Advertisement

Kapnometrie und Kapnographie

  • T. Pasch

Zusammenfassung

Kapnometrie ist die Messung des Kohlendioxids (CO2) im Atemgas während des gesamten Atemzyklus, Kapnographie die fortlaufende Darstellung der kapnometrisch erfaßten CO2-Kurve auf einem Monitor oder einem permanenten Registriersystem. Die entsprechenden Geräte werden als Kapnometer oder als Kapnograph bezeichnet, eine dargestellte Kurve als Kapnogramm. Oft wird in eingeschränkter und nicht ganz korrekter Weise unter Kapnometrie die fortlaufende Messung und Anzeige des endexspiratorischen CO2Wertes verstanden, ggf. kombiniert mit dem inspiratorischen Wert [2, 32]. In Abhängigkeit vom verwendeten Meßprinzip wird entweder der CO2-Partialdruck (pCO2) oder die fraktionelle CO2-Konzentration (FCO2) bestimmt. Beide können über die Beziehung pCO2 = FCO2 (pB — pH2O) ineinander umgerechnet werden (pB = Barometerdruck; pH2O = Wasserdampfdruck). Viele neue Geräte erlauben wahlweise die Darstellung als pCO2 oder FCO2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Arai T, Hatano Y, Mori K (1987) Transcutaneous monitoring during high-frequency jet ventilation. Crit Care Med 15: 882–883PubMedCrossRefGoogle Scholar
  2. 2.
    Bhavani-Shankar K, Mosely H, Kumar AY, Delph Y (1992) Capnometry and anaesthesia. Can J Anaesth 39: 617–632PubMedCrossRefGoogle Scholar
  3. 3.
    Bhavani-Shankar K, Kumar AY, Moseley HSL, Ahyee-Hallsworth R (1995) Technology and the current limitations of time capnography: a brief review. J Clin Monit 11: 175182Google Scholar
  4. 4.
    Blanch L, Fernandez R, Artigas A (1992) The expiratory capnogram in mechanically ventilated patients. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin Heidelberg New York Tokyo, pp 411–415Google Scholar
  5. 5.
    Brambrink AM (1997) Die CO2-Messung im Atemgas. Ein wichtiger Globalmonitor in der Notfallmedizin: theoretischer Hintergrund, Indikationen and Übersicht über verfügbare, transportable Meßsysteme. Anaesthesist 46: 604–612PubMedCrossRefGoogle Scholar
  6. 6.
    Brampton WJ, Watson RJ (1990) Arterial to end-tidal carbon dioxide tension difference during laparoscopy. Anaesthesia 45: 210–214PubMedCrossRefGoogle Scholar
  7. 7.
    Brunner JX, Westenskow DR (1988) How the rise time of carbon dioxide analysers influences the accuracy of carbon dioxide measurements. Br J Anaesth 61: 628–638PubMedCrossRefGoogle Scholar
  8. 8.
    Cantineau JP, Lambert Y, Merckx P et al. (1996) End-tidal carbon dioxide during cardiopulmonary resuscitation in humans presenting mostly with asystole: a predictor of outcome. Crit Care Med 24: 791–796PubMedCrossRefGoogle Scholar
  9. 9.
    Carlon GC, Ray C, Midownik S et al. (1988) Capnography in mechanically ventilated patients. Crit Care Med 16: 550–556PubMedCrossRefGoogle Scholar
  10. 10.
    Carroll GC (1992) Capnographic trend curve monitoring can detect 1-ml pulmonary emboli in humans. J Clin Monit 8: 101–106PubMedCrossRefGoogle Scholar
  11. 11.
    Chhibber A, Fickling K, Kolano JW, Roberts WA (1997) Comparison of end-tidal and arterial carbon dioxide in infants using laryngeal mask airway and endotracheal tube. Anesth Analg 84: 51–53PubMedGoogle Scholar
  12. 12.
    Chopin C, Fesard P, Mangalaboyi J et al. (1993) Use of capnography in diagnosis of pulmonary embolism during acute respiratory failure of chronic obstructive pulmonary disease. Crit Care Med 18: 353–357CrossRefGoogle Scholar
  13. 13.
    Dunn SM, Mushlin PS, Lind LJ, Raemer D (1990) Tracheal intubation is not invariably confirmed by capnography. Anesthesiology 73: 1285–1287PubMedCrossRefGoogle Scholar
  14. 14.
    Flanagan JFK, Garrett JS, McDuffee A, Tobias JD (1995) Noninvasive monitoring of end-tidal carbon dioxide tension via nasal cannulas in spontaneously breathing children with profound hypocarbia. Grit Care Med 23: 1140–1142CrossRefGoogle Scholar
  15. 15.
    Fletcher R, Jonson B (1984) Dead space and the single breath test for carbon dioxide during anaesthesia and artificial ventilation. Br J Anaesth 56: 109–119PubMedCrossRefGoogle Scholar
  16. 16.
    Fretschner R, Warth H, Deusch H, Klöss T (1992) Kapnometrie in der Kinderanästhesie. Einfluß von Meßort and Atemfrequenz. Anaesthesist 41: 463–467Google Scholar
  17. 17.
    Gottschalk A, Mirza N, Weinstein GS, Edwards MW (1997) Capnography during jet ventilation for laryngoscopy. Anesth Analg 85: 155–159PubMedGoogle Scholar
  18. 18.
    Good ML (1990) Capnography: uses, interpretation, and pitfalls. In: Barash PG (ed) ASA refresher courses in anesthesiology, vol 18. Lippincott, Philadelphia, pp 175–193Google Scholar
  19. 19.
    Gravenstein JS, Paulus DA, Hayes TJ (1995) Gas monitoring in clinical practice, 2nd edn. Butterworth-Heinemann, Boston Oxford Melbourne SingaporeGoogle Scholar
  20. 20.
    Hess D (1993) Capnography: technical aspects and clinical applications. In: Kacmarek RM, Hess D, Stoller JK (eds) Monitoring in respiratory care. Mosby, St. Louis Baltimore Boston, pp 375–405Google Scholar
  21. 21.
    Hoffman RA, Krieger BP, Kramer MR et al. (1989) End-tidal carbon dioxide in critically ill patients during changes in mechanical ventilation. Am Rev Resp Dis 140: 12651268Google Scholar
  22. 22.
    Ivens D, Verborgh C, Phan Thi H, Camu F (1995) The quality of breathing and capnography during laryngeal mask and facemask ventilation. Anaesthesia 50: 858–862PubMedCrossRefGoogle Scholar
  23. 23.
    Kerr ME, Zempsky J, Sereika S et al. (1996) Relationship between arterial carbon dioxide and end-tidal carbon dioxide in mechanically ventilated adults with severe head trauma. Grit Care Med 24: 785–790CrossRefGoogle Scholar
  24. 24.
    Lauber R, Seeberger B, Zbinden AM (1995) Carbon dioxide analysers: accuracy, alarm limits and effects of interfering gases. Can J Anaesth 42: 643–656PubMedCrossRefGoogle Scholar
  25. 25.
    Lumsden T, Marshall WR, Divers GA, Riccitelli SD (1994) The PB 3300 intraarterial blood gas systems. J Clin Monit 10: 59–66PubMedCrossRefGoogle Scholar
  26. 26.
    MacLeod BA, Heller MB, Gerard J et al. (1991) Verification of endotracheal tube placement with colorimetric end-tidal CO2 detection. Ann Emerg Med 20: 267–270PubMedCrossRefGoogle Scholar
  27. 27.
    McEvedy BAB, McLeod ME, Kirpalani H, Lerman J (1990) End-tidal carbon dioxide measurements in critically ill neonates: a comparison of sidestream and mainstream capnometers. Can J Anaesth 37: 322–326PubMedCrossRefGoogle Scholar
  28. 28.
    McNulty SE, Roy J, Torjman M, Seltzer JL (1990) Relationship between arterial carbon dioxide and end-tidal carbon dioxide when a nasal sampling port is used. J Clin Monit 6: 93–98PubMedCrossRefGoogle Scholar
  29. 29.
    McPeak HB, Palayiwa E, Robinson GC, Sykes MK (1992) An evaluation of the Brüel and Kjaer monitor 1304. Anaesthesia 47: 41–47PubMedCrossRefGoogle Scholar
  30. 30.
    Mogue LR, Rantala B (1988) Capnometers. J Clin Monit 4: 115–121CrossRefGoogle Scholar
  31. 31.
    Murray IP, Modell JH, Gallagher JT, Banner MJ (1984) Titration of PEEP by the arterial minus end-tidal carbon dioxide gradient. Chest 85: 100–104PubMedCrossRefGoogle Scholar
  32. 32.
    O’Flaherty D (1994) Capnography. BMJ Publishing Group, LondonGoogle Scholar
  33. 33.
    Ornato JP (1993) Hemodynamic monitoring during CPR. Ann Emerg Med 22: 289–295PubMedCrossRefGoogle Scholar
  34. 34.
    Phan CQ, Tremper KK, Lee SE, Barker SJ (1987) Noninvasive monitoring of carbon dioxide: a comparison of partial pressure of transcutaneous and end-tidal carbon dioxide with the partial pressure of arterial carbon dioxide. J Clin Monit 3: 149–154PubMedCrossRefGoogle Scholar
  35. 35.
    Raemer DB, Galalang I (1991) Accuracy of end-tidal carbon dioxide tension analyzers. J Clin Monit 7: 195–208PubMedCrossRefGoogle Scholar
  36. 36.
    Raemer DB, Francies D, Philipp JH, Gabel RA (1983) Variation in PCO2 between arterial blood and peak expired gas during anesthesia. Anesth Analg 62: 1065–1069PubMedCrossRefGoogle Scholar
  37. 37.
    Reid CW, Martineau RJ, Miller DR et al. (1992) A comparison of trancutaneous, end-tidal and arterial measurements of carbon dioxide during general anaesthesia. Can J Anaesth 39: 31–36PubMedCrossRefGoogle Scholar
  38. 38.
    Roth JV, Barth LJ, Womack LH, Morgenlander LE (1994) Evaluation of two commercially available carbon dioxide sampling nasal cannula. J Clin Monit 10: 237–243PubMedCrossRefGoogle Scholar
  39. 39.
    Sayah AJ, Peacock WF, Overton DT (1990) End-tidal CO2 measurement in the detection of esophageal intubation during cardiac arrest. Ann Amerg Med 19:857–860 -Google Scholar
  40. 40.
    Shapiro BA, Mahutte CK, Cane RD, Gilmour IJ (1993) Clinical performance of a blood gas monitor: a prospective multicenter trial. Grit Care Med 21: 487–494CrossRefGoogle Scholar
  41. 41.
    Sum Ping ST, Mehta MP, Symreng T (1991) Reliability of capnography in identifying esophageal intubation with carbonated beverage or antacid in the stomach. Anesth Analg 73: 333–337PubMedCrossRefGoogle Scholar
  42. 42.
    Swedlow DB (1986) Capnometry and capnography: the anesthesia disaster early warning system. Seminars in Anesthesia 5 (3): 194–205Google Scholar
  43. 43.
    Swedlow DB (1993) Respiratory gas monitoring. In: Saidman LJ, Smith NT (eds) Monitoring in anesthesia, 3rd edn. Butterworth-Heinemann, Boston London Oxford, pp 2750Google Scholar
  44. 44.
    Tavernier B, Rey D, Thevenin D et a1. (1997) Can prolonged expiration manoeuvres improve the prediction of arterial PCO2 from end-tidal PCO2? Br J Anaesth 78: 536–540PubMedCrossRefGoogle Scholar
  45. 45.
    Tobias JD, Mayer DJ (1997) Noninvasive monitoring of carbon dioxide during respiratory failure in toddlers and infants: end-tidal versus transcutaneous carbon dioxide. Anesth Analg 85: 55–58PubMedGoogle Scholar
  46. 46.
    Wayne MA, Levine RL, Miller CC (1995) Use of end-tidal carbon dioxide to predict outcome in prehospital cardiac arrest. Ann Emerg Med 25: 762–767PubMedCrossRefGoogle Scholar
  47. 47.
    Westenskow DR, Smith KW, Coleman DL et al. (1989) Clinical evaluation of a Raman scattering multiple gas analyzer for the operating room. Anesthesiology 70: 350–355PubMedCrossRefGoogle Scholar
  48. 48.
    Williamson JA, Webb RK, Cockings J, Morgan C (1993) The capnography: applications and limitations - An analysis of 2000 incident reports. Anaesth Intensive Care 21: 551557Google Scholar
  49. 49.
    Woda RP, Dzwonczyk R, Beckmeyer W, Fuhrman T (1996) Cost-benefit analysis of nasal cannulae in non-tracheally intubated subjects. Anesth Analg 82: 506–510PubMedGoogle Scholar
  50. 50.
    Yamanaka M, Sue D (1987) Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure. Chest 92: 832–835PubMedCrossRefGoogle Scholar
  51. 51.
    Zander R, Mertzlufft F (1992) Überprüfung der Präzision von Kapnometern. Anästhesiol Intensivmed Notfallmed Schmerzther 27: 42–50PubMedCrossRefGoogle Scholar
  52. 52.
    Zollinger A, Spahn DR, Singer T et al. (1997) Accuracy and clinical performance of a continous intra-arterial blood-gas monitoring system during thoracoscopic surgery. Br J Anaesth 79: 47–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • T. Pasch

There are no affiliations available

Personalised recommendations