun. Math. Phys. 287, 41–65 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gottesman, D., Irani, S.: The quantum and classical complexity of translationally invariant tiling and Hamiltonian problems. Theory Comput. 9(2), 31–116 (2013)

    Article  MathSciNet  Google Scholar 

  9. Bravyi, S.: Efficient algorithm for a quantum analogue of 2-SAT. Contemp. Math. 536, 33–48 (2011)

    Article  MathSciNet  Google Scholar 

  10. Gosset, D., Nagaj, D.: Quantum 3-SAT is QMA1-complete. In: 54th FOCS, pp. 756–765 (2013)

    Google Scholar 

  11. Bravyi, S., DiVincenzo, D.P., Oliveira, R.I., Terhal, B.M.: The complexity of stoquastic local Hamiltonian problems. Quantum Inf. Comput. 8(5), 361–385 (2008)

    MathSciNet  Google Scholar 

  12. Bravyi, S., Terhal, B.: Complexity of stoquastic frustration-free Hamiltonians. SIAM J. Comput. 39(4), 1462–1485 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wei, T.C., Mosca, M., Nayak, A.: Interacting boson problems can be QMA hard. Phys. Rev. Lett. 104(4), 040501 (2010)

    Google Scholar 

  14. Liu, Y.K., Christandl, M., Verstraete, F.: Quantum computational complexity of the N-representability problem: QMA complete. Phys. Rev. Lett. 98(11), 110503 (2007)

    Article  Google Scholar 

  15. Schuch, N., Verstraete, F.: Computational complexity of interacting electrons and fundamental limitations of density functional theory. Nature Phys. 5(10), 732–735 (2009)

    Article  Google Scholar 

  16. Cubitt, T., Montanaro, A.: Complexity classification of local Hamiltonian problems. arXiv:1311.3161

    Google Scholar 

  17. Fisher, M.P.A., Weichman, P.B., Grinstein, G., Fisher, D.S.: Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989)

    Article  Google Scholar 

  18. Childs, A.M., Gosset, D., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339(6121), 791–794 (2013)

    Article  MathSciNet  Google Scholar 

  19. Feynman, R.P.: Quantum mechanical computers. Optics News 11, 11–20 (1985)

    Article  Google Scholar 

  20. Janzing, D., Wocjan, P.: BQP-complete problems concerning mixing properties of classical random walks on sparse graphs. arXiv:quant-ph/0610235

    Google Scholar 

  21. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: 35th STOC, pp. 20–29 (2003)

    Google Scholar 

  22. Jordan, S.P., Farhi, E.: Perturbative gadgets at arbitrary orders. Phys. Rev. A 77(6), 062329 (2008)

    Google Scholar 

  23. Mizel, A., Lidar, D.A., Mitchell, M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99(7), 070502 (2007)

    Google Scholar 

  24. Landau, L.D., Lifshitz, E.M.: Quantum mechanics: non-relativistic theory. Pergamon Press (1994)

    Google Scholar 

  25. Nagaj, D., Mozes, S.: New construction for a QMA complete three-local Hamiltonian. J. Math. Phys. 48(7), 072104 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Childs, A.M., Gosset, D., Webb, Z. (2014). The Bose-Hubbard Model is QMA-complete. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics