Skip to main content

Mechanism of physiologic versus pathologic ventricular hypertrophy process: Enhanced or depressed myosin ATPase activity and contractility governed by type, degree and duration of inciting stress

Mechanismus der physiologischen und pathologischen Ventrikelhypertrophie: Erhöhte oder verminderte Myosin-ATPase-Aktivität und Kontraktilität in Abhängigkeit von Typ, Grad und Dauer der auslösenden Belastung

  • Chapter
Experimental Cardiac Hypertrophy and Heart Failure

Summary

Types of hypertrophy, such as the normal development of the left ventricle of new-born lambs, induction of hypertrophy following administration of subhypertensive doses of norepinephrine, and hypertrophy where moderate pulmonic stenosis is the inciting stimulus, are all of a physiologic nature, i.e., cardiac function is elevated and K+ stimulated myosin ATPase activity is increased. The K+/EDTA stimulated myosin ATPase activity, used as an index of physiologic versus pathologic hypertrophy, may reflect alterations in myosin heavy chains since a large amount of light chains are in the dissociated state with this kinetic system. In experimental conditions where light-chain deficient-myosin was employed there was no corresponding decrease in myosin ATPase activity with the dissociation of light chains, irrespective of the cation activator utilized; there was however a decrease in the enzymatic activity of actomyosin with the loss of light chains. Furthermore, this decrease in actomyosin ATPase activity was partially restored with the reassociation of light chains with light-chain-deficient-myosin. Where excessive hypertrophy occurred, e.g., with moderate pulmonic stenosis, where the right ventricular free wall weight increased 100%, there was a decrease in cAMP content. This may result from the subsequent decrease in stress per sarcomere following massive hypertrophy. Where there was a lesser degree of hypertrophy, e.g., with mild pulmonic stenosis, creating a transitory 30% increase in right ventricular free wall weight, there was no subsequent decrease in cAMP content.

This study was supported by NIH-ROI-HL-23518-01 from the National Institutes of Health, Bethesda, Maryland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goodkind, M. J., G E. Dambach, P. T. Thyrum, R. J. Luchi: Effects of thyroxine on ventricular myocardial contractility and ATPase activity in guinea pigs. Amer. J. Physiol. 226, 66–72 (1974).

    PubMed  CAS  Google Scholar 

  2. Wikman-Coffelt, J., C. Fenner, R. Walsh, A. Salel, T. Kamiyama, D. T. Mason: Comparison of mild vs severe pressure overload on the enzymatic activity of myosin in the canine ventricles. Biochem. Med. 14, 139–146 (1975).

    Article  PubMed  CAS  Google Scholar 

  3. Stewart, D., D. T. Mason, J. Wikman-Coffelt: Changes in cAMP concentrations during chronic hypertrophy. Basic Res. in Cardiol. 73, 648–655 (1979).

    Article  Google Scholar 

  4. Meerson, F. Z.: Contractile function of the heart in hyperfunction hypertrophy, and heart failure. Chapter 1. Circ. Res., 24 & 25, Suppl. II, 9–54 (1969).

    Google Scholar 

  5. Poole-Wilson, P. A.: Measurement of myocardial intracellular pH in pathologic states. J. Mol. Cell. Cardiol. 10, 511–526 (1978).

    Article  PubMed  CAS  Google Scholar 

  6. Wikman-Coffelt, J., T. Kamiyama, A. Salel, D. T. Mason: Differential responses of canine myosin ATPase activity and tissue gases in the pressure overloaded ventricle dependent upon degree of obstruction: Mild versus severe pulmonic and aortic stenosis. In Recent Advances in Studies on Cardiac Structure and Metabolism, edited by T. Kobayashi, Y. Ito, G. Rona, Vol. 12, pp 367–372 (Baltimore 1978).

    Google Scholar 

  7. Long, L., F. Fabian, D. T. Mason, J. Wikman-Coffelt: A new cardiac myosin characterized from the canine atria. Biochem. Biophys. Res. Commun. 76, 626–635 (1977).

    Article  PubMed  CAS  Google Scholar 

  8. Fabian, F., A. Mühlrad: Effect of trinitrophenylation of myosin ATPase. Biochim. Biophys, Acta. 162, 596–603 (1968).

    Article  CAS  Google Scholar 

  9. Spudich, J. A., S. Watt: The regulation of rabbit skeletal muscle contraction. J. Biol. Chem. 246, 4866–4871 (1971).

    PubMed  CAS  Google Scholar 

  10. Pemrick, S.: Comparison of the calcium sensitivity of actomyosin from native and L2-deficient myosin. Biochem. 16, 4047–4054 (1977).

    Article  CAS  Google Scholar 

  11. Vanderburgh, H., S. Kaufman: In vitro model for stretch-induced hypertrophy of skeletal muscle. Science. 203, 265–268 (1979)

    Article  Google Scholar 

  12. Schreiber, S. S., M. Oratz, M. A. Rothschild, F Reff: Effect of hydrostatic pressure on isolated cardiac nuclei: Stimulation of RNA polymerase II activity. Cardiovasc. Res. 12, 265–268 (1978).

    Article  PubMed  CAS  Google Scholar 

  13. Flink, I. L., J. H. Rader, S. K. Banerjee, E. Morkin: Atrial and ventricular cardiac myosins contain different heavy chain species. FEBS Lett. 94, 125–130 (1978).

    Article  PubMed  CAS  Google Scholar 

  14. Flink, I. L., E. Morkin: Evidence for a new cardiac myosin species in thyrotoxic rabbit. FEBS Lett. 81, 391–394 (1977).

    Article  PubMed  CAS  Google Scholar 

  15. Barany, M.: ATPase activity of myosin correlated with speed of muscle shorten ing. J. Gen. Physiol. 50, 197–199 (1967).

    Article  PubMed  Google Scholar 

  16. Higuchi, M., F. Fabian, T. Wandzilak, Jr., D. T. Mason, J. Wikman-Coffelt: Dissociation of light chains from cardiac myosin. Eur. J. Biochem. 92, 317–323 (1978).

    Article  PubMed  CAS  Google Scholar 

  17. Wikman-Coffelt, J., M. Higuchi, F. Fabian, and D. T. Mason: Comparison of Mg2+ vs Ca2+, K+ and Actin-activation of myosin after trinitrophenylation. Res. Commun, in Chem. Path. & Pharmacol, (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wikman-Coffelt, J., Laks, M.M., Riemenschneider, T.H., Mason, D.T. (1980). Mechanism of physiologic versus pathologic ventricular hypertrophy process: Enhanced or depressed myosin ATPase activity and contractility governed by type, degree and duration of inciting stress. In: Jacob, R. (eds) Experimental Cardiac Hypertrophy and Heart Failure. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41468-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41468-2_21

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0577-3

  • Online ISBN: 978-3-662-41468-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics