Skip to main content

Leukodepletion to Prevent Transfusion Reactions: Effects on Cytokines and Other Biologic Response Modifiers

  • Chapter
Clinical Benefits of Leukodepleted Blood Products

Part of the book series: Medical Intelligence Unit ((MIUN))

Summary

The role of allogeneic leukocytes in causing febrile nonhemolytic trans­fusion (FNHTR) reactions has been known since the mid-1950s. Recent data suggests plausible mechanisms in which pro-inflammatory cytokines (IL-lα, IL-1β, IL-6 and TNF-α) mediate the symptom com­plex of this reaction to blood transfusion. Furthermore, the source of these cytokines may be host leukocytes reacting to allogeneic leukocytes or donor leukocytes producing these cytokines in vitro during storage or in vivo post transfusion. Leukodepletion post-storage, reduces the occur­rence of FNHTRs by the former mechanism and pre-storage leukodeple­tion should be effective to prevent these reactions by either mechanism. Formal comparisons of pre-storage leukodepleted cellular products versus post-storage leukodepleted cellular products have not yet been performed.

The clinical features of hemolytic transfusion reactions may also be due to cytokines, but allogeneic leukocytes are not known to be impli­cated in the pathophysiology of these reactions. In transfusion related acute lung injury, a small percentage (6%) of occurrences may be caused by these cells. Allergic reactions are usually attributed to allogeneic solu­ble proteins, but particulate matter derived from leukocytes disintegrat­ing in vitro or substances produced by stored allogeneic leukocytes, such as IL-8 or histamine, may be important promoters. The role of leuko­depletion in amelioration of the above reactions is unknown. Transfu­sion-associated graft-versus-host disease is a rare but catastrophic adverse effect of blood transfusion due to donor T lymphocytes. Leukodepletion should theoretically prevent this reaction, but it is considered that the level of re­sidual leukocytes currently obtainable is not low enough to prevent this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell 76: 241, 1994.

    Article  PubMed  CAS  Google Scholar 

  2. Kelvin DJ, Michiel DF, Johnston JA, Lloyd AR, Sprenger H, Oppenheim JJ, Wang J-M. Chemokines and serpentines: the molecular biology of chemokine receptors. J. Leukocyte Biol 54: 604, 1993.

    PubMed  CAS  Google Scholar 

  3. Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Ce11. 76: 253, 1994.

    CAS  Google Scholar 

  4. Rees RC. Cytokines a biological response modifiers. J Clin Path 45: 93, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Dinarello, CA. The endogenous pyrogens in host-defense interactions. Hosp Prac (Off Ed) 24: 111, 1989.

    CAS  Google Scholar 

  6. Dinarello, CA. Interleukin-1 and interleukin-1 antagonism. Blood 77: 1627, 1991.

    PubMed  CAS  Google Scholar 

  7. Heinrich PC, Castel’ JV, Andus T. Interleukin-6 and the acute phase response. Biochem J 265: 621, 1990.

    PubMed  CAS  Google Scholar 

  8. Wolpe SD, Cerami A. Macrophage inflammatory proteins 1 and 2: members of a novel superfamily of cytokines. FASEB J 3: 2565, 1989.

    PubMed  CAS  Google Scholar 

  9. Matsushima K, Oppenheim JJ. Interleukin 8 and MCAF: novel inflammatory cytokines inducible by IL-1 and TNF. Cytokine 1: 2, 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Letters 307: 97, 1992.

    Article  PubMed  CAS  Google Scholar 

  11. Strieter RM, Kasahara K, Allen RM, Standiford TJ, Rolfe MW, Becker FS, Chensue SW, Kunkel SL. Cytokine-induced neutrophil-derived interleukin-8. Am J Pathol 141: 397, 1992.

    PubMed  CAS  Google Scholar 

  12. Calandra T, Glauser MP. Cytokines and septic shock. Diagn Microbiol Infect Dis 13: 377, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 119: 771, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Strieter RM, Kunkel SL, Bone RC. Role of tumor necrosis factor-a in disease states and inflammation. Crit Care Med 21: S447, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. Dinarello CA, Cannon JG, Wolff SM. New concepts on the pathogenesis of fever. Rev Infect Dis 10: 168, 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Décary F et al. An investigation of non-hemolytic transfusion rections. Vox Sang 46: 277, 1984.

    Article  PubMed  Google Scholar 

  17. De Rie MA, van der Plas-van Dalen CM, Engelfriet CP, von dem Borne AE. The serology of febrile transfusion reactions. Vox Sang 49: 126, 1985.

    Article  PubMed  Google Scholar 

  18. Heinrich D, Mueller-Eckhardt C, Stier W. The specificity of leukocyte and platelet alloantibodies in sera of patients with non-hemolytic transfusion reactions. Von Sang 25: 442, 1973.

    Article  CAS  Google Scholar 

  19. Brubaker DB. Clinical significance of white cell antibodies in febrile nonhemolytic transfusion reactions. Transfusion 30: 733, 1990.

    Article  PubMed  CAS  Google Scholar 

  20. Brittingham TE, Chaplin H Jr. Febrile transfusion reactions caused by sensitivity to donor leukocytes and platelets. JAMA 165: 819, 1957.

    Article  CAS  Google Scholar 

  21. Perkins HA, Payne R, Ferguson J, Wood M. Nonhemolytic febrile transfusion reactions. Quantitative effects of blood components with emphasis on isoantigenic incompatibility of leukocytes. Vox Sang 11: 578, 1966.

    Article  PubMed  CAS  Google Scholar 

  22. Goldfinger D, Lowe C. Prevention of adverse reactions to blood transfusion by the administration of saline-washed red blood cells. Transfusion 21: 277, 1981.

    Article  PubMed  CAS  Google Scholar 

  23. Wenz B. Microaggregate blood filtration and the febrile transfusion reaction. A comparative study. Transfusion 23: 95, 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Lane TA, Anderson KC, Goodnough LT, Kurtz S, Moroff G, Pisciotto PT, Sayers M, Silberstein LE. Leukocyte reduction in blood component therapy. Ann Int Med 117: 151, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Mangano MM, Chamber LA, Kruskall MS. Limited efficacy of leukopoor platelets for prevention of febrile transfusion reactions. Am J Clin Path 95: 733, 1991.

    PubMed  CAS  Google Scholar 

  26. Stack G, Snyder EL. Interleukin-8 generation in platelet concentrates during storage. Blood 78: 388a, 1991.

    Google Scholar 

  27. Stack G, Snyder EL. Cytokine generation in stored platelet concentrates. Transfusion 34: 20, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Muylle L, Joos M. Wouters E, De Bock R, Peetermans ME. Increased tumor necrosis factora (TNFa), interleukin 1, and interleukin 6 (IL-6) levels in the plasma of stored platelet concentrates: relationship between TNFa) and IL-6 levels and febrile transfusion reactions. Transfusion 33: 195, 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Cole S, Stack G. Macrophage inflammatory protein-la generation in stored platelets. Blood 82: 398a, 1993.

    Google Scholar 

  30. Aye MT, Palmer DS, Giuliva A, Hashemi S. Effect of filtration of platelet concentrates on the production of cytokines and platelet release factors during storage. Blood82: 336a, 1993.

    Google Scholar 

  31. Heddle NM, Kiama L, Singer J, et al. The role of plasma from platelet concentrates in transfusion reactions. New Eng J Med 331: 625, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Stack G, Baril L, Napychank P, Snyder E. Cytokine generation in stored units of red blood cells. Blood 82: 394a, 1993.

    Google Scholar 

  33. Smith KJ, Sierra EF, Nelson EJ. Histamine, I1–113 and IL-8 increase in packed RBCs stored for 42 days but not in RBC leukodepleted pre-storage. Transfusion 33: 53S, 1993.

    Google Scholar 

  34. Elias JA, Gustilo K, Baeder W, Freundlich B. Synergistic stimulation of fibroblast prostaglandin by recombinant interleukin 1 and tumor necrosis factor. J Immunol 138: 3812, 1987.

    PubMed  CAS  Google Scholar 

  35. Okusawa S, Gelfond JA, Ikejima T, et al. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclo oxygenase inhibition. J Clin Invest 8: 1162, 1988.

    Article  Google Scholar 

  36. Yuo A, Kitagawa S, Kasahara T, Matshushima K, Saito M, Takaku F. Stimulation and priming of human neutrophils by interleukin-8: cooperation with tumor necrosis factor and colony stimulating factors. Blood 78: 2708–2714, 1991.

    PubMed  CAS  Google Scholar 

  37. Dahinden CA, Kurimoto Y, De Wech AL, Lindley I, Dewald B, Baggiolini M. The neutrophil-activating peptide NAF/NAP-1 induces histamine and leukotriene release by interleukin 3-primed basophils. J Exp Med 170: 1787, 1989.

    Article  PubMed  CAS  Google Scholar 

  38. Kunkel SL, Standiford T, Kasahara K, Strieter RM. Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung. Experimental Lung Research 17: 17, 1991.

    Article  PubMed  CAS  Google Scholar 

  39. Hack CE, Hart M, Van Schijndel RJ, Eerenberg AJ, Nuijens JH, Thijs LG, Aarden LA. Interleukin-8 in sepsis: relation to shock and inflammatory mediators. Infect Immun 60: 2835, 1992.

    PubMed  CAS  Google Scholar 

  40. van Zee KS, DeForge LE, Fischer E, Marano MA, Kenney JS, Remick DG, Lowry SF, Moldawer LL. IL-8 in septic shock, endotoxemia, and after IL-1 administration. J Immunol 146: 3478, 1991.

    PubMed  Google Scholar 

  41. Van Zee KJ, Fischer E, Hawes AS, et al. Affects of intravenous IL-8 administration in nonhuman primates. J Immunol 148: 1746, 1992.

    PubMed  Google Scholar 

  42. Hechtman DH, Cybulsky MI, Fuchs HJ, Baker JB, Gimbrone MA Jr. Intravascular IL-8, inhibitor of polymorphonuclear leukocyte accumulation at sites of acute inflammation. J Immunol 147: 883, 1991.

    PubMed  CAS  Google Scholar 

  43. Rost A. Some aspects of NAP-1 pathophysiology: lung damage caused by a blood-borne cytokine. Adv Exp Med Bio! 305: 127, 1991.

    Article  Google Scholar 

  44. Darbonne WC, Rice GC, Mohler MA, Apple T, Hebert CA, Valente AJ, Baker JB. Red blood cells are a sink for interleukin 8, leukocyte chemotaxin. J Clin Invest 88: 1362, 1991.

    Article  PubMed  CAS  Google Scholar 

  45. Horuk R, Chintis CE, Darbonne WC, Colby TJ, Rybicki A, Hadley TJ, Miller LH. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261: 1182, 1993.

    Article  PubMed  CAS  Google Scholar 

  46. Noete K, Darbonne W, Ogez J, Horuk R, Schall TJ. Identification of a promiscuous inflammatory peptide receptor on the surface of red blood cells. J Bio Chem 268: 1 2247, 1993.

    Google Scholar 

  47. Muylle L, Peetermans ME. Effect of prestorage leukocyte removal on them cytokine levels in stored platelet concentrates. Vox Sang 66: 14, 1994.

    Article  PubMed  CAS  Google Scholar 

  48. Eierman DF, Johnson CE, Haskill JS. Human monocyte inflammatory mediator gene expression is selectively regulated by adherence substrates. J Immunol 142: 1970, 1989.

    PubMed  CAS  Google Scholar 

  49. Haskill S, Johnson C, Eierman D, Becker S, Warren K. Adherence induces selective in RNA expression of monocyte mediators and proto-oncogenes. J Immunol 140: 1690, 1988.

    PubMed  CAS  Google Scholar 

  50. Kasahara K, Strieter RM, Chensue SW, Standiford TJ, Kunkel SL. Mononuclear cell adherence induces neutrophil chemotactic factor/interleukin-8 gene-expression. J Leuk Biol 50: 287, 1991.

    CAS  Google Scholar 

  51. Sporn SA, Eierman DF, Johnson CE, Morris J, Martin G, Ladner M, Haskill S. Monocyte adherence results selective induction of novel genes sharing homology with mediators of inflammation and tissue repair. J Immunol 144: 4434, 1990.

    PubMed  CAS  Google Scholar 

  52. Stack G, Cole S, Campbell S, Snyder E, Edberg S. Interleukin-8 generation in bacterially-contaminated platelet concentrates. Transfusion 33: 50S, 1993.

    Google Scholar 

  53. Pineda AA, Brzica SM Jr, Taswell HF. Hemolytic transfusion reaction. Recent experience in a large blood bank. Mayo Clin Proc 53: 378, 1978.

    PubMed  CAS  Google Scholar 

  54. Mollison PL, Engelfriet CP, Contreras M. Blood Transfusion in Clinical Medicine, ninth edition, Blackswell Scientific Publications, Boston, 1993.

    Google Scholar 

  55. Walker RH, ed, Technical Manual, 11th ed, AABB, Bethesda, 1993.

    Google Scholar 

  56. Goldfinger D. Acute hemolytic transfsuion reactions - a fresh look at pathogenesis and considerations regarding therapy. Transfusion 17: 85, 1977.

    Article  PubMed  CAS  Google Scholar 

  57. Davenport RD, Strieter RM, Standiford TJ, Kunkel SL. Interleukin-8 production in red blood cell incompatibility. Blood 76: 2439, 1990.

    PubMed  CAS  Google Scholar 

  58. Davenport RD, Strieter RM, Kunkel SL. Red cell ABO incompatibility and production of tumor necrosis factor-alpha. Br J Haematol 178: 540, 1991.

    Article  Google Scholar 

  59. Davenport RD, Burdick M, Strieter RM, Kunkel SL. Monocyte chemoattractant protein production in red cell incompatibility. Transfusion 34: 16, 1994.

    Article  PubMed  CAS  Google Scholar 

  60. Butler J, Parker D, Pillai R, Shole DJ, Rocker GM. Systemic release of neutrophil elastase and tumor necrosis factor alpha following ABO incompatible blood transfusion. Br J Haemotol 79: 525, 1991.

    Article  CAS  Google Scholar 

  61. Davenport RD, Burdick M, Moore SA, Kumkel SL. Cytokine production in IgGmediated red cell incompatibility. Transfusion 33: 19, 1993.

    Article  PubMed  CAS  Google Scholar 

  62. Hoffman M. Antibody-coated erythrocytes induce secretion of tumor necrosis factor by human monocytes: a mechanism for the production of fever by incompatible transfusions. Vox Sang 60: 184, 1991.

    Article  PubMed  CAS  Google Scholar 

  63. White CW, Ghezzi P, Dinarello CA. Recombinant tumor necrosis factor/cachectin and interleukin 1 pretreatment decreases lung oxidized glutathione accumulation, lung injury, and mortality in rats exposed to hyperoxia. J Clin Invest 79: 868, 1987.

    Google Scholar 

  64. Nordhagen R, Aas M. Association between HLA and red cell antigens. VII. Survival studies of incompatible red blood cells in a patient with HLA-associated haemagglutinins. Vox Sang 35: 319, 1978.

    Article  Google Scholar 

  65. Panzer S, Mayr WR, Graninger W, et al: Haemolytic transfusion reactions due to HLA antibodies: a proospective study combining red-cell serology with investigations of Chromium-51-labelled red-cell kinetics. Lancet 1: 474, 1987.

    Article  PubMed  CAS  Google Scholar 

  66. Frewin DB, Jonsson JR, Frewin CR, et al. Influence on blood storage time and plasma histamine levels of the pattern of transfusion reactions. Vox Sang 56: 243, 1989.

    Article  PubMed  CAS  Google Scholar 

  67. Frewin CB, Dyer SM, Haylock DN, Bates IR, Davis KG, Beal RW. A comparative study of the effect of three methods of leukocyte removal on plasma histamine levels in stored human blood. Sem Hematol 28 (Suppl )5: 18, 1991.

    Google Scholar 

  68. Frewin DB, Jonsson JR, Head RJ, Russell WJ, Beal RW. Histamine levels in stored human blood. Transfusion 24: 502, 1984.

    Article  PubMed  CAS  Google Scholar 

  69. Frewin DB, Jonsson JR, Davis KG, et al. Effect of microfiltration on the histamine levels in stored human blood. Vox Sang 52: 191, 1987.

    Article  PubMed  CAS  Google Scholar 

  70. Muylle L, Laekeman G, Hermon AG, Peetermans ME. Histamine levels in stored platelet concentrates. Transfusion 28: 226, 1988.

    Article  PubMed  CAS  Google Scholar 

  71. Holme S, Ross D, Heaton WA. In vitro and in vivo evaluation of platelet concentrates after cotton wool filtration. Vox Sang 57:112, 1989.

    Google Scholar 

  72. Holme S, Snyder S, Heaton A, et al. In vitro and in vivo evaluation of cotton wool filtration of platelet concentrates obtained by automated and manual apheresis. Transfusion 32:328, 1992.

    Google Scholar 

  73. Hetland G, Mollnes TE, Larsen J, Garred P. Biocompatibility of white cell filters as evaluated by complement activation. Transfusion 32: 557, 1992.

    Article  PubMed  CAS  Google Scholar 

  74. Shimizu T, Uchigiri C, Mizuno S, Kamiya T, Kokubo Y. Adsorption of anaphylatoxins and platelet-specific proteins by filtration of platelet concentrates with a polyester leukocyte reduction filter. Vox Sang 66: 161, 1994.

    Article  PubMed  CAS  Google Scholar 

  75. Janatova J, Cheung AK, Parker CJ. Biomedical polymers differ in their capacity to activate complement. Complement and Inflammation 8: 61, 1992.

    Google Scholar 

  76. Wenz B. Leukodepletion filters should be used with apheresis platelets. J Clin Apheresis 7: 149, 1992.

    Article  PubMed  CAS  Google Scholar 

  77. Snyder E, Napychank P, Baril L. Removal of complement component C3a and interleukin-8 from platelet concentrate by a bedside leukodepletion filter. Transfusion 1994 ( Submitted).

    Google Scholar 

  78. Popovsky MA, Moore SB. Diagnostic and pathogenetic considerations in transfusion-related acute lung injury. Transfusion 25: 573, 1985.

    Article  PubMed  CAS  Google Scholar 

  79. Swank DW, Moore SB. Roles of the neutrophil and other mediators in adult respiratory distress syndrome. Mayo Clinic Proc 64: 1118, 1989.

    Article  CAS  Google Scholar 

  80. van Buren NL, Stroncek DR, Clay ME, McCullough J, Dalmasso AP. Transfusion-related acute lung injury caused by an NB2 granulocyte-specific antibody in a patient with thrombotic thrombocytopenic purpura. Transfusion 30: 42, 1990.

    Article  PubMed  Google Scholar 

  81. Nordhagen R, Conradi M, Dromtorp SM. Pulmonary reaction associated with transfusion of plasma containing anti-5b. Vox Sang 51: 102, 1986.

    Article  PubMed  CAS  Google Scholar 

  82. Seeger W, Schneider U, Kreusler B, von Witzleben E, Walmrath D, Grimminger F, Neppert J. Reproduction of transfusion-related acute lung injury in an ex vivo lung model. Blood 76: 1438, 1990.

    PubMed  CAS  Google Scholar 

  83. Larsen GL, McCarthy K, Webster RV, Henson J, Henson PM. A differential effect of C5a and C5b des Arg in induction of pulmonary inflammation. Am J Path 100: 179, 1980.

    PubMed  CAS  Google Scholar 

  84. Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75: 1037, 1990.

    PubMed  CAS  Google Scholar 

  85. Goldman M, Blajchman M. Blood product associated bacterial sepsis. Transfus Med Reviews 5: 73, 1991.

    Article  CAS  Google Scholar 

  86. Anderson KC, Lew MA, Gorgone BC, Martel J, Leamy C, Sullivan B. Transfusion-related sepsis after prolonged platelet storage. American J Med 81: 405, 1986.

    Article  CAS  Google Scholar 

  87. Buchholz DI-I, AuBuchon JP, Snyder EL, Kandler R, Edberg S, Piscitelli V, Pickard C, and Napychank P. Removal of Yersinia enterocolitica from AS-1 red cells. Transfusion 32: 667, 1992.

    Article  PubMed  CAS  Google Scholar 

  88. Wenz B, Burns ER, Freundlich LF. Prevention of growth of Yersinia enterocolitica in blood by polyester fiber filtration. Transfusion 32: 663, 1992.

    Article  PubMed  CAS  Google Scholar 

  89. Hogman CF, Gong J, Hambraeus A, Johansson CS, Eriksson L. The role of white cells in the transmission of Yersinia enterocoliticia in blood components. Transfusion 32: 654, 1992.

    Article  PubMed  CAS  Google Scholar 

  90. Kim DM, Brecher ME, Bland LA, Estes TJ, McAllister SK, Aguero SM, Carmen RA, Nelson EJ. Prestorage removal of Yersinia enterocolitica from red cells with white cell-reduction filters. Transfusion 32: 658, 1992.

    Article  PubMed  CAS  Google Scholar 

  91. Wenz B, Ciavarella D, Freundlick. Effect of prestorage white cell reduction on bacterial growth in platelet concentrates. Transfusion 33: 520, 1993.

    Article  PubMed  CAS  Google Scholar 

  92. Högman CF, Gong J, Eriksson L, Hambracus A, Johansson CS. White cells protect donor blood against bacterial contamination. Transfusion 31: 620, 1991.

    Article  PubMed  Google Scholar 

  93. Heal JM, Cohen HJ. Do white cells in stored blood components reduce the likelihood of posttransfusion bacterial sepsis? Transfusion 31: 581, 1991.

    Article  PubMed  CAS  Google Scholar 

  94. Nusbacher J. Yersinia enterocolitica and white cell filtration. Transfusion 32:597, 1992.

    Google Scholar 

  95. Rawal BD, Vyas GN. Complement-mediated bactericidal action and the removal of Yersinia enterocolitica by white cell filters. Transfusion 33: 536, 1993.

    Article  PubMed  CAS  Google Scholar 

  96. Gong J, Hogman CF, Hambraeus A, Johansson CS, Eriksson L. Transfusion-associated Serratia marcescent infection: studies of the mechanism of action. Transfusion 33: 802, 1993.

    Article  PubMed  CAS  Google Scholar 

  97. Brubaker DB. Transfusion-associated graftversus-host disease. In:Scientific Basis of Transfusion Medicine, Anderson KC, Ness PM, eds, W.B. Saunders Company, Philadelphia, pp. 544–579.

    Google Scholar 

  98. Anderson KC, Weinstein HJ. Transfusion-associated graft-versus-host disease. N Engl J Med 323: 315, 1990.

    Article  PubMed  CAS  Google Scholar 

  99. McMilin KD, Johnson RL. HLA homozygosity and the risk of related-donor transfusion-associated graft-versus-host disease. Trans Med Rev 7: 37, 1993.

    Article  CAS  Google Scholar 

  100. Ferraro JLM, Deeg HS. Graft-versus-host disease. N Engl J Med 324: 667, 1991.

    Article  Google Scholar 

  101. Gasbarrini G, Facchini A. Elevated interleukin-8 serum concentrations in betathalassemia and graft-versus-host disease. Blood 81: 2252, 1993.

    PubMed  Google Scholar 

  102. von Fliedner V, Higby DJ, Kim U. Graft versus host disease following blood product transfusion. Am J Med 72: 951, 1982.

    Article  Google Scholar 

  103. Van Bekkum DW. Transfusion or transplantation? Isr J Med Sci 1: 879, 1965.

    PubMed  Google Scholar 

  104. Rubinstein A, Radl J, Cothier H, Rossi E, Gugler E. Unusual combined immunodeficiency syndrome exhibiting kappa-IgD paraproteinemia, residual gut immunity and graft-versus-host reaction after plasma infusion. Acta Paediatr Scand 62: 365, 1973.

    Article  PubMed  CAS  Google Scholar 

  105. Moroff G, Luban NLC. Prevention of transfusion-associated graft-versus-host disease. Transfusion 32: 102, 1992.

    Article  PubMed  CAS  Google Scholar 

  106. FDA Memorandum. Recommendations regarding license amendments and gamma irradiation of blood products. FDA Regulations, 22 July, 1993, Rockville, MD, pp 1–19.

    Google Scholar 

  107. Dzik WH, Jones KS. The effects of gamma irradiation versus white cell reduction on the mixed lymphocyte reaction. Transfusion 33: 4493, 1993.

    Google Scholar 

  108. Akahoshi M, Takanashi M, Masuda M, et al. A case of transfusion-associated graftversus-host disease not prevented by white cell reduction filters. Transfusion 32: 169, 1991.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stack, G., Snyder, E.L. (1995). Leukodepletion to Prevent Transfusion Reactions: Effects on Cytokines and Other Biologic Response Modifiers. In: Clinical Benefits of Leukodepleted Blood Products. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-26538-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-26538-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-1-57059-122-8

  • Online ISBN: 978-3-662-26538-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics