Skip to main content

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

  • 66 Accesses

Abstract

The consensus amino acid sequence for an EF-hand Ca2+-binding domain has allowed identification of more than 200 Ca2+-binding proteins from primary structures, many of them expressed in the central nervous system (Table 2.3). A central question concerns the biological, function of these proteins. Ca2+-binding proteins with known functions, such as calmodulin, troponin C, myosin-light chains, calpain or calcineurin, are far outnumbered by those whose roles are not known. Most of them are expressed in a cell-type specific manner (in contrast to calmodulin, which is ubiquitously distributed). Recently, this family of proteins has attracted a lot of interest since altered concentrations of some of them have been reported in several disease states of the central nervous system and in tumor cells (chapter 6). An exploration of their involvement in mechanisms of calcium-mediated regulation in normal cells should therefore help to elucidate the underlying mechanisms of these pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen P, Klee CB, eds. Calmodulin. Amsterdam, New York, Oxford: Elsevier, 1988.

    Google Scholar 

  2. Föhr UG, Weber BR, Müntener M et al. Human α and ß parvalbumins. Structure and tissue-specific expression. Eur J Biochem 1993; 215: 719–727.

    Article  PubMed  Google Scholar 

  3. Christakos S, Gabrielides C, Rhoten WB. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations and molecular biology. Endocr Rev 1989; 10: 3–26.

    Article  PubMed  CAS  Google Scholar 

  4. Heizmann CW, Braun K. Changes in Ca2+-binding proteins in human neurodegenerative disorders. Trends Neurosci 1992; 15: 259–264.

    Article  PubMed  CAS  Google Scholar 

  5. Lledo P-M, Somasundaram B, Morton AJ et al. Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron 1992; 9: 943–954.

    Article  PubMed  CAS  Google Scholar 

  6. Kosaka T, Kosaka K, Nakayama T et al. Axons and axon terminals of cerebellar Purkinje cells and basket cells have higher levels of parvalbumin immunoreactivity than somata and dendrites: quantitative analysis by immunogold labeling. Exp Brain Res 1993; 93: 483–491.

    Article  PubMed  CAS  Google Scholar 

  7. Dowd DR, MacDonald PN, Komm BS et al. Stable expression of the calbindin-D28K complementary DNA interferes with the apoptotic pathway in lymphocytes. Mol Endocrin 1992; 6: 1843–1848.

    Article  CAS  Google Scholar 

  8. Heizmann CW. Parvalbumin, an intracellular calcium-binding protein: distribution, properties and possible roles in mammalian cells. Experientia 1984; 40: 910–921.

    Article  PubMed  CAS  Google Scholar 

  9. Ushio H, Watabe S. Carp parvalbumin binds to and directly interacts with the sarcoplasmic reticulum for Caz+ translocation. Biochem Biophys Res Commun 1994; 199: 56–62.

    Article  PubMed  CAS  Google Scholar 

  10. Hou T, Johnson JD, Rall JA. Role of parvalbumin in relaxation of frog skeletal muscle. In: Sugi H, Pollack GH, eds. Mechanism of Myofilament Sliding in Muscle Contraction. New York: Plenum Press, 1993; 141–153.

    Chapter  Google Scholar 

  11. Berridge MJ, Dupont G. Spatial and temporal signaling by calcium. Current Opinion in Cell Biol 1994; 6: 267–274.

    Article  CAS  Google Scholar 

  12. Tank DW, Sugimori M, Connor JA et al. Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 1988; 242: 773–777.

    Article  PubMed  CAS  Google Scholar 

  13. Chard PS, Bleakman D, Christakos S et al. Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol 1993; 472: 341–357.

    PubMed  CAS  Google Scholar 

  14. Mattson MP, Rychlik B, Chu C et al. Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron 1991; 6: 41–51.

    Article  PubMed  CAS  Google Scholar 

  15. Roberts WM. Spatial calcium buffer in saccular hair cells. Nature 1993; 363: 74–76.

    Article  PubMed  CAS  Google Scholar 

  16. Feher JJ, Fullmer CS, Wasserman RH. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am J Physiol 1992; 262: C517–0526.

    PubMed  CAS  Google Scholar 

  17. Haiech J, Derancourt J, Pechère J-F, et al. Magnesium and calcium binding to parvalbumins: Evidence for differences between parvalbumins and an explanation of their relaxing function. Biochem 1979; 18: 2752–2758.

    Article  CAS  Google Scholar 

  18. Gillis JM, Thomason D, Lefevre J et al. Parvalbumins and muscle relaxation: a computer simulation study. J Muscle Res Cell Mot 1982; 3: 377–398.

    Article  CAS  Google Scholar 

  19. Hou T-T, Johnson JD, Rall JA. Parvalbumin content and calcium and magnesium dissociation rates correlated with changes in relaxation rate of frog muscle fibers. J Physiol 1991; 441: 285–304.

    PubMed  CAS  Google Scholar 

  20. Renner M, Danielson MA, Falke JJ. Kinetic control of Ca(II) signaling: Tuning the ion dissociation rates of EF-hand Ca(II) binding sites. Proc Natl Acad Sci USA 1993; 90: 6493–6497.

    Article  PubMed  CAS  Google Scholar 

  21. Moore B. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 1965; 19: 739–744.

    Article  PubMed  CAS  Google Scholar 

  22. Hilt DC, Kligman D. The 5100 protein family: a biochemical and functional overview. In: Heizmann CW, ed. Novel Calcium-Binding Proteins. Fundamentals and Clinical Implications. Berlin: Springer-Verlag, 1991: 65–103.

    Chapter  Google Scholar 

  23. Zimmer DB. Examination of the calcium-modulated protein S 100a and its target proteins in adult and developing skeletal muscle. Cell Motility and Cytoskeleton 1991; 20: 325–337.

    Article  CAS  Google Scholar 

  24. Donato R. Perspectives in S-100 protein biology. Cell Calcium 1991; 12: 713–726.

    Article  PubMed  CAS  Google Scholar 

  25. Van Eldik LJ, Griffin WST. S100ß expression in Alzheimer’s disease: Relation to neuropathology in brain regions. Biochim Biophys Acta 1994; 1223: 398–403.

    Article  PubMed  Google Scholar 

  26. Baudier J, Haglid K, Haiech J et al. Zinc binding to human brain calcium binding proteins, calmodulin and S10013 protein. Biochem Biophys Res Commun 1983; 114: 1138–1146.

    Article  PubMed  CAS  Google Scholar 

  27. Filipek A, Heizmann CW, Kuznicki J. Calcyclin is a calcium-and zinc-binding protein. FEBS Lett 1990; 264: 263–266.

    Article  PubMed  CAS  Google Scholar 

  28. Duncan A, Higgins J, Dunn RJ et al. Refined sublocalization of the human gene encoding the [3 subunit of the S-100 protein (S100ß) and confirmation of a subtle t(9;21) translocation using in situ hybridization. Cytogenet Cell Genet 1989; 50: 234–235.

    Article  PubMed  CAS  Google Scholar 

  29. Baudier J, Cole RD. Reinvestigation of the sulfhydryl reactivity in bovine brain S-10013 protein and the microtubule-associated tau proteins. Cat+ stimulates disulfide cross-linking between the S-100[3 subunit and the microtubule-associated tau protein. Biochem 1988; 27: 2728–2736.

    Article  CAS  Google Scholar 

  30. Becker LE, Mito T, Takashima S et al. Association of phenotypic abnormalities of Down syndrome with an imbalance of genes on chromosome 21. APMIS 1993; Suppl 40, 101: 57–70.

    Google Scholar 

  31. Reeves RH, Yao J, Crowley MR et al. Astrocytosis and axonal proliferation in the hippocampus of 510013 transgenic mice. Proc Natl Acad Sci USA 1994; 91: 5359–5363.

    Article  PubMed  CAS  Google Scholar 

  32. Friend WC, Clapoff S, Landry C et al. Cell-specific expression of high levels of human 5100P. in transgenic mouse brain is dependent on gene dosage. J Neurosci 1992; 12: 4337–4346.

    PubMed  CAS  Google Scholar 

  33. Gerlai R, Friend W, Becker L et al. Female transgenic mice carrying multiple copies of the human gene for S10013 are hyperactive. Behavioural Brain Res 1993; 55: 51–59.

    Article  CAS  Google Scholar 

  34. Kojima K, Berger T, Lassmann H et al. Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S 10013 molecule, a calcium binding protein of astroglia. J Exp Med 1994; 180: 817–829.

    Article  PubMed  CAS  Google Scholar 

  35. Shashona VE, Hesse GW, Moore BW. Proteins of the extracellular fluid: evidence for release of S100 protein. J. Neurochem 1984; 42: 1536–1541.

    Article  Google Scholar 

  36. Zimmer DB, Van Eldik LJ. Levels and distribution of the calcium-modulated proteins S-100 and calmodulin in rat C 6 glioma cells. J. Neurochem 1988; 50: 572–579.

    Article  PubMed  CAS  Google Scholar 

  37. Kligman D, Marshak D. Purification and characterization of a neurite extension factor from bovine brain. Proc Natl Acad Sci USA 1985; 82: 7136–7139.

    Article  PubMed  CAS  Google Scholar 

  38. Winningham-Major F, Staecker JL, Barger SW et al. Neurite extension and neuronal survival activities of recombinant S-10013 proteins that differ in the content and position of cysteine residues. J. Cell Biol 1989; 109: 3063–3071.

    Article  PubMed  CAS  Google Scholar 

  39. Ueda S, Hou XA, Whitaker-Azmitia PM et al. Neuro-glial neurotrophic interaction in the S-10013 retarded mutant mouse (Polydactyly Nagoya). II. Co-cultures study. Brain Res 1994; 633: 284–288.

    Article  PubMed  CAS  Google Scholar 

  40. Mariggio MA, Fulle S, Calissano P et al. The brain protein S10013 induces apoptosis in PC12 cells. Neurosci 1994; 60: 29–35.

    Article  CAS  Google Scholar 

  41. Barraclough R, Savin J, Dube SK et al. Molecular cloning and sequence of the gene for p9Ka. A cultured myoepithelial cell protein with strong homology to S-100, a calcium-binding protein. J Mol Biol 1987; 198: 13–20.

    Article  PubMed  CAS  Google Scholar 

  42. Ebralidze A, Tulchinsky E, Grigorian M et al. Isolation and characterization of a gene specifically expressed in different metastatic cells and whose deduced gene product has a high degree of homology to a Cat+-binding protein family. Genes Devel 1989; 3: 1086–1093.

    Article  PubMed  CAS  Google Scholar 

  43. Davies BR, Davies M, Gibbs F et al. Induction of the metastatic phenotype by transfection of a benign rat mammary epithelial cell line with the gene for p9Ka, a rat calcium-binding protein, but not with the oncogene EJ-ras-1. Oncogene 1993; 8: 999–1008.

    PubMed  CAS  Google Scholar 

  44. Jackson-Grusby LL, Siergiel J, Linzer DIH. A growth-related mRNA in cultured mouse cells encodes a placental calcium-binding protein. Nucleic Acids Res 1987; 15: 667–669.

    Article  Google Scholar 

  45. Watanabe Y, Usada N, Minami H. et al. Calvasculin, as a factor affecting the microfilament assemblies in rat fibroblasts transfected by src gene. FEBS Lett 1993; 324: 51–55.

    Article  PubMed  CAS  Google Scholar 

  46. De Vouge MW, Mukherjee BB. Transformation of normal rat kidney cells by v-K-ras enhances expression of transin 2 and an S100-related calcium-binding protein. Oncogene 1992; 7: 109–119.

    PubMed  Google Scholar 

  47. Lakshmi MS, Parker C, Sherbet GV. Metastasis-associated MTS1 and NM23 genes affect Tubulin polymerisation in B16 melanomas–a possible mechanism of their regulation of metastatic behavior of tumors. Anticancer Res 1993; 13: 299–303.

    PubMed  CAS  Google Scholar 

  48. Calabretta B, Battini R, Kaczmarek L et al. Molecular cloning of the cDNA for a growth-factor-inducible gene with strong homology to S-100, a calcium-binding protein. J Biol Chem. 1986; 261: 12628–12632.

    PubMed  CAS  Google Scholar 

  49. Wood L, Carter D, Mills M et al. Expression of calcyclin, a calcium-binding protein, in the keratogenous region of growing hair follicles. J Invest Derm 1991; 96: 383–387.

    Article  PubMed  CAS  Google Scholar 

  50. Guo X, Chambers AF, Parfett CLJ et al. Identification of a serum-inducible messenger RNA (5B10) as the mouse homologue of calcyclin: tissue distribution and expression in metastatic, ras-transformed NIH 3T3 cells. Cell Growth Differ 1990; 1: 333–338.

    PubMed  CAS  Google Scholar 

  51. Weterman MAJ, Stoopen GM, Muijen GNPv et al. Expression of calcyclin in human melanoma cell lines correlates with metastatic behavior in nude mice. Cancer Res 1992; 52: 1291–1296.

    PubMed  CAS  Google Scholar 

  52. Lee SW, Tomasetto C, Swisshelm K et al. Down-regulation of a member of the S100 gene family in mammary carcinoma cells and re-expression by azadeoxycytidine treatment. Proc Natl. Acad Sci 1992; 89: 2504–2508.

    Article  CAS  Google Scholar 

  53. Engelkamp D, Schäfer BW, Mattei MG et al. Six S100 genes are clustered on human chromosome-1q21–identification of two genes coding for the two previously unreported calcium-binding proteins–S 100D and S 100E. Proc Natl. Acad Sci 1993; 90: 6547–6551.

    Article  CAS  Google Scholar 

  54. Schäfer BW, Wicki R, Engelkamp D et al. Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1821: rationale for a new nomenclature of the S100 calcium-binding protein family. Genomics 1995; 25: 638–643.

    Article  PubMed  Google Scholar 

  55. Kriajevska MV, Neira Cardenas M, Grigorian MS et al. Non-muscle myosin heavy chain as a possible target for protein encoded by metastasis-related mts-1 gene. J Biol Chem 1994; 269: 19679–19682.

    PubMed  CAS  Google Scholar 

  56. Takenaga K, Nakamura Y, Endo H et al. Involvement of S100- related calcium-binding protein pEL98 (or mtsl) in cell motility and tumor cell invasion. Jpn J Cancer Res 1994; 85: 831–839.

    Article  PubMed  CAS  Google Scholar 

  57. Borg A, Zhang QX, Olsson H et al. Chromosome-1 alterations in breast cancer-allelic loss on 1 and lq is related to lymphogenic metastases and poor prognosis. Genes Chromosome Cancer 1992; 5: 311–320.

    Article  CAS  Google Scholar 

  58. Pedrocchi M, Schäfer BW, Mueller H et al. Expression of Cat+-binding proteins of the S100 family in malignant human breast-cancer cell lines and biopsy samples. Int J Cancer 1994; 57: 684–690.

    Article  PubMed  CAS  Google Scholar 

  59. Chen L-C, Dollbaum C, Smith HS. Loss of heterozygosity on chromosome lq in human breast cancer. Proc Natl Acad Sci 1989; 86: 7204–7207.

    Article  PubMed  CAS  Google Scholar 

  60. Kosaka T, Katsumaru H, Hama K et al. GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Res 1987; 419: 119–130.

    Article  PubMed  CAS  Google Scholar 

  61. Celio MR. Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 1986; 231: 995–997.

    Article  PubMed  CAS  Google Scholar 

  62. Kosaka T, Heizmann CW, Tateishi K et al. An aspect of the organizational principle of the gamma-aminobutyric system in the cerebral cortex. Brain Res 1987; 409: 403–408.

