Skip to main content
  • 67 Accesses

Abstract

As detailed in chapter 1, the germinal center can be histologically divided into a dark zone of proliferating centroblasts and a light zone of nonproliferating centrocytes.1–3 The dark zone, in proximity to the PALS, is populated by proliferating centroblasts that clonally expand with a cell cycle time as short as 6–8 hours.4 Up to 10 B cell clones populate a germinal center, but through selection there is an outgrowth of only 3–5 of these clones. The signals that activate migration from the PALS of an activated B cell to populate a primary follicle and form a germinal center reaction are incompletely elucidated and discussed further in chapter i. Also, the mechanism(s) of the rapid clonal expansion of centroblasts in germinal centers is unknown, but discussed further below. These rapidly dividing centroblasts undergo a process of somatic hypermutation of the V regions of their immunoglobulin genes, detailed in chapter 4. Centroblasts develop into nonproliferating centrocytes that move apically into the basal light zone and then to the apical light zone where they are interspersed with a network of follicular dendritic cells (FDC) and CD4+ T cells. It is in the light zone that centrocytes undergo massive apoptosis, with collection of condensed chromatin fragments as tingible bodies in macrophages, or escape apoptosis by a process of antigenic selection to develop into memory B cells or differentiate to become plasma cells. Germinal center B cells are programmed to die by apoptosis unless they are rescued by a positive signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacLennan IC. Germinal centers. [Review] [139 refs]. Ann Rev Immunol 1994; 12: 117–139.

    CAS  Google Scholar 

  2. Thorbecke GJ, Amin AR, Tsiagbe VK. Biology of germinal centers in lymphoid tissue. [Review] [103 refs]. FASEB Journal 1994; 8: 832–84o.

    PubMed  CAS  Google Scholar 

  3. Tsiagbe VK, Inghirami G, Thorbecke GJ. The physiology of germinal centers. [Review] [432 refs]. Criti Rev Immunol 1996; 16: 381–421.

    CAS  Google Scholar 

  4. Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan IC. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens [published erratum appears in Eur J Immunol 1992 Feb;22(2):615]. Eur J Immunol 1991; 21: 2951–2962.

    Google Scholar 

  5. Vonderheide RH, Hunt SV. Comparison of IgD+ and IgD- thoracic duct B lymphocytes as germinal center precursor cells in the rat. International Immunology 1991; 3: 1273–1281.

    PubMed  CAS  Google Scholar 

  6. Seijen HG, Bun JC, Wubbena AS, Lohlefink KG. The germinal center precursor cell is surface mu and delta positive. Adv Exp Med and Biol 1988; 237: 233–237.

    CAS  Google Scholar 

  7. Vonderheide RH, Hunt SV. Surface IgD phenotype of rat germinal centre precursor cells. Adv Exp Med and Biol 1988; 237: 239–243.

    CAS  Google Scholar 

  8. Amin AR, Swenson CD, Xue B, Ishida Y, Nair BG, Patel TB et al. Regulation of IgD receptor expression on murine T cells. II. Upregulation of IgD receptors is obtained after activation of various intracellular second-messenger systems; tyrosine kinase activity is required for the effect of IgD. Cell Immunol 1993; 152422–439.

    Google Scholar 

  9. Roes J, Rajewsky K. Immunoglobulin D (IgD)-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells. J Exp Med 1993; 177: 45–55.

    PubMed  CAS  Google Scholar 

  10. Carsetti R, Kohler G, Lamers MC. A role for immunoglobulin D: Interference with tolerance induction. Eur J Immunol 1993; 23: 168–178.

    PubMed  CAS  Google Scholar 

  11. Linton PJ, Lo D, Lai L, Thorbecke GJ, Klinman NR. Among naive precursor cell subpopulations only progenitors of memory B cells originate germinal centers. Eur J Immunol 1992; 22: 1293–1297.

    PubMed  CAS  Google Scholar 

  12. Kroese FG, Seijen HG, Nieuwenhuis P. The initiation of germinal centre reactivity. [Review] [24 refs]. Research in Immunology 1991; 142: 249–252.

    PubMed  CAS  Google Scholar 

  13. Lebecque S, de Bouteiller O, Arpin C, Banchereau J, Liu YJ. Germinal center founder cells display propensity for apoptosis before onset of somatic mutation. J Exp Med 1997; 185563–571.

    Google Scholar 

  14. Matsumoto M, Lo SF, Carruthers CJ, Min J, Mariathasan S, Huang G et al. Affinity maturation without germinal centres in lymphotoxin-alpha-deficient mice. Nature 1996; 382: 462–466.

    PubMed  CAS  Google Scholar 

  15. Chu YW, Marin E, Fuleihan R, Ramesh N, Rosen FS, Geha RS et al. Somatic mutation of human immunoglobulin V genes in the X-linked HyperlgM syndrome. J Clin Invest 1995; 95: 1389–1393.

    PubMed  CAS  Google Scholar 

  16. MacLennan IC, Oldfield S, Liu YJ, Lane PJ. Regulation of B-cell populations. [Review] [73 refs]. Current Topics in Pathology 1989; 7937–57.

    Google Scholar 

  17. MacLennan I, Chan E. The dynamic relationship between B-cell populations in adults [see comments]. [Review] [43 refs]. Immunol Today 1993; 14: 29–34.

    PubMed  CAS  Google Scholar 

  18. Goodnow CC, Cyster JG, Hartley SB, Bell SE, Cooke MP, Healy JI et al. Self-tolerance checkpoints in B lymphocyte development. [Review] [475 refs]. Advances in Immunology 1995; 59: 279–368.

    PubMed  CAS  Google Scholar 

  19. Chan EY, MacLennan IC. Only a small proportion of splenic B cells in adults are short-lived virgin cells. Eur J Immunol 1993; 23: 357–363.

    PubMed  CAS  Google Scholar 

  20. Lortan JE, Roobottom CA, Oldfield S, MacLennan IC. Newly produced virgin B cells migrate to secondary lymphoid organs but their capacity to enter follicles is restricted. Eur J Immunol 1987;

    Google Scholar 

  21. -1316.

    Google Scholar 

  22. Fehling HJ, Viville S, van EW, Benoist C, Mathis D. Fine-tuning of MHC class II gene expression in defined microenvironments. [Review] [29 refs]. Trends in Genetics 1989; 5: 342–347.

    PubMed  CAS  Google Scholar 

  23. Cyster JG, Hartley SB, Goodnow CC. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire [see comments]. Nature 1994; 371: 389–395.

    PubMed  CAS  Google Scholar 

  24. Cyster JG, Healy JI, Kishihara K, Mak TW, Thomas ML, Goodnow CC. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 1996; 381: 325–328.

    PubMed  CAS  Google Scholar 

  25. Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 1996; 87: 1037–1047.

    PubMed  CAS  Google Scholar 

  26. Gunn MD, Ngo VN, Ansel KM, Ekland EH, Cyster JG, Williams LT. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature 1998; 391: 799–803.

    PubMed  CAS  Google Scholar 

  27. Legler DF, Loetscher M, Roos RS et al. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 1998; 187: 655–660.

    PubMed  CAS  Google Scholar 

  28. Maclennan IM, Gulbransonjudge A, Toellner KM, Casamayorpalleja M, Chan E, Sze DY et al. The changing preference of T and B cells for partners as T-dependent antibody responses develop [Review]. Immunol Rev 1997; 156: 53–66.

    PubMed  CAS  Google Scholar 

  29. Liu YJ, Arpin C. Germinal center development [Review]. Immunol Rev 1997; 156: 111–126.

    PubMed  CAS  Google Scholar 

  30. Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, van Kotten et al. The CD4o antigen and its ligand. [Review] [233 refs]. Annual Review of Immunology 1994; 12: 881–922.

    PubMed  CAS  Google Scholar 

  31. Clark LB, Foy TM, Noelle RJ. CD4o and its ligand. [Review] [152 refs]. Advances in Immunology 1996; 63: 43–78.

    PubMed  CAS  Google Scholar 

  32. Stuber E, Neurath M, Calderhead D, Fell HP, Strober W. Crosslinking of OX4o ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 1995; 2507–521.

    Google Scholar 

  33. Stuber E, Strober W. The T cell-B cell interaction via OX4o-OX4oL is necessary for the T cell-dependent humoral immune response. J Exp Med 1996; 183: 979–989.

    PubMed  CAS  Google Scholar 

  34. Han S, Hathcock K, Zheng B, Kepler TB, Hodes R, Kelsoe G. Cellular interaction in germinal centers. Roles of CD4o ligand and B7–2 in established germinal centers. J Immunol 1995; 155: 556–567.

    PubMed  Google Scholar 

  35. Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S et al. The immune responses in CD4o-deficient mice: Impaired immunoglobulin class switching and germinal center formation. Immunity 1994; 1: 167–178.

    PubMed  CAS  Google Scholar 

  36. Xu J, Foy TM, Laman JD, Elliott EA, Dunn JJ, Waldschmidt TJ et al. Mice deficient for the CD4o ligand [published erratum appears in Immunity 1994 Oct;1(7):following 613]. Immunity 1994; 1: 423–431.

    PubMed  CAS  Google Scholar 

  37. Castigli E, Alt FW, Davidson L, Bottaro A, Mizoguchi E, Bhan AK et al. CD4o-deficient mice generated by recombination-activating gene-2-deficient blastocyst complementation. Proc Natl Acad Sci USA 1994; 91: 12135–12139.

    PubMed  CAS  Google Scholar 

  38. Renshaw BR, Fanslow WC, Armitage RJ, Campbell KA, Liggitt D, Wright B et al. Humoral immune responses in CD4o ligand-deficient mice. J Exp Med 1994; 180: 1889–1900.

    PubMed  CAS  Google Scholar 

  39. Thomas ML. The leukocyte common antigen family. [Review] [137 refs]. Ann Rev Immunol 1989; 7: 339–369.

    CAS  Google Scholar 

  40. Rose ML, Birbeck MS, Wallis VJ, Forrester JA, Davies AJ. Peanut lectin binding properties of germinal centres of mouse lymphoid tissue. Nature 1980; 284: 364–366.

    PubMed  CAS  Google Scholar 

  41. Lund F, Solvason N, Grimaldi JC, Parkhouse RM, Howard M. Murine CD38: An immunoregulatory ectoenzyme. [Review] [46 refs]. Immunol Today 1995; 16: 469–473.

    PubMed  CAS  Google Scholar 

  42. Shubinsky G, Schlesinger M. The CD38 lymphocyte differentiation marker-new insight into its ectoenzymatic activity and its role as a signal transducer [Review]. Immunity 1997; 7: 315–324.

    PubMed  CAS  Google Scholar 

  43. Zupo S, Rugari E, Dono M, Taborelli G, Malavasi F, Ferrarini M. CD38 signaling by agonistic monoclonal antibody prevents apoptosis of human germinal center B cells. Eur J Immunol 1994; 24: 1218–1222.

    PubMed  CAS  Google Scholar 

  44. Deaglio S, Dianzani U, Horenstein AL, Fernandez JE, van KC, Bragardo M et al. Human CD38 ligand. A 120-KDA protein predominantly expressed on endothelial cells. J Immunol 1996; 156: 727–734.

    PubMed  CAS  Google Scholar 

  45. Oliver AM, Martin F, Kearney JF. Mouse CD38 is down-regulated on germinal center B cells and mature plasma cells. J Immunol 1997; 158: 1108–1115.

    PubMed  CAS  Google Scholar 

  46. Mangeney M, Richard Y, Coulaud D, Tursz T, Wiels J. CD77: An antigen of germinal center B cells entering apoptosis. Eur J Immunol 1991; 21: 1131–1140.

    PubMed  CAS  Google Scholar 

  47. Fyfe G, Cebra-Thomas JA, Mustain E, Davie JM, Alley CD, Nahm MH. Subpopulations of B lymphocytes in germinal centers. J Immunol 1987; 139: 2187–2194.

    PubMed  CAS  Google Scholar 

  48. Butch AW, Nahm MH. Functional properties of human germinal center B cells. Cell Immunol 1992; 140: 331–344.

    PubMed  CAS  Google Scholar 

  49. Waddell T, Cohen A, Lingwood CA. Induction of verotoxin sensitivity in receptor-deficient cell lines using the receptor glycolipid globotriosylceramide. Proc Natl Acad Sci USA 1990; 87: 7898–7901.

    PubMed  CAS  Google Scholar 

  50. Maloney MD, Lingwood CA. CD19 has a potential CD77 (globotriaosyl ceramide)-binding site with sequence similarity to verotoxin B-subunits: Implications of molecular mimicry for B cell adhesion and enterohemorrhagic Escherichia coli pathogenesis. J Exp Med 1994; 180:191–201.

    Google Scholar 

  51. Madassery JV, Gillard B, Marcus DM, Nahm MH. Subpopulations of B cells in germinal centers. III. HJ6, a monoclonal antibody, binds globoside and a subpopulation of germinal center B cells. J Immunol 1991; 147: 823–829.

    PubMed  Google Scholar 

  52. Wiels J, Mangeney M, Tetaud C, Tursz T. Sequential shifts in the three major glycosphingolipid series are associated with B cell differentiation. International Immunology 1991; 3: 1289–1300.

    PubMed  CAS  Google Scholar 

  53. Taga S, Tetaud C, Mangeney M, Tursz T, Wiels J. Sequential changes in glycolipid expression during human B cell differentiation: Enzymatic bases. Biochimica et Biophysica Acta 1995; 125456–65.

    Google Scholar 

  54. Kansas GS, Wood GS, Tedder TF. Expression, distribution, and biochemistry of human CD39. Role in activation-associated homotypic adhesion of lymphocytes. J Immunol 1991; 146: 2235–2244.

    PubMed  CAS  Google Scholar 

  55. Pascual V, Liu YJ, Magalski A, de Bouteiller O, Banchereau J, Capra et al. Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med 1994; 180: 329–339.

    PubMed  CAS  Google Scholar 

  56. Liu YJ, Barthelemy C, de Bouteiller O, Arpin C, Durand I, Banchereau et al. Memory B cells from human tonsils colonize mucosal epithelium and directly present antigen to T cells by rapid up-regulation of B7–1 and B7–2. Immunity 1995; 2239–248.

    Google Scholar 

  57. Nahm MH, Takes PA, Bowen MB, Macke KA. Subpopulations of B lymphocytes in germinal centers, II. A germinal center B cell sub-population expresses sIgD and CD23. Immunology Letters 1989;

    Google Scholar 

  58. -208.

    Google Scholar 

  59. Billian G, Bella C, Mondiere P, Defrance T. Identification of a tonsil IgD+ B cell subset with phenotypical and functional characteristics of germinal center B cells. Eur J Immunol 1996; 26: 1712–1719.

    PubMed  CAS  Google Scholar 

  60. Liu YJ, de Bouteiller O, Arpin C, Briere F, Galibert L, Ho S et al. Normal human IgD+IgM- germinal center B cells can express up to 8o mutations in the variable region of their IgD transcripts. Immunity 1996; 4: 603–613.

    PubMed  CAS  Google Scholar 

  61. Papavasiliou F, Casellas R, Suh HY, Qin XF, Besmer E, Pelanda R et al. V(D)J recombination in mature B cells—a mechanism for altering antibody responses. Science 1997; 278: 298–301.

    PubMed  CAS  Google Scholar 

  62. Han SH, Dillon SR, Zheng B, Shimoda M, Schlissel MS, Kelsoe G. V(D)J recombinase activity in a subset of germinal center B lymphocytes. Science 1997; 278: 301–305.

    PubMed  CAS  Google Scholar 

  63. Han S, Zheng B, Schatz DG, Spanopoulou E, Kelsoe G. Neoteny in lymphocytes: Ragi and Rage expression in germinal center B cells. Science 1996; 274: 2094–2097.

    PubMed  CAS  Google Scholar 

  64. Hikida M, Mori M, Takai T, Tomochika K, Hamatani K, Ohmori H. Reexpression of RAG-1 and RAG-2 genes in activated mature mouse B cells. Science 1996; 274: 2092–2094.

    PubMed  CAS  Google Scholar 

  65. Liu YJ, Malisan F, de Bouteiller O, Guret C, Lebecque S, Banchereau et al. Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation. Immunity 1996; 4: 241–250.

    PubMed  CAS  Google Scholar 

  66. Lederman S, Yellin MJ, Inghirami G, Lee JJ, Knowles DM, Chess L. Molecular interactions mediating T-B lymphocyte collaboration in human lymphoid follicles. Roles of T cell-B-cell-activating molecule (5c8 antigen) and CD4o in contact-dependent help. J Immunol 1992; 149: 3817–3826.

    PubMed  Google Scholar 

  67. Butch AW, Chung GH, Hoffmann JW, Nahm MH. Cytokine expression by germinal center cells. J Immunol 1993; 15039–47.

    Google Scholar 

  68. Feuillard J, Taylor D, Casamayor-Palleja M, Johnson GD, MacLennan IC. Isolation and characteristics of tonsil centroblasts with reference to Ig class switching. International Immunology 1995; 7: 121–130.

    PubMed  CAS  Google Scholar 

  69. Weiser P, Muller R, Braun U, Reth M. Endosomal targeting by the cytoplasmic tail of membrane immunoglobulin. Science 1997; 276: 407–409.

    PubMed  CAS  Google Scholar 

  70. Achatz G, Nitschke L, Lamers MC. Effect of transmembrane and cytoplasmic domains of IgE on the IgE response. Science 1997; 276: 409–411.

    PubMed  CAS  Google Scholar 

  71. Kaisho T, Schwenk F, Rajewsky K. The roles of gamma-1 heavy chain membrane expression and cytoplasmic tail in IgG1 responses. Science 1997; 276: 412–415.

    PubMed  CAS  Google Scholar 

  72. Hathcock KS, Hodes RJ. Role of the CD28–B7 costimulatory pathways in T cell-dependent B cell responses. [Review] [152 refs]. Adv Immunol 1996; 62: 131–166.

    PubMed  CAS  Google Scholar 

  73. Vyth-Dreese FA, Dellemijn TA, Majoor D, de JD. Localization in situ of the co-stimulatory molecules B7.1, B7.2, CD4o and their ligands in normal human lymphoid tissue. Eur J Immunol 1995; 253023–3029.

    Google Scholar 

  74. Tarlinton D. Germinal centers-a second childhood for lymphocytes. Current Biology 1997; 7:R 155-R 159

    Google Scholar 

  75. Hikida M, Mori M, Kawabata T, Takai T, Ohmori H. Characterization of B cells expressing recombination activating genes in germinal centers of immunized mouse lymph nodes. J Immunol 1997; 158: 2509–2512.

    PubMed  CAS  Google Scholar 

  76. Radic MZ, Zouali M. Receptor editing, immune diversification, and self-tolerance. [Review] [5o refs]. Immunity 1996; 5: 505–511.

    PubMed  CAS  Google Scholar 

  77. Hu BT, Lee SC, Marin E, Ryan DH, Insel RA. Telomerase is up-regulated in human germinal center B cells in vivo and can be re-expressed in memory B cells activated in vitro. J Immunol 1997; 159: 1068–1071.

    PubMed  CAS  Google Scholar 

  78. Weng NP, Granger L, Hodes RJ. Telomere lengthening and telomerase activation during human B cell differentiation. Proc Natl Acad Sci USA 1997; 94: 10827–10832.

    PubMed  CAS  Google Scholar 

  79. deSaint-Vis B, Cupillard L, Pandrau-Garcia D, Ho S, Renard N, Grouard G et al. Distribution of carboxypeptidase M on lymphoid and myeloid cells parallels the other zinc-dependent proteases CDio and CD13. Blood 1995; 86: 1098–1105.

    CAS  Google Scholar 

  80. Gregory CD, Tursz T, Edwards CF, Tetaud C, Talbot M, Caillou B et al. Identification of a subset of normal B cells with a Burkitt’s lymphoma (BL)-like phenotype. J Immunol 1987; 139: 313–318.

    PubMed  CAS  Google Scholar 

  81. Kalled SL, Siva N, Stein H, Reinherz EL. The distribution of CDio (NEP 24.11, CALLA) in humans and mice is similar in non-lymphoid organs but differs within the hematopoietic system: Absence on murine T and B lymphoid progenitors. Eur J Immunol 1995; 25: 677–687.

    PubMed  CAS  Google Scholar 

  82. Woronicz JD, Calnan B, Ngo V, Winoto A. Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 1994; 367: 277–281.

    PubMed  CAS  Google Scholar 

  83. Woronicz JD, Lina A, Calnan BJ, Szychowski S, Cheng L, Winoto A. Regulation of the Nur77 orphan steroid receptor in activation-induced apoptosis. Mol Cell Biol 1995; 15: 6364–6376.

    PubMed  CAS  Google Scholar 

  84. Koopman G, Keehnen RM, Lindhout E, Newman W, Shimizu Y, van Seventer et al. Adhesion through the LFA-1 (CDna/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CDio6) pathways prevents apoptosis of germinal center B cells. J Immunol 1994; 1523760–3767.

    Google Scholar 

  85. Liu YJ, Grouard G, de Bouteiller O, Banchereau J. Follicular dendritic cells and germinal centers. [Review] [205 refs]. International Review of Cytology 1996; 166: 139–179.

    PubMed  CAS  Google Scholar 

  86. Liu YJ, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan IC. Mechanism of antigen-driven selection in germinal centres. Nature 1989; 342: 929–931.

    PubMed  CAS  Google Scholar 

  87. Kremmidiotis G, Zola H. Changes in CD44 expression during B cell differentiation in the human tonsil. Cell Immunol 1995; 161: 147–157.

    PubMed  CAS  Google Scholar 

  88. Hathcock KS, Hirano H, Murakami S, Hodes RJ. CD44 expression on activated B cells. Differential capacity for CD44-dependent binding to hyaluronic acid. J Immunol 1993; 151: 6712–6722.

    PubMed  CAS  Google Scholar 

  89. Koopman G, Griffioen AW, Ponta H, Herrlich P, van dB, MantenHorst E et al. CD44 splice variants; expression on lymphocytes and in neoplasia. [Review] [24 refs]. Res Immunol 1993; 144750–754.

    Google Scholar 

  90. Liu YJ, Cairns JA, Holder MJ, Abbot SD, Jansen KU, Bonnefoy JY et al. Recombinant 25-kDa CD23 and interleukin 1 alpha promote the survival of germinal center B cells: Evidence for bifurcation in the development of centrocytes rescued from apoptosis. Eur J Immunol 1991; 21: 1107–1114.

    PubMed  CAS  Google Scholar 

  91. Bonnefoy JY, Henchoz S, Hardie D, Holder MJ, Gordon J. A subset of anti-CD21 antibodies promote the rescue of germinal center B cells from apoptosis. Eur J Immunol 1993; 23: 969–972.

    PubMed  CAS  Google Scholar 

  92. van der Voort R, Taher TE, Keehnen RM, Smit L, Groenink M, Pals ST. Paracrine regulation of germinal center B cell adhesion through the c-Met-hepatocyte growth factor/scatter factor pathway. J Exp Med 1997; 185: 2121–2131.

    PubMed  Google Scholar 

  93. Krenacs T, van Dartel M, Lindhout E, Rosendaal M. Direct cell/cell communication in the lymphoid germinal center: Connexin43 gap junctions functionally couple follicular dendritic cells to each other and to B lymphocytes. Eur J Immunol 1997; 27: 1489–1497.

    PubMed  Google Scholar 

  94. Airas L, Jalkanen S. CD73 mediates adhesion of B cells to follicular dendritic cells. Blood 1996; 88: 1755–1764.

    PubMed  CAS  Google Scholar 

  95. Reichert RA, Gallatin WM, Weissman IL, Butcher EC. Germinal center B cells lack homing receptors necessary for normal lymphocyte recirculation. J Exp Med 1983; 157: 813–827.

    PubMed  CAS  Google Scholar 

  96. Martinez-Valdez H, Guret C, de Bouteiller O, Fugier I, Banchereau J, Liu YJ. Human germinal center B cells express the apoptosis-inducing genes Fas, c-Myc, P53, and Bax but not the survival gene bcl2. J Exp Med 1996; 183: 971–977.

    PubMed  Google Scholar 

  97. Cutrona G, Dono M, Pastorino S, Ulivi M, Burgio VL, Zupo S et al. The propensity to apoptosis of centrocytes and centroblasts correlates with elevated levels of intracellular myc protein. Eur J Immunol 1997; 27: 234–238.

    PubMed  CAS  Google Scholar 

  98. Cutrona G, Ulivi M, Fais F, Roncella S, Ferrarini M. Transfection of the c-Myc oncogene into normal Epstein-Barr virus-harboring B cells results in new phenotypic and functional features resembling those of Burkitt lymphoma cells and normal centroblasts. J Exp Med 1995; 181: 699–711.

    PubMed  CAS  Google Scholar 

  99. Gray D, Siepmann K, van Essen D, Poudrier J, Wykes M, Jainandunsing et al. B-T lymphocyte interactions in the generation and survival of memory cells. [Review] [65 refs]. Immunol Rev 1996; 150: 45–61.

    PubMed  CAS  Google Scholar 

  100. Foy TM, Aruffo A, Bajorath J, Buhlmann JE, Noelle RJ. Immune regulation by CD40 and its ligand GP39. [Review] [ni refs]. Ann Rev Immunol 1996; 14: 591–617.

    CAS  Google Scholar 

  101. Foy TM, Laman JD, Ledbetter JA, Aruffo A, Claassen E, Noelle RJ. gp39-CD4o interactions are essential for germinal center formation and the development of B cell memory. J Exp Med 1994; 180: 157–163.

    PubMed  CAS  Google Scholar 

  102. Lindhout E, Lakeman A, de GC. Follicular dendritic cells inhibit apoptosis in human B lymphocytes by a rapid and irreversible blockade of preexisting endonuclease. J Exp Med 1995; 181: 1985–1995.

    PubMed  CAS  Google Scholar 

  103. Koopman G, Keehnen RM, Lindhout E, Zhou DF, de Groot C, Pals ST. Germinal center B cells rescued from apoptosis by CD4o ligation or attachment to follicular dendritic cells, but not by engagement of surface immunoglobulin or adhesion receptors, become resistant to CD95-induced apoptosis. Eur J Immunol 1997; 27: 1–7.

    PubMed  CAS  Google Scholar 

  104. Cleary AM, Fortune SM, Yellin MJ, Chess L, Lederman S. Opposing roles of CD95 (Fas/APO-1) and CD4o in the death and rescue of human low density tonsillar B cells. J Immunol 1995; 155: 3329–3337.

    PubMed  CAS  Google Scholar 

  105. Watanabe D, Suda T, Nagata S. Expression of Fas in B cells of the mouse germinal center and Fas-dependent killing of activated B cells. International Immunology 1995; 7: 1949–1956.

    PubMed  CAS  Google Scholar 

  106. Lagresle C, Mondiere P, Bella C, Krammer PH, Defrance T. Concurrent engagement of CD4o and the antigen receptor protects naive and memory human B cells from APO-1/Fas-mediated apoptosis. J Exp Med 1996; 183: 1377–1388.

    PubMed  CAS  Google Scholar 

  107. Gordon J, Gregory CD, Grafton G, Pound JD. Signals for survival and apoptosis in normal and neoplastic B lymphocytes. [Review] [10 refs]. Adv Exp Med and Biol 1996; 406: 139–144.

    CAS  Google Scholar 

  108. Schattner EJ, Elkon KB, Yoo DH, Tumang J, Krammer PH, Crow MK et al. CD4o ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-I/Fas pathway. J Exp Med 1995; 182: 1557–1565.

    PubMed  CAS  Google Scholar 

  109. Garrone P, Neidhardt EM, Garcia E, Galibert L, Van Kooten C, Banchereau J. Fas ligation induces apoptosis of CD4o-activated human B lymphocytes. J Exp Med 1995; 182: 1265–1273.

    PubMed  CAS  Google Scholar 

  110. Billian G, Mondiere P, Berard M, Bella C, Defrance T. Antigen receptor-induced apoptosis of human germinal center B cells is targeted to a centrocytic subset. Eur J Immunol 1997; 27: 405–414.

    PubMed  CAS  Google Scholar 

  111. Galibert L, Burdin N, Barthelemy C, Meffre G, Durand I, Garcia E et al. Negative selection of human germinal center B cells by prolonged BCR crosslinking. J Exp Med 1996; 183: 2075–2085.

    PubMed  CAS  Google Scholar 

  112. Hahne M, Renno T, Schroeter M, Irmler M, French L, Bornard T et al. Activated B cells express functional Fas ligand. Eur J Immunol 1996; 26: 721–724.

    PubMed  CAS  Google Scholar 

  113. Dunn-Walters DK, Isaacson PG, Spencer J. Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J Exp Med 1995; 182: 559–566.

    PubMed  CAS  Google Scholar 

  114. Dono M, Burgio VL, Tacchetti C, Favre A, Augliera A, Zupo S et al. Subepithelial B cells in the human palatine tonsil. I. Morphologic, cytochemical and phenotypic characterization. Eur j Immunol 1996; 26: 2035–2042.

    PubMed  CAS  Google Scholar 

  115. Dono M, Zupo S, Augliera A, Burgio VL, Massara R, Melagrana A et al. Subepithelial B cells in the human palatine tonsil. II. Functional characterization. Eur J Immunol 1996; 26: 2043–2049.

    PubMed  CAS  Google Scholar 

  116. Gray D. Immunological memory. [Review] [201 refs]. Annual Review of Immunology 1993; 1149–77.

    Google Scholar 

  117. Ahmed R, Gray D. Immunological memory and protective immunity: Understanding their relation. [Review] [75 refs]. Science 1996; 272: 54–60.

    PubMed  CAS  Google Scholar 

  118. Bachmann MF, Odermatt B, Hengartner H, Zinkernagel RM. Induction of long-lived germinal centers associated with persisting antigen after viral infection. J Exp Med 1996; 183: 2259–2269.

    PubMed  CAS  Google Scholar 

  119. Arpin C, Dechanet J, Van Kooten C, Merville P, Grouard G, Briere F et al. Generation of memory B cells and plasma cells in vitro. Science 1995; 268: 720–722.

    PubMed  CAS  Google Scholar 

  120. Arpin C, Banchereau J, Liu YJ. Memory B cells are biased towards terminal differentiation-a strategy that may prevent repertoire freezing. J Exp Med 1997; 186: 931–940.

    PubMed  CAS  Google Scholar 

  121. Neurath MF, Stuber ER, Strober W. BSAP: A key regulator of B-cell development and differentiation. [Review] [22 refs]. Immunol Today 1995; 16: 564–569.

    PubMed  CAS  Google Scholar 

  122. Wakatsuki Y, Neurath MF, Max EE, Strober W. The B cell-specific transcription factor BSAP regulates B cell proliferation. J Exp Med 1994; 1791099–1108.

    Google Scholar 

  123. Max EE, Wakatsuki Y, Neurath MF, Strober W. The role of BSAP in immunoglobulin isotype switching and B-cell proliferation. Current Topics in Microbiology and Immunology 1995; 194: 449–458.

    PubMed  CAS  Google Scholar 

  124. Usui T, Wakatsuki Y, Matsunaga Y, Kaneko S, Kosek H, Kita T. Overexpression of B cell-specific activator protein (BSAP/PAX-5) in a late B cell is sufficient to suppress differentiation to an Ig high producer cell with plasma cell phenotype. J Immunol 1997; 158: 3197–3204.

    PubMed  CAS  Google Scholar 

  125. Rinkenberger JL, Wallin JJ, Johnson KW, Koshland ME. An interleukin-2 signal relieves BSAP (Pax-5)-mediated repression of the immunoglobulin J chain gene. Immunity 1996; 5: 377–386.

    CAS  Google Scholar 

  126. Michaelson JS, Singh M, Birshtein BK. B cell lineage-specific activator protein (BSAP). A player at multiple stages of B cell development. [Review] [5o refs]. J Immunol 1996; 156: 2349–2351.

    PubMed  CAS  Google Scholar 

  127. Zwollo P, Arrieta H, Ede K, Molinder K, Desiderio S, Pollock R. The Pax-5 gene is alternatively spliced during B-cell development. J Biol Chem 1997; 272: 10160–10168.

    PubMed  CAS  Google Scholar 

  128. Turner CAJ, Mack DH, Davis MM. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 1994; 77: 297–306.

    PubMed  CAS  Google Scholar 

  129. Huang S. Blimp-1 is the murine homolog of the human transcriptional repressor PRDI-BFi [letter]. Cell 1994; 78: 9

    PubMed  CAS  Google Scholar 

  130. Schliephake DE, Schimpl A. Blimp-1 overcomes the block in IgM secretion in lipopolysaccharide/anti-mu F(ab’)2-co-stimulated B lymphocytes. Eur J Immunol 1996; 26: 268–271.

    PubMed  CAS  Google Scholar 

  131. Lin Y, Wong K, Calame K. Repression of c-Myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 1997; 276: 596–599.

    PubMed  CAS  Google Scholar 

  132. Onizuka T, Moriyama M, Yamochi T, Kuroda T, Kazama A, Kanazawa N et al. Bd-6 gene product, a 92- to 98-kD nuclear phosphoprotein, is highly expressed in germinal center B cells and their neoplastic counterparts. Blood 1995; 86: 28–37.

    PubMed  CAS  Google Scholar 

  133. Cattoretti G, Chang CC, Cechova K, Zhang J, Ye BH, Falini B et al. Bd-6 protein is expressed in germinal-center B cells. Blood 1995; 86: 45–53.

    PubMed  CAS  Google Scholar 

  134. Allman D, Jain A, Dent A, Maile RR, Selvaggi T, Kehry MR et al. Bd-6 expression during B-cell activation. Blood 1996; 87: 5257–5268.

    PubMed  CAS  Google Scholar 

  135. Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM. Control of inflammation, cytokine expression, and germinal center formation by Bd-6. Science 1997; 276: 589–592.

    PubMed  CAS  Google Scholar 

  136. Fukuda T, Yoshida T, Okada S, Hatano M, Miki T, Ishibashi K et al. Disruption of the BCL6 gene results in an impaired germinal center formation. J Exp Med 1997; 186: 439–448.

    PubMed  CAS  Google Scholar 

  137. Katz P, Whalen G, Kehrl JH. Differential expression of a novel protein kinase in human B lymphocytes. Preferential localization in the germinal center. J Biol Chem 1994; 269: 16802–16809.

    PubMed  CAS  Google Scholar 

  138. Christoph T, Rickert R, Rajewsky K. M17: A novel gene expressed in germinal centers. International Immunology 1994; 6: 1203–1211.

    PubMed  CAS  Google Scholar 

  139. Weinberg DS, Ault KA, Gurley M, Pinkus GS. The human lymph node germinal center cell: Characterization and isolation by using two-color flow cytometry. J Immunol 1986; 137: 1486–1494.

    PubMed  CAS  Google Scholar 

  140. Mathis DJ, Benoist CO, Williams VE, Kanter MR, McDevitt HO. The murine E alpha immune response gene. Cell 1983; 32: 745–754.

    CAS  Google Scholar 

  141. van EW, Ron Y, Monaco J, Kappler J, Marrack P, Le MM et al. Compartmentalization of MHC class II gene expression in transgenic mice. Cell 1988; 53: 357–370.

    Google Scholar 

  142. Kuo FC, Sklar J. Augmented expression of a human gene for 8oxoguanine DNA glycosylase (MutM) in B lymphocytes of the dark zone in lymph node germinal centers. J Exp Med 1997; 186: 1547–1556.

    PubMed  CAS  Google Scholar 

  143. Delibrias CC, Floettmann JE, Rowe M, Fearon DT. Downregulated expression of SHP-1 in Burkitt lymphomas and germinal center B lymphocytes. J Exp Med 1997; 186: 1575–1583.

    PubMed  CAS  Google Scholar 

  144. To SS, Magoulas T, Nicholson E, Schrieber L. Identification of a human endothelial cell activation antigen that is co-expressed by germinal follicle centre B lymphocytes. Immunol 1992; 76: 616–624.

    CAS  Google Scholar 

  145. Epstein AL, Marder RJ, Winter JN, Fox RI. Two new monoclonal antibodies (LN-1, LN-2) reactive in B5 formalin-fixed, paraffin-embedded tissues with follicular center and mantle zone human B lymphocytes and derived tumors. J Immunol 1984; 133: 1028–1036.

    PubMed  CAS  Google Scholar 

  146. Powell LD, Sgroi D, Sjoberg ER, Stamenkovic I, Varki A. Natural ligands of the B cell adhesion molecule CD22 beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J Biol Chem 1993; 268: 7019–7027.

    PubMed  CAS  Google Scholar 

  147. Jacobson EB, Caporale LH, Thorbecke GJ. Effect of thymus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. Cell Immunol 1974; 13:4i6–430.

    Google Scholar 

  148. Weissman IL, Gutman GA, Friedberg SH, Jerabek L. Lymphoid tissue architecture. III. Germinal centers, T cells, and thymus-dependent vs thymus-independent antigens. Adv Exp Med and Biol 1976; 66: 229–237.

    Google Scholar 

  149. Vonderheide RH, Hunt SV. Does the availability of either B cells or CD4+ cells limit germinal centre formation? Immunol 1990; 69: 487–489.

    CAS  Google Scholar 

  150. Wang D, Wells SM, Stall AM, Kabat EA. Reaction of germinal centers in the T-cell-independent response to the bacterial polysaccharide alpha(1–6)dextran. Proc Natl Acad Sci USA 1994; 91: 2502–2506.

    PubMed  CAS  Google Scholar 

  151. Davies AJ, Carter RL, Leuchars E, Wallis V, Dietrich FM. The morphology of immune reactions in normal, thymectomized and reconstituted mice III. Response to bacterial antigens: Salmonellar flagellar antigen and pneumococcal polysaccharide. Immunol 1970; 19: 945–957.

    CAS  Google Scholar 

  152. Gutman GA, Weissman IL. Lymphoid tissue architecture experimental analysis of the origin and distributation of T-cells and B-cells. Immunol 1972; 23: 465–479.

    CAS  Google Scholar 

  153. Si L, Roscoe G, Whiteside TL. Selective distribution and quantitation of T-lymphocyte subsets in germinal centers of human tonsils. Arch Pathol Lab Med 1983; 107: 228–231.

    PubMed  CAS  Google Scholar 

  154. Brachtel EF, Washiyama M, Johnson GD, Tenner-Racz K, Racz P, MacLennan IC. Differences in the germinal centres of palatine tonsils and lymph nodes. Scandinavian Journal of Immunology 1996; 43: 239–247.

    PubMed  CAS  Google Scholar 

  155. Bowen MB, Butch AW, Parvin CA, Levine A, Nahm MH. Germinal center T cells are distinct helper-inducer T cells. Hum Immunol 1991; 31: 67–75.

    PubMed  CAS  Google Scholar 

  156. Rouse RV, Ledbetter JA, Weissman IL. Mouse lymph node germinal centers contain a selected subset of T cells-the helper phenotype. J Immunol 1982; 128: 2243–2246.

    PubMed  CAS  Google Scholar 

  157. Poppema S, Bhan AK, Reinherz EL, McCluskey RT, Schlossman SF. Distribution of T cell subsets in human lymph nodes. J Exp Med 1981; 153: 30–41.

    PubMed  CAS  Google Scholar 

  158. Cosgrove D, Gray D, Dierich A, Kaufman J, Lemeur M, Benoist C et al. Mice Lacking MHC Class II Molecules. Cell 1991; 66: 1051–1066.

    PubMed  CAS  Google Scholar 

  159. Pulido R, Cebrian M, Acevedo A, de Landazuri MO, Sanchez-Madrid F. Comparative biochemical and tissue distribution study of four distinct CD45 antigen specificities. J Immunol 1988; 140: 3851–3857.

    PubMed  CAS  Google Scholar 

  160. Dianda L, Gulbranson-Judge A, Pao W, MacLennan IC, Owen MJ. Germinal center formation in mice lacking a(3 T cells. Eur J Immunol 1996; 26: 1603–1607.

    PubMed  CAS  Google Scholar 

  161. Lederman S, Yellin MJ, Inghirami G, Lee JJ, Knowles DM, Chess L. Molecular interactions mediating T-B lymphocyte collaboration in human lymphoid follicles. Roles of T cell-B-activating molecule (5c8 Antigen) and CD4o in contact-dependent help. J Immunol 1992; 149: 3817–3826.

    PubMed  Google Scholar 

  162. van den Eertwegh AJ, Noelle RJ, Roy M, Shepherd DM, Aruffo A, Ledbetter JA. In vivo CD4o-gp39 interactions are essential for thymus-dependent humoral immunity. I. In vivo expression of CD4o ligand, cytokines, and antibody production delineates sites of cognate T-B cell interactions. J Exp Med 1993; 1781555–1565.

    Google Scholar 

  163. Ferguson SE, Han S, Kelsoe G, Thompson CB. CD28 is required for germinal center formation. J Immunol 1996p 156: 4576–4581.

    PubMed  CAS  Google Scholar 

  164. Lane P, Burdet C, Hubele S, Scheidegger D, Muller U, McConnell F et al. B cell function of mice transgenic for mCTLA-H gamma 1: Lack of germinal centers correlated with poor affinity maturation and class switching despite normal priming of CD4+ T cells. J Exp Med 1994; 179819–830.

    Google Scholar 

  165. Wen L, Pao W, Wong FS, Peng Q, Craft J, Zheng B et al. Germinal center formation, immunoglobulin class switching, and autoantibody production driven by “non alpha/beta” T cells. J Exp Med 1996; 183: 2271–2282.

    PubMed  CAS  Google Scholar 

  166. Bruno L, Rocha B, Rolink A, von Boehmer H, Ridewabdk HR. Intra-and extra-thymic expression of the pre-T cell receptor alpha gene. Eur J Immunol 1995; 25: 1877–1882.

    PubMed  CAS  Google Scholar 

  167. Philpott KL, Viney JL, Kay G, Rastan S, Gardiner EM, Chae S et al. Lymphoid development in mice congenitally lacking T cell receptor a(3-expressing cells. Science 1992; 256: 1448–1452.

    PubMed  CAS  Google Scholar 

  168. Fuller KA, Kanagawa O, Nahm MH. T cells within germinal centers are specific for the immunizing antigen. J Immunol 1993; 151: 4505–4512.

    PubMed  CAS  Google Scholar 

  169. Zheng B, Han S, Kelsoe G. T helper cells in murine germinal centers are antigen-specific emigrants that downregulate Thy-i. J Exp Med 1996; 184: 1083–1091.

    PubMed  CAS  Google Scholar 

  170. Zheng B, Han S, Zhu Q, Goldsby R, Kelsoe G. Alternative pathways for the selection of antigen-specific peripheral T cells. Nature 1996; 384: 263–266.

    PubMed  CAS  Google Scholar 

  171. Gulbranson-Judge A, MacLennan I. Sequential antigen-specific growth of T cells in the T zones and follicles in response to pigeon cytochrome C. Eur J Immunol 1996; 26: 1830–1837.

    PubMed  CAS  Google Scholar 

  172. Berman MA, Rafiei S, Gutman GA. Association of T cells with proliferating cells in lymphoid follicles. Transplantation 1981; 32: 426–430.

    PubMed  CAS  Google Scholar 

  173. Kelly KA, Bucy RP, Nahm MH. Germinal center T cells exhibit properties of memory helper T cells. Cell Immunol 1995; 163: 206–214.

    PubMed  CAS  Google Scholar 

  174. Pape KA, Kearney ER, Khoruts A, Mondino A, Merica R, Chen ZM et al. Use of adoptive transfer of T-cell-antigen-receptor-transgenic T cells for the study of T cell activation in vivo. Immunol Rev 1997; 156: 67–78.

    PubMed  CAS  Google Scholar 

  175. Kearney ER, Pape KA, Loh DY, Jenkins MK. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1994; 1327–339.

    Google Scholar 

  176. Zheng B, Xue W, Kelsoe G. Locus-specific somatic hypermutation in germinal centre T cells. Nature 1994; 372: 556–559.

    PubMed  CAS  Google Scholar 

  177. Poppema S, Visser L, De Leij L. Reactivity of presumed anti-natural killer cell antibody Leu 7 with intrafollicular T lymphocytes. Clin Exp Immunol 1983; 54: 834–837.

    PubMed  CAS  Google Scholar 

  178. Chou DK, Ilyas AA, Evans JE, Costello C, Quarles RH, Jungalwala FB. Structure of sulfated glucuronyl glycolipids in the nervous system reacting with HNK-1 antibody and some IgM paraproteins in neuropathy. J Biol Chem 1986; 261: 11717–11725.

    PubMed  CAS  Google Scholar 

  179. Needham LK, Schnaar RL. The HNK-i reactive sulfoglucuronyl glycolipids are ligands for L-selectin and P-selectin but not E-selectin. Proc Natl Acad Sci USA 1993; 901359–1363.

    Google Scholar 

  180. McHeyzer-Williams MG, Davis MM. Antigen-specific development of primary and memory T cells in vivo. Science 1995; 268: 106–111.

    PubMed  CAS  Google Scholar 

  181. Nieuwenhuis P, Opstelten D. Functional anatomy of germinal centers. Am J Anat 1984; 170: 421–435.

    PubMed  CAS  Google Scholar 

  182. Grouard G, Durand I, Filgueira L, Banchereau J, Liu YJ. Dendritic cells capable of stimulating T cells in germinal centres. Nature 1996; 384: 364–367.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Insel, R.A., Nahm, M.H. (1998). T and B Lymphocytes in Germinal Centers. In: The Biology of Germinal Centers in Lymphoid Tissue. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13141-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13141-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13143-5

  • Online ISBN: 978-3-662-13141-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics