Skip to main content
Log in

Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area

  • Published:
Journal of Neurocytology

Summary

Stimulation of the perforant path induces a long-lasting increase in the area of dendritic spines, which are sites of termination of the stimulated pathway in the distal third of the dentate molecular layer. No enlarged spines were found in the proximal third of the dentate molecular layer, where the commissural afferents terminate. Following a single tetanic stimulus of 30 sec duration at 30/sec, spines became significantly larger by 15%, 38%, 35% and 23% within poststimulation intervals of 2–6 min, 10–60 min, 4–8 h, and 23 h, respectively. Axon terminals decreased their area by 15% within the 2–6 min interval and the vesicle density was decreased by 19% within the 10–60 min interval. Both changes were reversible and terminals resumed their prestimulation condition at longer intervals (>4 h). The initial enlargement of spines was interpreted as being due to a glutamate-induced increase in the sodium permeability of the spine membrane, whereas for the long-lasting enlargement an increase in protein synthesis was postulated. The long-lasting enlargement of dendritic spines in the dentate molecular layer following a short train of stimuli delivered to the perforant path, supports the postulate which links such a change to the mechanism of long-lasting postactivation potentiation observed in this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alousi, A., andWeiner, N. (1966) The regulation of norepinephrine synthesis in sympathetic nerves: Effect of nerve stimulation, cocaine, and catecholamine-releasing agents.Proceedings of the National Academy of Sciences U.S.A.,56, 1491–6.

    Google Scholar 

  • Berry, R. W. (1969) Ribonucleic acid metabolism of a single neuron. Correlation with electrical activity.Science,166, 1021–3.

    PubMed  Google Scholar 

  • Bliss, T. V. P. andGardner-Medwin, A. R. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path.Journal of Physiology 232, 357–74.

    PubMed  Google Scholar 

  • Bliss, T. V. P. andLømo, T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.Journal of Physiology 232, 331–56.

    PubMed  Google Scholar 

  • Colonnier, M. andGuillery, R. W. (1964) Synaptic organization in the lateral geniculate nucleus of the monkey.Zeitschrift für Zellforschung und mikroskopische Anatomie,62, 333–55.

    Google Scholar 

  • Douglas, R. M. andGoddard, G. V. (1975) Long-term potentiation of the perforant path-granule cell synapses in the rat hippocampus.Brain Research,86, 205–15.

    PubMed  Google Scholar 

  • Edström, J. andHydén, H. (1954) Ribonucleotide analysis of individual nerve cells.Nature,174, 128–9.

    PubMed  Google Scholar 

  • Fifková, E. (1975) Two types of terminal degeneration in the molecular layer of the dentate fascia following lesions of the entorhinal cortex.Brain Research,96, 169–75.

    PubMed  Google Scholar 

  • Glassman, E. andWilson, J. E. (1973) RNA and brain function. InMacromolecules and Behavior (edited byAnsell, G. B. andBradley, P. B.), pp. 81–92. Baltimore: University Park Press.

    Google Scholar 

  • Globus, A., Lux, M. D. andSchubert, P. (1968) Somatodendritic spread of intracellularly injected glycine in cat spinal motoneurons.Brain Research,11, 440–5.

    PubMed  Google Scholar 

  • Goldwitz, D., White, W. I., Steward, O., Lynch, G. S. andCotman, C. W. (1975) Anatomical evidence for a projection from the entorhinal cortex to the contralateral dentate gyrus of the rat.Experimental Neurology,47, 433–41.

    PubMed  Google Scholar 

  • Gray, E. G. (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study.Journal of Anatomy,93, 420–33.

    PubMed  Google Scholar 

  • Gray, E. G. andGuillery, R. W. (1963) A note on the dendritic spine apparatus.Journal of Anatomy,97, 389–392.

    PubMed  Google Scholar 

  • Gross, G. W. (1975) The microstream concept of axoplasmic and dendritic transport. InPhysiology and Pathology of Dendrites. Advances in Neurology,12 (edited byKreutzberg,G. W.), pp. 283–96. New York: Raven Press.

    Google Scholar 

  • Hamlyn, L. H. (1962) The fine structure of the mossy fiber endings in the hippocampus of the rabbit.Journal of Anatomy,96, 112–20.

    PubMed  Google Scholar 

  • Hamlyn, L. H. (1963) An electron microscope study of pyramidal neurons in the Ammon's horn of the rabbit.Journal of Anatomy,97, 189–201.

    PubMed  Google Scholar 

  • Laatsch, R. M. andCowan, W. M. (1966) Electron microscopic studies of the dentate gyrus of the rat. I. Normal structure with special reference to synaptic organization.Journal of Comparative Neurology,128, 359–96.

    PubMed  Google Scholar 

  • Laatsch, R. M. andCowan, W. M. (1967) Electron microscopic studies of the dentate gyrus of the rat. II. Degeneration of commissural afferents.Journal of Comparative Neurology,130, 241–62.

    Google Scholar 

  • Nadler, J. V., Vaca, K. W., White, W. F., Lynch, G. S. andCotman, C. W. (1976) Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents.Nature,260, 538–40.

    Google Scholar 

  • Nafstadt, P. M. J. (1967) An electron microscope study on the termination of the perforant path fibers in the hippocampus and fascia dentata.Zeitschrift für Zellforschung und mikroskopische Anatomie,76, 532–42.

    Google Scholar 

  • Peterson, R. P. (1970) RNA in single identified neurons ofAplysia.Journal of Neuro-chemistry,17, 325–38.

    Google Scholar 

  • Peterson, R. P. andKernell, D. (1970) Effects of nerve stimulation on the metabolism of ribonucleic acid in a molluscan giant neuron.Journal of Neurochemistry,17, 1075–85.

    PubMed  Google Scholar 

  • Porter, K. R. (1966) Cytoplasmic microtubules and their function. InPrinciples of Biomolecular Organization. Ciba Foundation Symposium, (edited byWolstenholme, G. E. W. andO'Connor, M.), p. 308. London: J. and A. Churchill, Ltd.

    Google Scholar 

  • Purpura, D. P. (1974) Dendritic spine ‘dysgenesis’ and mental retardation.Science,186, 1126–8.

    PubMed  Google Scholar 

  • Rall, W. (1974) Dendritic spines, synaptic potency and neuronal plasticity. InCellular Mechanisms Subserving Changes in Neuronal Activity (edited byWoody, Ch.D., Brown, K. D., Crow, T. J. andKnispel, J. D.), Brain Research Institute, University of California.

  • Rall, W. andRinzel, J. (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model.Biophysical Journal,13, 648–88.

    PubMed  Google Scholar 

  • Richardson, K. C., Jarett, L. andFinke, E. H. (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy.Stain Technology,35, 313–23.

    PubMed  Google Scholar 

  • Rosenbluth, J. (1962) Subsurface cisterns and their relationship to the neuronal plasma membrane.Journal of Cell Biology,13, 143–57.

    Google Scholar 

  • Schubert, P. andKreutzberg, G. W. (1975) Parameters of dendritic transport. InPhysiology and Pathology of Dendrites. Advances in Neurology,12 (edited byKreutzberg,G. W.), pp. 255–68. New York: Raven Press.

    Google Scholar 

  • Schubert, P., Kreutzberg, G. W. andLux, H. D. (1972) Neuroplasmic transport in dendrites; Effect of colchicine on morphology and physiology of motoneurons in the cat.Brain Research,47, 331–43.

    PubMed  Google Scholar 

  • Schubert, P., Lux, M. D. andKreutzberg, G. W. (1971) Single cell isotope injection technique, a tool for studying axonal and dendritic transport.Acta Neuropathologica (Berlin),5, 179–86.

    Google Scholar 

  • Segal, M. (1972) Ph.D. Thesis, California Institute of Technology, Pasadena, California.

    Google Scholar 

  • Shepherd, G. M. (1974)The synaptic organization of the brain. New York: Oxford University Press.

    Google Scholar 

  • Van Harreveld, A. andCrowell, J. (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation.Anatomical Record,149, 381–6.

    PubMed  Google Scholar 

  • Van Harreveld, A. andFifková, E. (1975a) Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation.Experimental Neurology,49, 736–49.

    PubMed  Google Scholar 

  • Van Harreveld, A. andFifková, E. (1975b) Rapid freezing of deep cerebral structures for electron microscopy.Anatomical Record,182, 377–86.

    PubMed  Google Scholar 

  • Van Harreveld, A. andKhattab, F. I. (1968) Changes in cortical extracellular space during spreading depression investigated with the electron microscope.Journal of Neurophysiology,30, 911–29.

    Google Scholar 

  • Venable, J. H. andCoggeshall, R. (1965) A simplified lead citrate stain for use in electron microscopy.Journal of Cell Biology,25, 407–8.

    PubMed  Google Scholar 

  • Weinreich, D. andHammerschlag, R. (1975) Nerve impulse-enhanced release of amino acids from non-synaptic regions of peripheral and central nerve trunks of bullfrog.Brain Research,84, 137–42.

    PubMed  Google Scholar 

  • Westrum, L. E. andBlackstadt, T. W. (1962) An electron microscopic study of the stratum radiatum of the rat hippocampus (regio superior, CA1) with particular emphasis on synaptology.Journal of Comparative Neurology,119, 281–309.

    PubMed  Google Scholar 

  • Zigmond, R. E., Mackay, A. V. P. andIversen, L. L. (1974) Minimum duration of trans-synaptic stimulation required for the induction of tyrosine hydroxylase by reserpine in the rat superior cervical ganglion.Journal of Neurochemistry,23, 355–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fifková, E., Van Harreveld, A. Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J Neurocytol 6, 211–230 (1977). https://doi.org/10.1007/BF01261506

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01261506

Keywords

Navigation