    Article  PubMed  CAS  Google Scholar 

  63. Katsumaru H, Kisaka T, Heizmann CW et al. Immunocytochemical study of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus. Exp Brain Res 1988a; 72: 347–362.

    PubMed  CAS  Google Scholar 

  64. Katsumaru H, Kosaka T, Heizmann CW et al. Gap-junctions on GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus (CA1 regions). Exp Brain Res 1988b; 72: 363–370.

    PubMed  CAS  Google Scholar 

  65. Stichel CC, Singer W, Heizmann CW. Light and electron microscopy immunocytochemical localization of parvalbumin in the dorsal lateral geniculate nucleus of the cat: evidence for coexistence with GABA. J Comp Neurol 1988; 268: 29–37.

    Article  PubMed  CAS  Google Scholar 

  66. Kosaka T, Kosaka K, Heizmann CW et al. An aspect of the organization of the GABAergic system in the rat main olfactory bulb: laminar distribution of immunohistochemically defined sub-population of GABAergic neurons. Brain Res 1987; 411: 373–378.

    Article  PubMed  CAS  Google Scholar 

  67. DiFiglia M, Christakos S, Aronin N. Ultrastructural localization of immunoreactive calbindin-D28k in the rat and monkey basal ganglia, including subcellular distribution with colloidal gold labeling. J Comp Neurol 1989; 279: 653–665.

    Article  PubMed  CAS  Google Scholar 

  68. Hendry SHC, Jones EG, Emson PC et al. Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res 1989; 76: 467–472.

    Article  PubMed  CAS  Google Scholar 

  69. Miettinen R, Gulyas AI, Baimbridge KG et al. Calretinin is present in non-pyramidal cells of the rat hippocampus–II. Coexistence with other calcium binding proteins and GABA. Neurosci 1992; 48: 29–43.

    Article  CAS  Google Scholar 

  70. Röhrenbeck J, Wässle H, Heizmann CW. Immunocytochemical labeling of horizontal cells in mammalian retina using antibodies against calcium-binding proteins. Neurosci Lett 1987; 77: 255–260.

    Article  PubMed  Google Scholar 

  71. Nitsch R, Leranth C. Calretinin immunoreactivity in the monkey hippocampal formation–II. Intrinsic GABAergic and hypothalamic non-GABAergic systems: an experimental tracing and co-existence study. Neurosci 1993; 55: 797–812.

    Article  CAS  Google Scholar 

  72. Gerfen CR, Baimbridge KG, Thibault J. The neostriatal mosaic. III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J Neurosci 1987; 7: 3935–3944.

    PubMed  CAS  Google Scholar 

  73. Weiss JH, Koh JY, Baimbridge KG et al. Cortical neurons containing somatostatin-or parvalbumin-like immunoreactivity are atypically vulnerable to excitotoxic injury in vitro. Neurol 1990; 40: 1288–1292.

    Article  CAS  Google Scholar 

  74. Waldvogel HJ, Faull RLM. Compartmentalization of parvalbumin immunoreactivity in the human striatum. Brain Res 1993; 610: 311–316.

    Article  PubMed  CAS  Google Scholar 

  75. Hartley D, Neve R, Bryan J et al. Expression of parvalbumin in cultured cortical neurons using a herpes simplex virus (HSV-1) vector system enhances NMDA-induced neurotoxicity. Soc Neurosci Abstr 1993; 19: 1344.

    Google Scholar 

  76. Baimbrigde KG, Kuo J. Calbindin D-28K protects against glutamate induced neurotoxicity in rat CAI pyramidal neurons cultures. Soc Neurosci Abstr 1988; 14: 1264.

    Google Scholar 

  77. Mattson MP, Rychlik B, Chu C et al. Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin D28K in cultured hippocampal neurons. Neuron 1991; 6: 41–51.

    Article  PubMed  CAS  Google Scholar 

  78. Winsky L, Jacobowitz DM. Purification, identification and regional localization of a brain-specific calretinin-like calcium-binding protein (protein 10). In: Heizmann CW, ed. Novel Calcium Binding Proteins: Fundamentals and Clinical Implications. Berlin: Springer Verlag, 1991: 277–300.

    Chapter  Google Scholar 

  79. van der Zee EA, de Jong GI, Strosberg AD et al. Parvalbuminpositive neurons in rat dorsal hippocampus contain muscarinic acetylcholine receptors. Brain Res Bull 1991; 27: 697–700.

    Article  PubMed  Google Scholar 

  80. Van der Zee EA, Luiten PGM. GABAergic neurons of the rat dorsal hippocampus express muscarinic acetylcholine receptors. Brain Res Bull 1993; 32: 601–609.

    Article  PubMed  Google Scholar 

  81. Batini C, Palestini M, Thomasset M et al. Cytoplasmic calcium buffer, calbindin D-28K, is regulated by excitatory amino acids. NeuroReport 1993; 4: 927–930.

    Article  PubMed  CAS  Google Scholar 

  82. Lowenstein DH, Miles MF, Hatam F et al. Up-regulation of calbindin D28KmRNA in the rat hippocampus following focal stimulation of the perforant path. Neuron 1991; 6: 627–633.

    Article  PubMed  CAS  Google Scholar 

  83. Miller JJ, Baimbridge KG. Biochemical and immunohistochemical correlates of kindling induced epilepsy: role of calcium-binding protein. Brain Res 1983; 278: 322–326.

    Article  PubMed  CAS  Google Scholar 

  84. Baimbridge KG, Miller JJ. Hippocampal calcium-binding protein during commissural kindling-induced epileptogenesis: progressive decline and effects of anticonvulsants. Brain Res 1984; 324: 85–90.

    Article  PubMed  CAS  Google Scholar 

  85. Baimbridge KG, Mody I, Miller JJ. Reduction of rat hippocampal calcium-binding protein following comissural, amygdala, septal, perforant path, and olfactory bulb kindling. Epilepsia 1985; 26: 460–465.

    Article  PubMed  CAS  Google Scholar 

  86. Sloviter RS. Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neuron to seizure activity. J Comp Neurol 1989; 280: 183–196.

    Article  PubMed  CAS  Google Scholar 

  87. Sloviter RS, Sollas AL, Barbaro NM et al. Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. J Comp Neurol 1991; 308: 381–396.

    Article  PubMed  CAS  Google Scholar 

  88. Kamphuis W, Huisman E, Wadman WJ et al. Kindling induced changes in parvalbumin immunoreactivity in rat hippocampus and its relation to long-term decrease in GABA-immunoreactivity. Brain Res 1989; 479: 23–34.

    Article  PubMed  CAS  Google Scholar 

  89. Heinemann U, Hamon B. Calcium and epileptogenesis. Exp Brain Res 1986; 65: 1–10.

    Article  PubMed  CAS  Google Scholar 

  90. Dichter MA, Ayala GF. Cellular mechanisms of epilepsy: a status report. Science 1987; 237: 157–164.

    Article  PubMed  CAS  Google Scholar 

  91. Pfyffer GE, Faivre-Baumann A, Tixier-Vidal A et al. Developmental and functional studies of parvalbumin and calbindin D28k in hypothalamic neurons grown in serum-free medium. J Neurochem 987; 49: 442–451.

    Google Scholar 

  92. Sonnenberg JL, Frantz GD, Lee S et al. Calcium binding protein (calbindin D28K) and glutamate decarboxylase gene expression after kindling induced seizures. Molec Brain Res 1991; 9: 179–190.

    Article  PubMed  CAS  Google Scholar 

  93. Llinas R, Sugimori M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol (Lond.) 1980; 305: 197–213.

    CAS  Google Scholar 

  94. Wasterlain CG, Farber DB. Kindling alters the calcium/calmodulindependent phosphorylation of synaptic plasma membrane proteins in rat hippocampus. Proc Natl Acad Sci USA 1984; 81: 1253–1257.

    Article  PubMed  CAS  Google Scholar 

  95. Kawaguchi Y, Hama K. Fast spiking nonpyramidal cells in the CA3 region, dentate gyrus and subiculum of rats. Brain Res 1987; 425: 351–355.

    Article  PubMed  CAS  Google Scholar 

  96. Kawaguchi Y, Hama K. Two subtypes of nonpyramidal cells in rat hippocampal formation identified by intracellular recording and HRP injection. Brain Res 1987; 411: 190–195.

    Article  PubMed  CAS  Google Scholar 

  97. Kawaguchi Y, Hama K. Physiological heterogeneity of nonpyramidal cells in rat hippocampal CA1 region. Exp Brain Res 1988; 72: 494–502.

    Article  PubMed  CAS  Google Scholar 

  98. Lacaille JC, Schwartzkroin PA. Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. I. Intracellular response characteristics, synaptic responses and morphology. J Neurosci 1988a; 8: 1400–1424.

    PubMed  CAS  Google Scholar 

  99. Lacaille JC, Schwartzkroin PA. Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. II. Intrasomatic and intradendritic recordings of local circuit synaptic interactions. J Neurosci 1988b; 8: 1411–1424.

    PubMed  CAS  Google Scholar 

  100. Kawaguchi Y. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 1993; 13 (11): 4908–4923.

    PubMed  CAS  Google Scholar 

  101. Kawaguchi Y, Kubota Y. Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin-and calbindin D28k-immunoreactive neurons in layer V of rat frontal cortex. J Neurophysiol 1993; 70 (1): 387–396.

    PubMed  CAS  Google Scholar 

  102. Kawaguchi Y, Katsumaru H, Kosaka T et al. Fast-spiking cells in rat hippocampus (CA1-region) contain the calcium-binding protein parvalbumin. Brain Res 1987; 416: 369–374.

    Article  PubMed  CAS  Google Scholar 

  103. Schwartzkroin PA, Mathers LH. Physiological and morphological identification of a nonpyramidal hippocampal cell type. Brain Res 1978; 157: 1–10.

    Article  PubMed  CAS  Google Scholar 

  104. Braun K, Scheich H, Schachner M et al. Distribution of parvalbumin, cytochrome oxidase activity and 4]C-2-deoxyglucose uptake in the brain of the zebra finch. I. Auditory and vocal motor systems. Cell Tissue Res 1985; 240: 101–115.

    Article  CAS  Google Scholar 

  105. Braun K, Scheich H, Schachner M et al. Distribution of parvalbumin, cytochrome oxidase activity and E141C-2-deoxyglucose uptake in the brain of the zebra finch. II. Visual system. Cell Tissue Res 1985; 240: 117–127.

    Article  CAS  Google Scholar 

  106. Celio MR, Scharer L, Morrison JH et al. Calbindin immunoreactivity alternates with cytochrome c-oxidase-rich zones in some layers of the primate visual cortex. Nature (Lond.) 1986; 323: 715–717.

    Article  CAS  Google Scholar 

  107. Tigges M, Tigges J. Parvalbumin immunoreactivity in the lateral geniculate nucleus of rhesus monkeys raised under monocular and binocular deprivation conditions. Vis Neurosci 1993; 10: 1043–1053.

    Article  PubMed  CAS  Google Scholar 

  108. Blümcke I, Weruaga E, Kasas S et al. Discrete reduction patterns of parvalbumin and calbindin D-28k immunoreactivity in the dorsal lateral geniculate nucleus and the striate cortex of adult macaque monkeys after monocular enucleation. Vis Neurosci 1994; 11: 1–11.

    Article  PubMed  Google Scholar 

  109. Spatz WB, Illing RB, Vogt Weisenhorn DM. Distribution of cytochrome oxidase and parvalbumin in primary visual cortex of the adult and neonate monkey, Callithrix jacchus. J Comp Neurol 1994; 339: 519–534.

    Article  PubMed  CAS  Google Scholar 

  110. Burry RW. Protein synthesis requirement for the formation of synaptic elements. Brain Res 1985; 344: 109–119.

    Article  PubMed  CAS  Google Scholar 

  111. Suarez-Isla BA, Pelto DJ, Thompson JM et al. Blockers of calcium permeability inhibit neurite extension and formation of neuromuscular synapses in cell culture. Devel Brain Res 1984; 14: 263–270.

    Article  CAS  Google Scholar 

  112. Kater SB, Mattson MP, Cohan C et al. Calcium regulation of the neuronal growth cone. Trends Neurosci 1988; 11: 315–321.

    Article  PubMed  CAS  Google Scholar 

  113. Braun K. Calcium-binding proteins in avian and mammalian central nervous system: localization, development and possible functions. Progr Histochem Cytochem 1990; 21 /1: 1–64.

    CAS  Google Scholar 

  114. Zuschratter W, Scheich H, Heizmann CW. Ultrastructural localization of the calcium-binding protein parvalbumin in neurons of the song system of the zebra finch. Cell Tissue Res 1985; 241: 77–83.

    Article  PubMed  CAS  Google Scholar 

  115. Llinas R. Electrophysiological properties of dendrites in central neurons. In: Kreuzberg GW, ed. Advances in Neurology. New York: Raven Press, 1975: 12: 1–13.

    Google Scholar 

  116. Llinas R, Hess R. Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. Proc Natl Acad Sci USA 1976; 73: 2520–2523.

    Article  PubMed  CAS  Google Scholar 

  117. Llinas R, Hess R. The role of calcium in neuronal function: In: Schmitt FO, Worden FG, eds. The Neurosciences: Fourth Study Program. Massachussetts-London: MIT Press Cambridge, 1979: 555–571.

    Google Scholar 

  118. Scheich H, Braun K. Synaptic selection and calcium regulation: Common mechanisms of auditory filial imprinting and vocal learning in birds?. In: Barth F, ed: Proceedings of the German Zoological Society. Stuttgart, New York: Gustav Fischer Verlag, 1988: 77–95.

    Google Scholar 

  119. Murphy KMM, Gould RJ, Snyder SH. Autoradiographic visualization of (3H)nitrendipine binding sites in rat brain: localization to synaptic zones. Eur J Pharmacol 1982; 81: 517–519.

    Article  PubMed  CAS  Google Scholar 

  120. Quirion R. Autoradiographic localization of a calcium channel antagonist, (3H)nitrendipine, binding sites in rat brain. Neurosci Lett 1983; 36: 267–271.

    Article  PubMed  CAS  Google Scholar 

  121. Ferry DR, Goll A, Rombusch M et al. The molecular pharmacology and structural features of calcium channels. Brit J Clin Pharmacol 1985; 20: 2335–2465.

    Article  Google Scholar 

  122. Mourre C, Cervera P, Lazdunski M. Autoradiographic analysis in rat brain of the postnatal ontogeny of voltage-dependent Na channels, Ca++-dependent K+-channels and slow Ca channels identified as receptors for tetrodotoxin, apamin and (-)desmethoxy-verapamil. Brain Res 1987; 417: 21–32.

    Article  PubMed  CAS  Google Scholar 

  123. Armstrong DL. Calcium channel regulation by calcineurin, a Cat+-activated phosphatase in mammalian brain. Trends Neurosci 1989; 12: 117–122.

    Article  PubMed  CAS  Google Scholar 

  124. Dunwiddie TV, Lynch G. The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation. Brain Res 1979; 169: 103–110.

    Article  PubMed  CAS  Google Scholar 

  125. Turner RW, Baimbridge KG, Miller JJ. Calcium-induced long-term potentiation in the hippocampus. Neurosci 1982; 7: 1411–1416.

    Article  CAS  Google Scholar 

  126. Bliss TVP, Dolphin AC. Where is the locus of long-term potentiation? In: Lynch G, McGaugh JL, Weinberger NM, eds. Neurobiology of Learning and Memory. New York-London: The Guilford Press, 1984: 451–458.

    Google Scholar 

  127. Kuhnt U, Mihaly A, Joo F. Increased binding of calcium in the hippocampal slice during long-term potentiation. Neurosci Lett 1985; 53: 149–154.

    Article  PubMed  CAS  Google Scholar 

  128. Smith SJ. Progress on LTP at hippocampal synapses: a postsynaptic Cat+-trigger for memory storage? Trends Neurosci 1987; 10: 142–144.

    Article  CAS  Google Scholar 

  129. Connor JA, Wadman WJ, Hockberger PE et al. Sustained dendritic gradients of Cat+ induced by excitatory amino acids in CA1 hippocampal neurons. Science 1988; 240: 649–653.

    Article  PubMed  CAS  Google Scholar 

  130. Van Harreveld A, Fifkova A. Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Exp Neurol 1975; 49: 736–749.

    Article  PubMed  Google Scholar 

  131. Fifkova E, Van Harreveld A. Long-lasting morphological changes in dendritic spines of dentate granule cells following stimulation of the entorhinal area. J Neurocytol 1977; 6: 211–230.

    Article  PubMed  CAS  Google Scholar 

  132. Wenzel J, Kammerer E, Kirsche W et al. Electron microscopic and morphometric studies on synaptic plasticity in the hippocampus of the rat following conditioning. J Hirnforsch 1980; 21: 647–654.

    PubMed  CAS  Google Scholar 

  133. Greenough WT. Structural correlates of information storage in the mammalian brain: a review and hypothesis. Trends Neurosci 1984; 7: 229–233.

    Article  Google Scholar 

  134. Greenough WT, Bailey CH. The anatomy of learning and memory: convergence of results across a diversity of tests. Trends Neurosci 1988; 11: 142–147.

    Article  Google Scholar 

  135. Lynch G, Baudry M. The biochemistry of memory: a new and specific hypothesis. Science 1984; 224: 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  136. Kasai H. Cytosolic Cat. gradients, Cat -binding proteins and synaptic plasticity. Neurosci Res 1993; 16: 1–7.

    Article  PubMed  CAS  Google Scholar 

  137. Handschack T, Zuschratter W, Staak S. Learning-related neuronal plasticity: changes in parvalbumin-immunoreactivity in the hippo-campus of rats trained on a brightness discrimination task. Third European Symposium on Calcium Binding Proteins in Normal and Transformed Cells Zurich 1994; P3:42, Abstract.

    Google Scholar 

  138. Miettinen R, Sirviö J, Riekkinen P et al. Neocortical hippocampal and septal parvalbumin-and somatostatin-containing neurons in young and aged rats: correlation with passive avoidance and water maze performance. Neurosci 1993; 53 (2): 367–378.

    Article  CAS  Google Scholar 

  139. Hyden H, Lange PW. The effect of antiserum to S100 protein on behavior and amount of S100 in brain cells. J Neurobiol 1981; 12: 201–210.

    Article  PubMed  CAS  Google Scholar 

  140. Shashoua VE, Hesse GW, Moore BW. Proteins of the brain extra-cellular fluid: evidence for release of S-100 protein. J Neurochem 1984; 42: 1536–1541.

    Article  PubMed  CAS  Google Scholar 

  141. Hyden H, Lange PW. S100 brain protein: correlation with behavior. Proc Natl Acad Sci USA 1970; 67: 1959–1966.

    Article  PubMed  CAS  Google Scholar 

  142. Karpiak SE, Serokosz M, Rapport MM. Effects of antisera to S100 protein and to synaptic membrane fraction on maze performance and EEG. Brain Res 1976; 102: 313–321.

    Article  PubMed  CAS  Google Scholar 

  143. Lewis D, Teyler TJ. Anti-S100 serum blocks long-term potentiation in the hippocampal slice. Brain Res 1986; 383: 159–164.

    Article  PubMed  CAS  Google Scholar 

  144. Reymann KG, Brödemann R, Kase H et al. Inhibitors of calmodulin and protein kinase C block different phases of hippocampal longterm potentiation. Brain Res 1988; 461: 388–392.

    Article  PubMed  CAS  Google Scholar 

  145. Mulkey RM, Endo S, Shenolikar S et al. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal longterm depression. Nature 1994; 369: 486–488.

    Article  PubMed  CAS  Google Scholar 

  146. Tsukita S, Tsukita S, Ishikawa H et al. Binding sites of calmodulin and actin on the brain spectrin, calspectin. J Cell Biol 1983; 97: 574–578.

    Article  PubMed  CAS  Google Scholar 

  147. Kakiuchi S. Calmodulin-binding proteins in brain. Neurochem Internat 1983; 5: 159–169.

    Article  CAS  Google Scholar 

  148. Veigl ML, Vanaman TC, Sedwick WD. Calcium and calmodulin in cell growth and transformation. Biochem Biophys Acta (Amst.) 1984; 738: 21–48.

    CAS  Google Scholar 

  149. Rasmussen CD, Means AR. Increased calmodulin affects cell morphology and mRNA levels of cytoskeletal protein genes. Cell Motility and the Cytoskeleton 1992; 21: 45–57.

    Article  PubMed  CAS  Google Scholar 

  150. Ferreira A, Kincaid R, Kosik KS. Calcineurin is associated with the cytoskeleton of cultured neurons and has a role in the acquisition of polarity. Molecular Biology of the Cell 1993; 4: 1225–1238.

    PubMed  CAS  Google Scholar 

  151. Lenz SE, Braun K, Braunewell KH et al. VILIP–Ca2+ -dependent interaction with cell membrane and cytoskeleton. J Neurochem 1994; 63 (1): 72.

    Google Scholar 

  152. Braunewell KH, Lenz SE, Gundelfinger ED. VILIP-a 22kD neuronal EF-hand Cat+-binding protein from chick brain: regulation of its interaction with intracellular target molecules. Soc Neurosci Abstr 1994; 20: 1116.

    Google Scholar 

  153. Braunewell KH, Lenz SE, Gundelfinger ED. VILIP–a neuronal calcium binding protein: interaction with intracellular target molecules and possible involvement in neuronal differentiation. Biochemistry Hoppe-Seyler, Suppl. (in press).

    Google Scholar 

  154. Hesketh J, Baudier J. Evidence that S-100 proteins regulate micro-tubule assembly and stability in rat brain extracts. Int J Biochem 1986; 18: 691–695.

    Article  PubMed  CAS  Google Scholar 

  155. Dyck RH, Van Eldik LJ, Cynader MS. Immunohistochemical localization of the S10013 protein in postnatal cat visual cortex: spatial and temporal patterns of expression in cortical and subcortical glia. Devel Brain Res 1993; 72: 181–192.

    Article  CAS  Google Scholar 

  156. Müller ChM, Akhavan AC, Bette M. Possible role of S-100 in glia-neuronal signalling involved in activity-dependent plasticity in the developing mammalian cortex. J Chem Neuroanat 1993; 6: 215–227.

    Article  Google Scholar 

  157. Kosaka T, Heizmann CW. Selective staining of a population of parvalbumin-containing GABAergic neurons in the rat cerebral cortex by lectins with specific affinity for terminal N-acetylgalactosamine. Brain Res 1989; 483: 158–163.

    Article  PubMed  CAS  Google Scholar 

  158. Drake CT, Mulligan KA, Wimpey TL et al. Characterization of Vicia villosa agglutinin-labeled GABAergic interneurons in the hippocampal formation and in acutely dissociated hippocampus. Brain Res 1991; 554: 176–185.

    Article  PubMed  CAS  Google Scholar 

  159. Celio MR. Perineuronal nets of extracellular matrix around parvalbumin-containing neurons of the hippocampus. Hippocampus 1993; 3: 55–60.

    PubMed  Google Scholar 

  160. Brauer K, Härtig W, Bigl V et al. Distribution of parvalbumincontaining neurons and lectin-binding perineuronal nets in the rat basal forebrain. Brain Res 1993; 631: 167–170.

    Article  PubMed  CAS  Google Scholar 

  161. Celio MR, Chiquet-Ehrismann R “Perineuronal nets” around cortical interneurons expressing parvalbumin are rich in tenascin. Neurosci Lett 1993; 162: 137–140.

    Article  PubMed  CAS  Google Scholar 

  162. Härtig W, Brauer K, Bruckner G. Wisteria floribunda agglutinin-labeled nets surround parvalbumin-containing neurons. NeuroReport 1992; 3: 869–872.

    Article  PubMed  Google Scholar 

  163. Härtig W, Brauer K, Bigl V et al. Chondroitin-sulfate proteoglycane-immunoreactivity of lectin-labeled perineuronal nets around parvalbumin-containing neurons. Brain Res 1994; 635: 307–311.

    Article  PubMed  Google Scholar 

  164. Celio MR, Blümcke I. Perineuronal nets–a specialized form of extracellular matrix in the adult nervous system. Brain Res Rev 1994; 19: 128–145.

    Article  PubMed  CAS  Google Scholar 

  165. Ren JQ, Heizmann CW, Kosaka T. Regional difference in the distribution of parvalbumin-containing neurons immunoreactive for monoclonal antibody HNK-1 in the mouse cerebral cortex. Neurosci Lett 1994; 166: 221–225.

    Article  PubMed  CAS  Google Scholar 

  166. Günther T, Vormann J, Förster R. Functional compartmentation of intracellular magnesium. Magnesium-Bulletin 1984; 2: 77–81.

    Google Scholar 

  167. Ferment O, Touitou Y. Magnesium: metabolism and hormonal regulation in different species. Comp Biochem Physiol 1985; 82A: 753–758.

    Article  CAS  Google Scholar 

  168. Günther T. Functional compartmentation of intracellular magnesium. Magnesium 1986; 5: 53–59.

    PubMed  Google Scholar 

  169. Terasaki M, Rubin H. Evidence that intracellular magnesium is present in cells at a regulatory concentration for protein synthesis. Proc Natl Acad Sci USA 1985; 82: 7324–7326.

    Article  PubMed  CAS  Google Scholar 

  170. Günther T. Biochemistry and pathobiochemistry of magnesium. Artery 1981; 9: 167–181.

    PubMed  Google Scholar 

  171. Langfield PW, Morgan GA. Chronically elevating plasma Mgt+ improves hippocampal frequency potentiation and reversal learning in aged and young rats. Brain Res 1984; 322: 167–171.

    Article  Google Scholar 

  172. Grubbs RD, Maguire ME. Magnesium as a regulatory cation: criteria and evaluation. Magnesium 1987; 6: 113–127.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heizmann, C.W., Braun, K. (1995). Biological Functions of EF-Hand Ca2+-Binding Proteins. In: Calcium Regulation by Calcium-Binding Proteins in Neurodegenerative Disorders. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21689-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21689-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21691-0

  • Online ISBN: 978-3-662-21689-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics