Skip to main content

Ceramide, Aging and Cellular Senescence

  • Chapter
Sphingolipid-Mediated Signal Transduction

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Cellular senescence is defined as the finite life span of mammalian cells in culture and has been investigated for the last thirty years. Research employing mammalian cells as well as cells from lower organisms such as C. elegans and yeast has established several models to explain the altered cellular functions in senescence. One model proposes that cellular senescence is associated with accumulated DNA damage and reduced DNA repair function. The other model argues that alterations of genetic control programs could lead to cellular senescence. There is evidence to support both hypotheses, yet the underlying mechanisms of cellular senescence are still not clear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hannun YA, Loomis CR, Merrill AH Jr, Bell RM. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and human platelets. J Biol Chem 1986; 261: 12604–12609.

    PubMed  CAS  Google Scholar 

  2. Okazaki T, Bell RM, Hannun YA. Sphingomyelin turnover induced by vitamin D, in HL-60 cells. Role in cell differentiation. J Biol Chem 1989; 264: 19076–19080.

    Google Scholar 

  3. Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science 1993; 259: 1769–1771.

    Article  PubMed  CAS  Google Scholar 

  4. Jayadev S, Liu B, Bielawska AE, Lee JY, Nazaire F, Pushkareva MY, Obeid LM, Hannun YA. Role for ceramide in cell cycle arrest. J Biol Chem 1995; 270: 2047–2052.

    Article  PubMed  CAS  Google Scholar 

  5. Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM. Role of ceramide in cellular senescence. J Biol Chem 1995; 270: 30701–30708.

    Article  PubMed  CAS  Google Scholar 

  6. Hayflick, L, Moorhead PS. The serial cultivation of human diploid strains. Exp Cell Res 1961; 25: 585–621.

    Article  PubMed  CAS  Google Scholar 

  7. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37: 614–636.

    Article  PubMed  CAS  Google Scholar 

  8. Campisi J, Dimri G, Hara E. Control of replicative senescence. In: Schneider E, Rowe J, eds. Handbook of the Biology of Aging, Fourth Edition. New York: Academic Press, 1996: 121–149.

    Google Scholar 

  9. Cristofalo VJ, Pignolo RJ. Replicative senescence of human fibroblast-like cells in culture. Physiological Reviews 1996; 73: 617–638.

    Google Scholar 

  10. Stanulis-Praeger B. Cellular senescence revisited: A review. Mechanisms of Aging and Development 1987; 38: 1–48.

    Article  CAS  Google Scholar 

  11. Martin GM, Sprague CA, Epstein CJ. Replicative life-span of cultivated human cells. Effects of donor’s age, tissue and genotype. Laboratory Investigation 1970; 23: 86–92.

    PubMed  CAS  Google Scholar 

  12. Goldstein S. Aging in vitro: growth of cultivated cells from the Galapagos tortoise. Exp Cell Res 1974; 83: 297–302.

    Article  Google Scholar 

  13. Goldstein S. Human genetic disorders that feature premature onset and accelerated progression of biological aging. In: Schneider EL, ed. The Genetics of Aging. New York: Plenum Press, 1978: 171–224.

    Chapter  Google Scholar 

  14. Martin GM. Genetic syndromes in man with potential relevance to the pathology of aging. In: Bergsma D, Harrison DE, eds. Genetic Effects on Aging, Birth Defects: Original Article Series. ( New York: Alan Liss, 1978: 5–39.

    Google Scholar 

  15. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubely I, Pereira-Smith O, Peacocke M, Campisi J. A Bio-marker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci 1995; 92: 9363–9367.

    Article  PubMed  CAS  Google Scholar 

  16. Norwood TH, Pendergrass WR, Sprague CA, Martin GM. Dominance of the senescent phenotype in heterkaryons between replicative and post-replicative human fibroblast-like cells. Proc Natl Acad Sci USA 1974; 71: 2231–2235.

    Article  PubMed  CAS  Google Scholar 

  17. Pereira-Smith OM, Smith JR. Genetic analysis of indefinite division in human cells: identification of four complementation groups. Proc Natl Acad Sci 1988; 85: 6042–6046.

    Article  PubMed  CAS  Google Scholar 

  18. Dimri GP, Campisi J. Molecular and cell biology of replicative senescence. Cold Spring Harbor Symp Quant Biol 1994; 59: 67–73.

    Article  PubMed  CAS  Google Scholar 

  19. Afshari CA, Vojta PJ, Annab LA, Futreal PA, Willard TB, Barrett JC. Investigation of the role of G1/S cell cycle mediators In cellular senescence. Exp Cell Res 1993; 209: 231–237.

    Article  PubMed  CAS  Google Scholar 

  20. Seshadri T, Campisi J. C-fos repression and an altered genetic program in senescent human fibroblasts. Science 1990; 247: 205–209.

    Article  PubMed  CAS  Google Scholar 

  21. Riabowol K, Schiff J, Gilman MZ. Transcription factor AP-1 activity is required for initiation of DNA synthesis and is lost during cellular aging. Proc Natl Acad Sci USA 1992; 89: 157–161.

    Article  PubMed  CAS  Google Scholar 

  22. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The Protein Id: a negative regulator of helix-loophelix DNA binding proteins. Cell 1990; 61: 49–59.

    Article  PubMed  CAS  Google Scholar 

  23. Sun XH, Copeland NG, Jenkins NA, Baltimore D. Id proteins Idl and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Molec Cell Biol 1991; 13: 7874–7880.

    Google Scholar 

  24. Smith JR, Pireira-Smith OM. Replicative senescence: implications for in vivo aging and tumor suppression. Science 1996; 273: 63–67.

    Article  PubMed  CAS  Google Scholar 

  25. Gorman SD, Cristofalo VJ. Reinitiation of cellular DNA synthesis in BrdU-selected nondividing senescent WI-38 cells by simian virus 40 infection. J Cell Physiol 1985; 125: 122–126.

    Article  PubMed  CAS  Google Scholar 

  26. Ide T, Tsuyi Y, Ishibashi S, Mitsui Y. Reinitiation of host DNA synthesis in senescent human diploid cells by interaction with simian virus 40. Exp Cell Res 1983; 143: 343–349.

    Article  PubMed  CAS  Google Scholar 

  27. Buckkovich K, Duffy LA, Harlow ED. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 1989; 58: 1097–1105.

    Article  Google Scholar 

  28. Chen P-L, Scully P, Shew J-Y, Wang JYJ, Lee W-H. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 1989; 58: 1193–1198.

    Article  PubMed  CAS  Google Scholar 

  29. DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, Huang, C-M, Livingston DM. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 1989; 58: 1085–1095.

    Article  PubMed  CAS  Google Scholar 

  30. Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 1992; 70: 993–1006.

    Article  PubMed  CAS  Google Scholar 

  31. Dowdy SF, Hinds PW, Louie K, Reed SI, Arnold A, Weinberg RA. Physical interaction of the retinoblastoma protein with human D cyclins. Cell 1993; 73: 499–511.

    Article  PubMed  CAS  Google Scholar 

  32. Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J-Y, Livingston DM. Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 1993; 73: 489–497.

    Article  Google Scholar 

  33. Stein GH, Drullinger LF, Robetorye RS, Pereira-Smith OM, Smith JR. Senescent cells fail to express cdc2, cycA, and syc in response to mitogen stimulation. Proc Natl Acad Sci USA 1991; 88: 11012–11016.

    Article  PubMed  CAS  Google Scholar 

  34. Dulic V, Drullinger LF, Lees E, Reed SI, Stein GH. Altered regulation of G1 cyclins in senescent human diploid fibroblasts: accumulation of inactive cyclin E-Cdk2 and cyclin D1-Cdk2 complexes. Proc Natl Acad Sci USA 1993; 90: 11034–11038.

    Article  PubMed  CAS  Google Scholar 

  35. Yamamoto, T, Nikaido T. Effect of tumor suppressors on cell cycle regulatory genes: RB suppresses p34/cdc2 expression and normal p53 suppresses cyclin A expression. Exp Cell Res 1994; 210: 94–101.

    Article  PubMed  CAS  Google Scholar 

  36. Sherr CJ. Mammalian G1 cyclins. Cell 1993; 73: 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  37. Pines J. Cyclins and their associated cyclin-dependent protein kinases in the human cell cycle. Biochem Soc Trans 1993; 21: 921–925.

    PubMed  CAS  Google Scholar 

  38. Guadagno TM, Newport JW. CDK2 kinase is requied for entry into mitosis as a positive regulator of CDC2-cyclin B kinase activity. Cell 1996; 84: 73–82.

    Article  PubMed  CAS  Google Scholar 

  39. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 1994; 211: 90–98.

    Article  PubMed  CAS  Google Scholar 

  40. Harley CB, Futcher AB, and Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345: 458–460.

    Article  PubMed  CAS  Google Scholar 

  41. Harley CB, Villeponteau B. Telomeres and telomerase in aging and cancer. Current Opinion in Genetics and Development 1995; 5: 249–255.

    Article  PubMed  CAS  Google Scholar 

  42. Counter CM, Hirte HW, Bacchetti S, Harley CB. Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci 1994; 91: 2900–2904.

    Article  PubMed  CAS  Google Scholar 

  43. Harley CB, Vaziri H, Counter CM, Allsopp RC. The telomere hypothesis of cellular aging. Exp Gerontol 1992; 27: 375–382.

    Article  PubMed  CAS  Google Scholar 

  44. Murnane JP, Sabatier L, Marder BA, Morgan WF. Telomere dynamics in an immortal human cell line. EMBO J 1994; 13: 4953–4962.

    PubMed  CAS  Google Scholar 

  45. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 1995; 14: 4240–4248.

    PubMed  CAS  Google Scholar 

  46. Broccoli D, Young JW, DeLange T. Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci 1995; 92: 9082–9086.

    Article  PubMed  CAS  Google Scholar 

  47. Counter CM, Gupta J, Harley CB, Lebe B, Bacchetti S. Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 1995; 85: 2315–2320.

    PubMed  CAS  Google Scholar 

  48. D’Mello NP, Jazwinski SM. Telomere length constancy during aging of Saccharomyces cerevisiae. J Bacteriol 1991; 173: 6709–6713.

    PubMed  Google Scholar 

  49. Wang E, Lee, M-J, Pandey S. Control of fibroblast senescence and activation of programmed cell death. J Cell Biochem 1994; 54: 432–439.

    Article  PubMed  CAS  Google Scholar 

  50. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bd-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–336.

    Article  PubMed  CAS  Google Scholar 

  51. Reed JC. Bc1–2 and the regulation of programmed cell death. J Cell Biol 1994; 124: 1–6.

    Article  PubMed  CAS  Google Scholar 

  52. Meikrantz W, Gisselbrecht S, Tam SW, Schlegel R. Activation of cyclin A-dependent protein kinases during apoptosis. Proc Natl Acad Sci 1994; 91: 3754–3758.

    Article  PubMed  CAS  Google Scholar 

  53. Hoang AT, Cohen KJ, Barrett JF, Bergstrom DA. Participation of cyclin A in Myc-induced apoptosis. Proc Natl Acad Sci 1994; 91: 6875–6879.

    Article  PubMed  CAS  Google Scholar 

  54. Li CJ, Friedman DJ, Wang C, Metelev V, Pardee AB. Induction of apoptosis in uninfected lympocytes by HIV-1 Tat protein. Science 1995; 268: 429–431.

    Article  PubMed  CAS  Google Scholar 

  55. Shi L, Nishioka WK, Thng J, Morton Bradbury E, Litchfield DW, Greenberg AH. Premature p34cdc2 activation required for apoptosis. Science 1994; 263: 1143–1145.

    Article  PubMed  CAS  Google Scholar 

  56. Haupt Y, Rowan S, Oren M. p53-mediated apoptosis in Hela cells can be overcome by excess pRB. Oncogene 1995; 10: 1563–1571.

    PubMed  CAS  Google Scholar 

  57. Haas-Kogan DA, Kogan SC, Levi D, Dazin P, T’Ang A, Fung Y-KT, Israel MA. Inhibition of apoptosis by the retinoblastoma gene product. EMBO J 1995; 14: 461–472.

    PubMed  CAS  Google Scholar 

  58. Wang J, Walsh K. Resistance to apoptosis conferred by CDK inhibitors during myocyte differentiation. Science 1996; 273: 359–361.

    Article  PubMed  CAS  Google Scholar 

  59. Bernstein H, Gensler HL. DNA damage and aging. In: Yu BP, ed. Free Radicals in Aging. Boca Raton, FL: CRC Press 1993: 89–122.

    Google Scholar 

  60. Randerath K, Randerath E, Filburn C. Genomic and mitochodrial DNA alterations with aging. In: Schneider E, Rowe J, eds. Handbook of the Biology of Aging, Fourth Edition. New York: Academic Press, 1996: 121–149.

    Google Scholar 

  61. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci 1995; 92: 4337–4341.

    Article  PubMed  CAS  Google Scholar 

  62. Guarente L. Do changes in chromosomes cause aging? Cell 1996; 86: 9–12.

    Article  PubMed  CAS  Google Scholar 

  63. Jazwinski SM. Longevity, genes, and aging. Science 1996; 273: 54–59.

    Article  PubMed  CAS  Google Scholar 

  64. Lithgow GJ. Molecular genetics of Caenorhabditis elegans aging. In: Schneider E, Rowe J, eds. Handbook of the Biology of Aging, Fourth Edition. New York: Academic Press, 1996: 55–73.

    Google Scholar 

  65. Larsen PL. Aging resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci 1993; 90: 8905–8909.

    Article  PubMed  CAS  Google Scholar 

  66. Vanfleteren JR. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 1993; 292: 605–608.

    PubMed  CAS  Google Scholar 

  67. Melov S, Lithgow GJ, Fisher DR, Tedesco PM, Johnson TE. Increase frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Res 1995; 23: 1419–1425.

    Article  PubMed  CAS  Google Scholar 

  68. Fleming JE, Rose MR. Genetics of aging in Drosophila. In: Schneider E, Rowe J, eds. Handbook of the Biology of Aging. New York: Academic Press, 1996: 74–93.

    Google Scholar 

  69. Orr WC, Sohal RS. Extension of the life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994; 263: 1128–1130.

    Article  PubMed  CAS  Google Scholar 

  70. Miguel J, Economos AC, Bensch KG. Insect versus mammalian aging. Aging and Cell Structure 1981; 1: 347–379.

    Article  Google Scholar 

  71. Lewin MB, Timiras PS. Lipid changes with aging in cardiac mitochondrial membranes. Mechanisms of Ageing and Development 1984; 24: 343–351.

    Article  PubMed  CAS  Google Scholar 

  72. Yechiel, E, Barenholz Y. Relationships between membrane lipid composition and biological properties of rat myocytes. J Biol Chem 1985; 260: 9123–9131.

    PubMed  CAS  Google Scholar 

  73. Rouser G, Kritchevsky G, Yamamoto A, Baxter DV. Lipids in the nervous system of different speicies as a function of age. Adv Lipid Res 1972; 10: 261–360.

    PubMed  CAS  Google Scholar 

  74. Alberghina, M, Viola M. Region-selective decline of in vivo lipid synthesis in the aged rat visual system. Molecular and Chemical Neuropathology 1989; 11: 1102–1109.

    Article  Google Scholar 

  75. Giusto NM, Roque ME, Lincheta de Boschero MG. Effects of aging on the content, composition and synthesis of sphingomyelin in the central nervous system. Lipids 1992; 27: 835–839.

    Article  PubMed  CAS  Google Scholar 

  76. Prisco D, Rogasi PG, Matucci M, Paniccia R, Abbate R, Gensini GF, Neri Serneri GG. Age related changes in platelet lipid composition. Thromb Res 1986; 44: 427–437.

    Article  PubMed  CAS  Google Scholar 

  77. Denda M, Koyama J, Hori J, Horii I, Takahashi M, Hara M, Tagami H. Age-and sex-dependent change in stratum corneum sphingolipids. Archives of Dermatological Research 1993; 285: 415–417.

    Article  PubMed  CAS  Google Scholar 

  78. Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM. The Aged epidermal permeability barrier. J Clin Invest 1995; 95: 2281–2290.

    Article  PubMed  CAS  Google Scholar 

  79. Petkova DH, Momchilova-Pankova AB, Markovska TT, Koumanov KS. Age-related changes in rat liver plasma membrane sphingomyelinase activity. Exp Gerontol 1988; 23: 19–24.

    Article  PubMed  CAS  Google Scholar 

  80. Petkova DH, Momchiliva AB, Koumanov KS. Age-related changes in rat liver plasma membrane phospholipase A2 activity. Exp Gerontol 1986; 21: 187–193.

    Article  PubMed  CAS  Google Scholar 

  81. Jayadev S, Linardic CM, Hannun YA. Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor a. J Biol Chem 1994; 269: 5757–5763

    PubMed  CAS  Google Scholar 

  82. Tamiya-Koizumi, K, Kojima K. Activation of magnesium-dependent neutral sphingomyelinase by phosphatidylserine. J Biochem (Tokyo) 1986; 99: 1803–1806

    CAS  Google Scholar 

  83. Dbaibo G, Obeid LM, Hannun YA. TNFa signal transduction through ceramide: dissociation of growth inhibitory effects of TNFa from activation of NF-KB. J Biol Chem 1993; 268: 17762–17766.

    PubMed  CAS  Google Scholar 

  84. Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 1994; 265: 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  85. Dbaibo GS, Pushkareva MY, Jayadev S, Schwarz JK, Horowitz JM, Obeid LM, Hannun YA. Retinoblastoma gene product as a downstream target for a Ceramide-dependent pathway of growth arrest. Proc Natl Acad Sci 1995; 92: 1347–1351.

    Article  PubMed  CAS  Google Scholar 

  86. Rani CSS, Abe A, Chang Y, Rosenzweig N, Saltiel AR, Radin NS, Shayman JA. Cell cycle arrest induced by an inhibitor of glucosylceramide synthesis: correlation with cyclin-dependent kinases. J Biol Chem 1995; 270: 2859–2867.

    Article  PubMed  CAS  Google Scholar 

  87. Carroll MP, May WS. Protein kinase C-mediated serine phosphorylation directly activates Raf-1 in murine hematopoietic cells. J Biol Chem 1994; 269: 1249–1256.

    PubMed  CAS  Google Scholar 

  88. Johnson MD, Wang HY, Friedman E. Protein kinase C activity and contractile responsiveness in senescent blood vessels. Eur J Pharmacol 1990; 189: 405–410.

    Article  PubMed  CAS  Google Scholar 

  89. Venable ME, Blobe GC, Obeid LM. Identification of a defect in the phospholipase D/ diacylglycerol pathway in cellular senescence. J Biol Chem 1994; 269: 26040–26044.

    PubMed  CAS  Google Scholar 

  90. De Tata V, Ptasznik A, Cristafalo VJ. Effect of the tumor promoter phorbol 12myristate 13-acetate (PMA) on proliferation of young and senescent Wi-38 human diploid fibroblasts. Exp Cell Res 1993; 205: 261–269.

    Article  PubMed  Google Scholar 

  91. Lipschitz DA, Udupa KB, Indelicato SR, Das M. Effects of age on second messenger generation in neutrophils. Blood 1991; 78: 1347–1354.

    PubMed  CAS  Google Scholar 

  92. Chang ZF, Huang DY. Decline of protein kinase C activation in response to growth stimulation during senescence of IMR-90 human diploid fibroblasts. Biochem Biophys Res Commun 1994; 200: 16–27.

    Article  PubMed  CAS  Google Scholar 

  93. Whisler RL, Newhouse YG, Grants IS, Hackshaw KV. Differential expression of the a-and ß-isoforms of protein kinase C in peripheral blood T and $ cells from young and elderly adults. Mechanisms of Aging and Development 1995; 77: 197–211.

    Article  CAS  Google Scholar 

  94. Lee JY, Hannun YA, Obeid LM. Ceramide inactivates cellular protein kinase Ca. J Biol Chem 1996; 271: 13169–13174.

    Article  PubMed  CAS  Google Scholar 

  95. Dobrowsky RT, Hannun YA. Ceramide stimulates a cytosolic protein phosphatase. J Biol Chem 1992; 267: 5048–5051.

    PubMed  CAS  Google Scholar 

  96. Zhou W, Takuwa N, Kumada M, Takuwa Y. Protein kinase C-mediated bidirectional regulation of DNA synthesis, RB protein phosphoryaltion, and cyclin-dependent kinases in human vascular endothelial cells. J Biol Chem 1993; 268: 23041–23048.

    PubMed  CAS  Google Scholar 

  97. Venable ME, Bielawska A, Obeid LM. Ceramide inhibits phospholipase D in a cell-free system. J Biol Chem 1996; 271: 24800–24805.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, J.Y., Obeid, L.M. (1997). Ceramide, Aging and Cellular Senescence. In: Sphingolipid-Mediated Signal Transduction. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22425-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22425-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22427-4

  • Online ISBN: 978-3-662-22425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics