Skip to main content

Role of Endogenous Proteins as Negative Growth Modulators During In Vitro Cellular Aging of Human Diploid Fibroblasts

  • Chapter
Special Focus on the Biology of Aging

Abstract

Aging is a normal part of development, yet many aspects of the aging process are not understood. Overall, people tend to age in a similar fashion (e.g. graying hair), but not everyone has all the same characteristics of aging, nor do people age at the same rate. As a result, it is difficult to define aging precisely and develop models to ask relevant questions as to how and why we age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama, S. K., & Yamada, K. M. (1987). Fibronectin. Advances in Enzymology, 59, 1–57.

    CAS  Google Scholar 

  • Angello, J. C., Pendergrass, W. R., Norwood, T. H., & Prothero, J. (1987). Proliferative potential of human fibroblasts: an inverse dependence on cell size. Journal of Cellular Physiology, 132, 125–130.

    Article  PubMed  CAS  Google Scholar 

  • Bayreuther, K., Rodemann, H. P., Hommel, R., Dittmann, K., Albrey, M., & Francz, P. I. (1988). Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 85, 5112–5116.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bierman, E. L. (1978). The effect of donor age on the in vitro life span of cultured human arterial smooth muscle cells. In Vitro, 14, 951–955.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, K. M., Phillips, P. D., Carlin, C. R., & Cristofalo, V. J. (1984). EGF-dependent phosphorylation of the EGF receptor in plasma membranes isolated from young and senescent WI-38 cells. Journal of Cellular Physiology, 99, 414a.

    Google Scholar 

  • Brooks, K. M., Phillips, P. D., Carlin, C. R., Knowles, B. B., & Cristofalo, V. J. (1987). EGF-dependent phosphorylation of the EGF receptor in plasma membranes isolated from young and senescent WI-38 cells. Journal of Cellular Physiology, 133, 523–531.

    Article  PubMed  CAS  Google Scholar 

  • Burmer, G. C., Motulsky, H., Zeigler, C. J., & Norwood, T. H. (1983). Inhibition of DNA synthesis in young cycling human diploid fibroblast-like cells upon fusion to enucleate cytoplasts from senescent cells. Experimental Cell Research, 145, 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Burmer, G. C., Zeigler, C. J., & Norwood, T. H. (1982). Evidence for endogenous polypeptide-mediated inhibition of cell cycle transit in human diploid cells. Journal of Cell Biology, 94, 187–192.

    Article  PubMed  CAS  Google Scholar 

  • Carlin, C. R., Phillips, P. D., Knowles, B. B., & Cristofalo, V. J. (1983). Diminished in vitro tyrosine kinase activity of the EGF receptor of senescent human fibroblasts. Nature, 306, 617–620.

    Article  PubMed  CAS  Google Scholar 

  • Carrel, A. (1935). Man the unknown. New York: Halcyon.

    Google Scholar 

  • Chandrasekhar, S., & Millis, A. J. T. (1980). Fibronectin from aged fibroblasts is defective in promoting cellular adhesion. Journal of Cellular Physiology, 103, 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekhar, S., Sorrentino J. A., & Millis, A. J. T. (1983). Interaction of fibronectin with collagen: Age-specific defect in the biological activity of human fibroblast fib-ronectin. PNAS, 80, 4747–4751.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ching, G., & Wang, E. (1988). Absence of three secreted proteins and presence of a 57-kDa protein related to irreversible arrest of cell growth. PNAS, 85, 151–155.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chua, C. C., German, D. E., & Ladda, R. L. (1986). Receptor for epidermal factor retains normal structure and function in aging cells. Mechanisms of Ageing and Development, 34, 35–55.

    Article  PubMed  CAS  Google Scholar 

  • Cristofalo, V.J. (1975). Hydrocortisone as a modulator of cell division and population life span. Advances in Experimental Medicine and Biology, 61, 57–79.

    Article  PubMed  CAS  Google Scholar 

  • Cristofalo, V. J., Doggett, D. L., Brooks-Frederich, K. M., & Phillips, P. D. (1989). Growth factors as probes of cell aging. Experimental Gerontology, 24, 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Cristofalo, V. J., & Kritchevsky, D. (1969). Cell size and nucleic acid content in the diploid human cell line WI-38 during aging. Medicina Experimentalis International Journal of Experimental Medicine, 19, 313–320.

    PubMed  CAS  Google Scholar 

  • Cristofalo, V. J., & Sharf, B. B. (1973). Cellular senescence and DNA synthesis: Thymidine incorporation as a measure of population age in human diploid cells. Experimental Cell Research, 76, 419–427.

    Article  PubMed  CAS  Google Scholar 

  • Cristofalo, V. J., & Stanulis-Praeger, B. M. (1982). Cellular senescence in vitro. In K. Maramorosch (Ed.), Advances in tissue culture (pp. 1–68). New York: Academic Press.

    Google Scholar 

  • Dell’Orco, R. T., Mergens, J. G., & Kuse Jr., J. F. (1974). Doubling potential calendar time and donor age of human diploid cells in culture. Experimental Cell Research, 84, 363–366.

    Article  PubMed  Google Scholar 

  • Drescher-Lincoln, C. K., & Smith, J. R. (1983). Inhibition of DNA synthesis in proliferating human diploid fibroblasts by fusion with senescent cytoplasts. Experimental Cell Research, 144, 455–462.

    Article  PubMed  CAS  Google Scholar 

  • Drescher-Lincoln, C. K., & Smith, J. R. (1984). Inhibition of DNA synthesis in senescent-proliferating human cybrids is mediated by endogenous proteins. Experimental Cell Research, 153, 208–217.

    Article  PubMed  CAS  Google Scholar 

  • Duthu, G. S., & Smith, J. R. (1980). In vitro proliferation and life span of bovine aorta endothelial cells: Effect of culture conditions and fibroblast growth factor. Journal of Cellular Physiology, 103, 385–392.

    Article  PubMed  CAS  Google Scholar 

  • Edick, G. F., & Millis, A. J. (1984). Fibronectin distribution on the surfaces of young and old human fibroblasts. Mechanisms of Ageing and Development, 27, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, S. (1978). Human genetic disorders that feature premature onset and accelerated progression of biological aging. In E. L. Schneider (Ed.), The genetics of aging (pp. 171–224). New York: Plenum Press.

    Chapter  Google Scholar 

  • Goldstein, S. J., Littlefield, W., & Soeldner, J. S. (1969). Diabetes mellitus and aging: Diminished plating efficiency of cultured human fibroblasts. PNAS, 64, 155–160.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goldstein, S., Moerman, E. L., Soeldner, J. S., Gleason, R. E., & Barnett, D. M. (1978). Chronologic and physiologic age affect replicative life span of fibroblasts from diabetic, prediabetic, and normal donors. Science, 199, 781–782.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, S., & Singal, D. P. (1974). Senescence of cultured human fibroblasts: Mitotic versus metabolic time. Experimental Cell Research, 88, 359–364.

    Article  PubMed  CAS  Google Scholar 

  • Gorman, S. D., & Cristofalo, V. J. (1985). Reinitiation of cellular DNA synthesis in BrdU-selected nondividing senescent WI-38 cells by simian virus 40 infection. Journal of Cellular Physiology, 125, 122–126.

    Article  PubMed  CAS  Google Scholar 

  • Grove, G. L., Houghton, B. A., Cochran, J. W., Kress, E. D., & Cristofalo, V. J. (1977). Hydrocortisone effects on cell proliferation: specificity of response among various cell types. Cell Biology International Reports, 1, 147–155.

    Article  PubMed  CAS  Google Scholar 

  • Harley, C. B., Goldstein, S., Posner, B. L, & Guyda, H. (1981). Decreased sensitivity of old and progeric human fibroblasts to a preparation of factors with insulin-like activity. Journal of Clinical Investigation, 69, 988–994.

    Article  Google Scholar 

  • Hay, R. J., Menzies, R. A., Morgan, H. P., & Strehler, B. L. (1968). The division potential of cells in continuous growth as compared to cells subcultivated after maintenance in stationary phase. Experimental Gerontology, 3, 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37, 614–636.

    Article  PubMed  CAS  Google Scholar 

  • Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25, 585–621.

    Article  PubMed  CAS  Google Scholar 

  • Hoehn, H., Bryant, E. M., & Martin, G. M. (1978). The replicative life spans of euploid hybrids derived from short-lived and long-lived human skin fibroblast cultures. Cytogenetics and Cell Genetics, 21, 282–295.

    Article  PubMed  CAS  Google Scholar 

  • Howard, B. H., Fordis, C. M., Sakamoto, K., Holter, W., Corsico, C. D., & Howard, T. (1988). Negative regulation of cell growth by interspersed repetitive DNA se quences. In Vitro, 24, 47A.

    Google Scholar 

  • Hynes, R. O. (1985). Fibronectins: a family of complex and versatile adhesive glycoproteins derived from a single gene. The Harvey Lectures, 81, 133–152.

    CAS  Google Scholar 

  • Ide, T., Tsuji, Y., Ishibashi, S., & Mitsui, Y. (1983). Reinitiation of host DNA synthesis in senescent human diploid cells by infection with simian virus 40. Experimental Cell Research, 143, 343–349.

    Article  PubMed  CAS  Google Scholar 

  • Ide, T., Tsuji, Y., Nakashima, T., & Ishibashi, S. (1984). Progress of aging in human diploid cells transformed with a tsA mutant of simian virus 40. Experimental Cell Research, 150, 321–328.

    Article  PubMed  CAS  Google Scholar 

  • Ladda, R. L. (1979). Cellular aging in vitro: Altered responsiveness of human diploid fibroblast to epidermal growth factor. Recent advances in gerontology. Proceedings of the XI International Congress of Gerontology. Tokyo, Japan: Excerpta Medica International Congress.

    Google Scholar 

  • Le Guilly, Y., Simon, M., Lenoir, P., & Bourel, M. (1973). Long-term culture of human adult liver cells: Morphological changes related to in vitro senescence and effect of donor’s age on growth potential. Gerontologia, 303–313.

    Google Scholar 

  • Lincoln II, D. W., Braunschweiger, K. I., Braunschweiger, W. R., & Smith, J. R. (1984). The two-dimensional polypeptide profile of terminally non-dividing human diploid cells. Experimental Cell Research, 154, 136–146.

    Article  PubMed  CAS  Google Scholar 

  • Lumpkin, C. K. J., McClung, J. K., Pereira-Smith, O. M., & Smith, J. R. (1986). Existence of high abundance antiproliferative mRNA’s in senescent human diploid fibroblasts. Science, 232, 393–395.

    Article  PubMed  CAS  Google Scholar 

  • Lumpkin, C. K., J., McClung, J. K., & Smith, J. R. (1985). Entry into S phase is inhibited in human fibroblasts by rat liver poly(A)+RNA. Experimental Cell Research, 160, 544–549.

    Article  PubMed  CAS  Google Scholar 

  • Macieira-Coelho, A. (1966). Action of cortisone on human fibroblasts in vitro. Experientia, 22, 390–391.

    PubMed  CAS  Google Scholar 

  • Mann, D. M., McKeown-Longo, P. J., & Millis, A. J. (1988). Binding of soluble fibronectin and its subsequent incorporation into the extracellular matrix by early and late passage human skin fibroblasts. Journal of Biological Chemistry, 263, 2756–2760.

    PubMed  CAS  Google Scholar 

  • Martin, G. M., Sprague, C. A., & Epstein, C. J. (1970). Replicative life-span of cultivated human cells: Effects of donor age, tissue, and genotype. Laboratory Investigations, 23, 86–92.

    CAS  Google Scholar 

  • Matsumura, T., Pfendt, E. A., & Hayflick, L. (1979a). DNA synthesis in the human diploid cell strain WI-38 during in vitro aging: An autoradiography study. Journal of Gerontology, 34, 323–327.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, T., Zerrudo, Z., & Hayflick, L. (1979b). Senescent human diploid cells in culture: Survival, DNA synthesis and morphology. Journal of Gerontology, 34, 328–334.

    Article  PubMed  CAS  Google Scholar 

  • McClung, J. K., Danner, D. B., Stewart, D. A., Smith, J. R., Schneider, E. L., Lumpkin, C. K., Dell’Orco, R. T., & Nuell, M. J. (1989). Isolation of a cDNA that hybrid selects antiproliferative mRNA from rat liver. Biochemical and Biophysical Research Communications, 164, 1316–1322.

    Article  PubMed  CAS  Google Scholar 

  • Mitsui, J., & Schneider, J. L. (1976a). Relationship between cell replication and volume in senescent human diploid fibroblasts. Mechanisms of Ageing and Development, 5, 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Mitsui, J., & Schneider, J. L. (1976b). Increased nuclear sizes in senescent human diploid fibroblast cultures. Experimental Cell Research, 100, 147–152.

    Article  PubMed  CAS  Google Scholar 

  • Muggleton, H. A. L., & Wang, E. (1989). Statin expression associated with terminally differentiating and postreplicative lens epithelial cells. Experimental Cell Research, 182, 152–159.

    Article  Google Scholar 

  • Nette, E. G., Sit, H. L., & King, D. W. (1982). Reactivation of DNA synthesis in aging diploid human skin fibroblasts by fusion with mouse L karyoplasts, cytoplasts and whole L cells. Mechanisms of Ageing and Development, 18, 75–87.

    Article  PubMed  CAS  Google Scholar 

  • Norwood, T. H., Pendergrass, W. R., & Martin, G. M. (1975). Reinitiation of DNA synthesis in senescent human fibroblasts upon fusion with cells of unlimited growth potential. Journal of Cell Biology, 64, 551–556.

    Article  PubMed  CAS  Google Scholar 

  • Norwood, T. H., Pendergrass, W. R., Sprague, C. A., & Martin, G. M. (1974). Dominance of the senescent phenotype in heterokaryons between replicative and post-replicative human fibroblast-like cells. PN AS, 71, 2231–2235.

    CAS  Google Scholar 

  • Norwood, T. H., & Smith, J. R. (1985). The cultured fibroblast-like cell as a model for the study of aging. In C. E. Finch & E. L. Schneider (Eds.), Handbook of the biology of aging (2nd ed.) (pp. 291–321). New York: Van Nostrand Rheinhold.

    Google Scholar 

  • Norwood, T. H., & Zeigler, C. J. (1977). Complementation between senescent human dioploid cells and a thymidine kinase-deficient murine cell line. Cytogenetics and Cell Genetics, 19, 355–367.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, W., Stenman, G., & Sager, R. (1986). Suppression of tumor growth by senescence in virally transformed human fibroblasts. PNAS, 83, 8659–8663.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohno, T. (1979). Strict relationship between dialyzed serum concentration and cellular life span in vitro. Mechanisms of Ageing and Development, 11, 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, T., Kada, R., Sato, G., & Ohkawa, A. (1986). Distinction of G0 from senescent cells in cultures of non-cycling human fetal lung fibroblasts by anti-MAP-1 monoclonal antibody staining. Experimental Cell Research, 163, 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Olashaw, N. E., Kress, E. D., & Cristofalo, V. J. (1983). Thymidine triphosphate synthesis in senescent WI-38 cells. Relationship to loss of replicative capacity. Ex perimental Cell Research, 149, 547–554.

    Article  CAS  Google Scholar 

  • Pendergrass, W., Angello, J., & Norwood, T. H. (1989). The relationship between cell size, the activity of DNA polymerase alpha and proliferative activity in human diploid fibroblast-like cell cultures. Experimental Gerontology, 24, 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Pendergrass, W. R., Saulewicz, A. C., Burmer, G. C., Rabinovitch, P. S., Norwood, T. H., & Martin, G. M. (1982). Evidence that a critical threshold of DNA polymerase-alpha activity may be required for the initiation of DNA synthesis in mammalial cell heterokaryons. Journal of Cellular Physiology, 113, 141–151.

    Article  PubMed  CAS  Google Scholar 

  • Pendergrass, W. R., Saulewicz, A. C, Salk, D., & Norwood, T. (1985). Induction of DNA polymerase alpha in senescent cultures of normal and Werner’s syndrome cultured skin fibroblasts. Journal of Cellular Physiology, 124, 331–336.

    Article  PubMed  CAS  Google Scholar 

  • Pepperkok, R., Schneider, C, Philipson, L., & Ansorge, W. (1988a). Single cell assay with an automated capillary microinjection system. Experimental Cell Research, 178, 369–376.

    Article  PubMed  CAS  Google Scholar 

  • Pepperkok, R., Zanetti, M., King, R., Delia, D., Ansorge, W., Philipson, L., & Schneider, C. (1988b). Automatic microinjection system facilitates detection of growth inhibitory mRNA. PNAS, 85, 6748–6752.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pereira-Smith, O. M., Fisher, S. F., & Smith, J. R. (1985). Senescent and quiescent cell inhibitors of DNA synthesis: Membrane-associated proteins. Experimental Cell Research, 160, 297–306.

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Smith, O. M., & Smith, J. R. (1981). Expression of SV40 T antigen in finite life-span hybrids of normal and SV40-transformed fibroblasts. Somatic Cell Genetics, 7, 411–421.

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Smith, O. M., & Smith, J. R. (1988). Genetic analysis of indefnite division in human cells: Identification of four complementation groups. Proceedings of The National Academy of Sciences USA, 85, 6042–6046.

    Article  CAS  Google Scholar 

  • Phillips, P. D., Kaji, K., & Cristofalo, V. J. (1984). Progressive loss of the proliferative response of senescing WI-38 cells to platelet-derived growth factor, epidermal growth factor, insulin, transferrin, and dexamethasone. Journal of Gerontology, 39, 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, P. D., Kuhnle, E., & Cristofalo, V. J. (1983). [125-I]EGF binding ability is stable throughout the replicative life span of WI-38 cells. Journal of Cellular Physiology, 114, 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Porter, M. B., Pereira-Smith, O. M., & Smith, J. R. (1990). Novel monoclonal antibodies identify antigenic determinants unique to cellular senescence. Journal of Cellular Physiology, 142, 425–433.

    Article  PubMed  CAS  Google Scholar 

  • Rabinovitch, P. S., & Norwood, T. H. (1980). Comparative heterokaryon study of cellular senescence and the serum-deprived state. Experimental Cell Research, 130, 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Rheinwald, J. G., & Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell, 6, 331–344.

    Article  PubMed  CAS  Google Scholar 

  • Rittling, S. R., Brooks, K. M., Cristofalo, V. J., & Baserga, R. (1986). Expression of cell cycle-dependent genes in young and senescent WI-38 fibroblasts. PNAS, 83, 3316–3320.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rohme, D. (1981). Evidence for a relationship between longevity of mammalian species and life-spans of normal fibroblasts in vitro and erythrocytes in vivo. PNAS, 78, 5009–5013.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ruoslahti, E. (1988). Fibronectin and its receptors. Annual Review of Biochemistry, 57, 375–413.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, E. L., & Fowlkes, B. J. (1976). Measurement of DNA content and cell volume in senescent human fibroblasts utilizing flow multiparameter single cell analysis. Experimental Cell Research, 98, 298–302.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, E. L., & Mitsui, Y. (1976). The relationship between in vitro cellular aging and in vivo human age. PNAS, 73, 3584–3588.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Seshadri, T., & Campisi, J. (1989). Growth-factor-inducible gene expression in senescent fibroblasts. Experimental Gerontology, 24, 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. R., & Lumpkin, C. K. J. (1980). Loss of gene repression activity: a theory of cellular senescence. Mechanisms of Ageing and Development, 13, 387–392.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. R., & Pereira-Smith, O. M. (1985). Lung-derived fibroblast-like human cells in culture. In V. J. Cristofalo (Ed.), CRC handbook of cell biology of aging (pp. 375–423). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Sorrentino, J. A., & Millis, A. J. (1984). Structural comparisons of fibronectins isolated from early and late passage cells. Mechanisms of Ageing and Development, 28, 83–97.

    Article  PubMed  CAS  Google Scholar 

  • Sottile, J., Mann, D. M., Diemer, V., & Millis, A. J. (1989). Regulation of collagenase and collagenase mRNA production in early- and late-passage human diploid fibroblasts. Journal of Cellular Physiology, 138, 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Spiering, A. L., Smith, J. R., & Pereira-Smith, O. M. (1988). A potent DNA synthesis inhibitor expressed by the immortal cell line SUSM-1. Experimental Cell Research, 179, 159–167.

    Article  PubMed  CAS  Google Scholar 

  • Stanulis-Praeger, B. M. (1987). Cellular senescence revisited: a review. Mechanisms of Ageing and Development, 38, 1–48.

    Article  PubMed  CAS  Google Scholar 

  • Stein, G. H., & Atkins, L. (1986). Membrane-associated inhibitor of DNA synthesis in senescent human diploid fibroblasts: Characterization and comparison to quiescent cell inhibitor. PNAS, 83, 9030–9034.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stein, G. H., Beeson, A. L. M., & Gordon, L. (1986). Quiescent human diploid fibroblasts: Common mechanism for inhibition of DNA replication in density-inhibited and serum-deprived cells. Experimental Cell Research, 162, 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Stein, G. H., & Yanishevsky, R. M. (1979). Entry into S phase is inhibited in two immortal cell lines fused to senescent human diploid cells. Experimental Cell Research, 120, 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Stein, G. H., & Yanishevsky, R. M. (1981). Quiescent human diploid cells can inhibit entry into S phase in replicative nuclei in heterodikaryons. PNAS, 78, 3025–3029.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stein, G. H., Yanishevsky, R. M., Gordon, L., & Beeson, M. (1982). Carcinogen-transformed human cells are inhibited from entry into S phase by fusion to senescent cells but cells transformed by DNA tumor viruses overcome the inhibition. PNAS, 79, 5287–5291.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Swim, H. E., & Parker, R. F. (1957). Culture characteristics of human fibroblasts propagated serially. American Journal of Hygiene, 66, 235–243.

    PubMed  CAS  Google Scholar 

  • Tassin, J., Malaise, E., & Courtois, Y. (1979). Human lens cells have an in vitro proliferative capacity inversely proportional to the donor age. Experimental Cell Research, 123, 388–392.

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, Y., Ide, T., & Ishibashi, S. (1983). Correlation between the presence of T-antigen and the reinitiation of host DNA synthesis in senescent human diploid fibroblasts after SV-40 infection. Experimental Cell Research, 144, 165–169.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E. (1985). Rapid disappearance of statin, a nonproliferating and senescent cell-specific protein, upon reentering the process of cell cycling. Journal of Cell Biology, 100, 545–551.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E. (1987). Contact-inhibition-induced quiescent state is marked by intense nuclear expression of statin. Journal of Cellular Physiology, 133, 151–157.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E., & Krueger, J. G. (1985). Application of a unique monoclonal antibody as a marker for nonproliferating subpopulations of cells of some tissue. Journal of Histochemistry and Cytochemistry, 33, 587–594.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E., & Lin, S. L. (1986). Disappearance of statin, a protein marker for non-proliferating and senescent cells, following serum-stimulated cell cycle entry. Experimental Cell Research, 167, 135–143.

    Article  PubMed  CAS  Google Scholar 

  • West, M. D., Pereira-Smith, O. M., & Smith, J. R. (1989). Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Experimental Cell Research, 184, 138–147.

    Article  PubMed  CAS  Google Scholar 

  • Yanishevsky, R., & Carrano, A. V. (1975). Prematurely condensed chromosomes of dividing and non-dividing cells in aging human cell cultures. Experimental Cell Research, 90, 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Yanishevsky, R., Mendelsohn, M. L., Mayall, B. H., & Cristofalo, V. J. (1974). Proliferative capacity and DNA content of aging human diploid cells in culture: a cytophotometric and autoradiographic analysis. Journal of Cellular Physiology, 84, 169–174.

    Article  Google Scholar 

  • Yanishevsky, R. M., & Stein, G. H. (1980). Ongoing DNA synthesis continues in young human diploid cells (HDC) fused to senescent HDC, but entry into S phase is inhibited. Experimental Cell Research, 126, 469–472.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Porter, M.B., Smith, J.R. (1991). Role of Endogenous Proteins as Negative Growth Modulators During In Vitro Cellular Aging of Human Diploid Fibroblasts. In: Cristofalo, V.J., Lawton, M.P. (eds) Special Focus on the Biology of Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-38445-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-38445-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-37652-2

  • Online ISBN: 978-3-662-38445-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics