Skip to main content

Nuclear Astrophysics and High Energy Particles

  • Chapter
Astrophysical Formulae

Part of the book series: Springer Study Edition ((SSE))

  • 255 Accesses

Abstract

At about the same time that Thomson (1897) discovered that all atoms emit electrons, photons with energy in the range 1–500 keV, called X-rays, were observed by Röntgen (1896). Photons with energy greater than 500 keV, called gamma (γ) rays, were subsequently observed by Villard (1900). Einstein (1905) then suggested that a photon particle of energy, hv, and zero mass is an electromagnetic wave of frequency, v, and vice versa. The nuclear theory of matter was then introduced by Rutherford (1911, 1914) who proposed that an atom, which has a radius of approximately 10-8 cm, actually consists of a swarm of electrons surrounding a positively charged nucleus whose radius is less than 10-12cm. The subsequent discovery of the proton by Rutherford and Chadwick (1921) further confirmed the speculation that the nucleus contains positively charged particles. The neutron was then discovered (Chadwick, 1932; Curie and Joliot, 1932), and Heisenberg (1932) proposed that the atomic nucleus contains the neutral neutrons as well as the protons. At about this time, studies of cosmic rays resulted in the discovery of the positron (Anderson, 1932), which differs from the electron only in that its charge is positive. Although similar antiparticles for the proton and neutron were expected on theoretical grounds, they were not observed until the advent of large accelerators (Chamberlain et al., 1955). The properties of these early fundamental particles are given in Table 37.

“Certain physical investigations in the past year, make it probable to my mind that some portion of sub-atomic energy is actually being set free in the stars. F. W. Aston’s experiments seem to leave no room for doubt that all the elements are constituted out of hydrogen atoms bound together with negative electrons. The nucleus of the helium atom, for example, consists of four hydrogen atoms bound with two electrons. But Aston has further shown that the mass of the helium atom is less than the sum of the masses of the four hydrogen atoms which enter into it. ... Now mass cannot be annihilated, and the deficit can only represent the energy set free in the transmutation. ... If only five per cent of a star’s mass consists initially of hydrogen atoms, which are gradually being combined to form more complex elements, the total heat liberated will more than suffice for our demands, and we need look no further for the source of a star’s energy. ... If, indeed, the sub-atomic energy in the star is being freely used to maintain their great furnaces, it seems to bring a little nearer to fulfillment our dream of controlling this latent power for the well being of the human race—or for its suicide.”

A. S. EDdington (1920)

“We therefore feel justified in advancing tentatively the hypothesis that cosmic rays are produced in the super-nova process. ... With all reserve we advance the view that a super-nova represents the transition of an ordinary star into a neutron star, consisting mainly of neutrons.”

W. Baade and F. Zwicky (1934)

“When the conditions depart widely from being static, there is no necessary tendency towards equipartition, but the energy may instead become enormously concentrated into certain small parts of the system. Thus in the crack of a whip the tip of the lash is moving faster than the speed of sound, though the coachman’s wrist never moves fast at all. Again, when a large sea-wave strikes the wall of a lighthouse, spray is thrown up to a great height, and this in spite of its later rise being much slowed by air resistance. ... It is suggested that cosmic rays may originate from some mechanism of this kind, and though there may be other possibilities, the most obvious source is from the stormy seas that must cover the surface of many of the stars.”

C. Darwin (1949)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, P. B., Brunstein, K. A., Cline, T. L.: Production of low-energy cosmic-ray electrons. Phys. Rev. 150, 1088 (1966).

    Article  ADS  Google Scholar 

  • Adams, J. B., Ruderman, M. A., Woo, C. H.: Neutrino pair emission by a stellar plasma. Phys. Rev. 129, 1383 (1963).

    Article  ADS  Google Scholar 

  • Ajzenberg-Selove, F.: Nuclear spectroscopy. New York: Academic Press 1960.

    Google Scholar 

  • Alfvén, H.: On the sidereal time variation of the cosmic radiation. Phys. Rev. 54, 97 (1938).

    Article  ADS  Google Scholar 

  • Allen, B. J., Gibbons, J. H., Macklin, R. L.: Nucleo-synthesis and neutron-capture cross sections. In: Advances in nuclear physics, vol. 4 (ed. M. Baranger and E. Vogt). New York: Plenum Press 1971.

    Google Scholar 

  • Alpher, R. A., Bethe, H. A., Gamow, G.: The origin of chemical elements. Phys. Rev. 73, 803 (1948).

    Article  ADS  Google Scholar 

  • Alpher, R. A., Herman, R. C.: Theory of the origin and relative abundance distribution of the elements. Rev. Mod. Phys. 22, 153 (1950).

    Article  ADS  MATH  Google Scholar 

  • Anderson, C. D.: Energies of cosmic-ray particles. Phys. Rev. 41, 405 (1932).

    Article  ADS  Google Scholar 

  • Anderson, C. D., Neddermeyer, S. H.: Cloud chamber observations of cosmic rays at 4300 meters elevation and near sea-level. Phys. Rev. 50, 263 (1936).

    Article  ADS  Google Scholar 

  • Arnett, W. D.: Gravitational collapse and weak interactions. Can. J. Phys. 44, 2553 (1966).

    Article  ADS  Google Scholar 

  • Arnett, W. D.: Mass dependence in gravitational collapse of stellar cores. Can. J. Phys. 45, 1621 (1967).

    Article  ADS  Google Scholar 

  • Arnett, W. D.: On supernova hydrodynamics. Ap. J. 153, 341 (1968).

    Article  ADS  Google Scholar 

  • Arnett, W. D.: A possible model of supernovae: Detonation of C12. Astrophys. and Space Sci. 5, 180 (1969).

    Article  ADS  Google Scholar 

  • Arnett, W. D.: Explosive nucleosynthesis in stars. Ap. J. 137, 1369 (1969).

    Article  ADS  Google Scholar 

  • Arnett, W. D.: Galactic evolution and nucleosynthesis. Ap. J. 166, 153 (1971).

    Article  ADS  Google Scholar 

  • Arnett, W. D.: Hydrostatic oxygen burning in stars: I. Oxygen stars. Ap. J. 173, 393 (1972).

    Article  ADS  Google Scholar 

  • Arnett, W. D.: Explosive nucleosynthesis in stars. Ann. Rev. Astron. Astrophys. 11, 73 (1973).

    Article  ADS  Google Scholar 

  • Arnett, W. D., Cameron, A. G. W.: Supernova hydrodynamics and nucleosynthesis. Can. J. Phys. 45, 2953 (1967).

    Article  ADS  Google Scholar 

  • Arnett, W. D., Clayton, D. D.: Explosive nucleosynthesis in stars. Nature 227, 780 (1970).

    Article  ADS  Google Scholar 

  • Arnett, W. D., Truran, J. W.: Carbon-burning nucleosynthesis at constant temperature. Ap. J. 157, 339 (1969).

    Article  ADS  Google Scholar 

  • Arnett, W. D., Truran, J. W., Woosley, S. E.: Nucleosynthesis in supernova models II. The 12C detonation model. Ap. J. 165, 87 (1971).

    Article  ADS  Google Scholar 

  • Arnould, M.: Influence of the excited states of target nuclei in the vicinity of the iron peak on stellar reaction rates. Astron. Astrophys. 19, 92 (1972).

    ADS  Google Scholar 

  • Aston, F. W.: A new mass-spectrograph and the whole number rule. Proc. Roy. Soc. London A 115, 487 (1927).

    Article  ADS  Google Scholar 

  • Audouze, J., Epherre, M., Reeves, H.: Survey of experimental cross sections for proton-induced spallation reactions in He4, C12, N14, and O16. In: High energy nuclear reactions in astrophysics (ed. B. Shen). New York: W. A. Benjamin 1967.

    Google Scholar 

  • Audouze, J., Lequeux, J., Reeves, H.: On the cosmic boron abundance. Astron. and Astrophys. 28, 85 (1973).

    ADS  Google Scholar 

  • Baade, W., Zwicky, F.: On super-novae. Proc. Nat. Acad. Sci. (Wash.) 20, 254 (1934).

    Article  ADS  Google Scholar 

  • Baade, W., Zwicky, F.: Cosmic rays from super-novae. Proc. Nat. Acad. Sci. (Wash.) 20, 259 (1934). Reprod. in: Selected papers on cosmic ray origin theories (ed. S. Rosen). New York: Dover 1969.

    Google Scholar 

  • Baade, W., Zwicky, F.: Remarks on super-novae and cosmic rays. Phys. Rev. 46, 76 (1934). Reprod. in: Selected papers on cosmic ray origin theories (ed. S. Rosen). New York: Dover 1969.

    Google Scholar 

  • Bahcall, J. N.: Beta decay in stellar interiors. Phys. Rev. 126, 1143 (1962).

    Article  ADS  Google Scholar 

  • Bahcall, J. N.: The exclusion principle and photobeta reactions in nucleogenesis. Ap. J. 136, 445 (1962).

    Article  ADS  Google Scholar 

  • Bahcall, J. N.: Electron capture in stellar interiors. Ap. J. 139, 318 (1964).

    Article  ADS  Google Scholar 

  • Bahcall, J. N.: Solar neutrino cross sections and nuclear beta decay. Phys. Rev. 135, B 137 (1964).

    Article  ADS  Google Scholar 

  • Bahcall, J. N.: Neutrino opacity: I. Neutrino-lepton scattering. Phys. Rev. 136, B 1164 (1964).

    Article  ADS  Google Scholar 

  • Bahcall, J. N.: Observational neutrino astronomy. Science 147, 115 (1965).

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Frautschi, S. C.: Neutrino opacity: II. Neutrino-nucleon interactions. Phys. Rev. 136, B 1547 (1964).

    Article  ADS  Google Scholar 

  • Bahcall, J. N., May, R. M.: The rate of the proton-proton reaction and some related reactions. Ap. J. 155, 501 (1969).

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Sears, R. L.: Solar neutrinos. Ann. Rev. Astron. Astrophys. 10, 25 (1972).

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Ulrich, R. K.: Solar neutrinos: III. Composition and magnetic field effects and related inferences. Ap. J. 170, 593 (1971).

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Wolf, R. A.: Neutron stars. Phys. Rev. Lett. 14, 343 (1965).

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Wolf, R. A.: Neutron stars: I. Properties at absolute zero temperature. Phys. Rev. 140, B 1445 (1965).

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Wolf, R. A.: Neutron stars: II. Neutrino cooling and observability. Phys. Rev. 140, B 1452 (1965).

    Article  ADS  Google Scholar 

  • Bahcall, N. A., Fowler, W. A.: The effect of excited nuclear states on stellar reaction rates. Ap. J. 157, 645 (1969).

    Article  ADS  Google Scholar 

  • Bahcall, N. A., Fowler, W. A.: Nuclear partition functions for stellar reaction rates. Ap. J. 161, 119(1970).

    Article  ADS  Google Scholar 

  • Bardin, R. K., Barnes, C. A., Fowler, W. A., Seeger, P. A.: ft value of O14 and the universality of the Fermi interaction. Phys. Rev. 127, 583 (1962).

    Article  ADS  Google Scholar 

  • Barnes, C. A.: Nucleosynthesis by charged-particle reactions. In: Advances in nuclear physics, vol. 4 (ed. M. Baranger, E. Vogt). New York: Plenum Press 1971.

    Google Scholar 

  • Beaudet, G., Petrosian, V., Salpeter, E. E.: Energy losses due to neutrino processes. Ap. J. 150, 979 (1967).

    Article  ADS  Google Scholar 

  • Beaudet, G., Salpeter, E. E., Silvestro, M. L.: Rates for URCA neutrino processes. Ap. J. 174, 79 (1972).

    Article  ADS  Google Scholar 

  • Becquerel, H.: Sur les radiations émises par phosphorescence (On the radiation emitted by phosphorescence). Compt. Rend. 122, 420 (1896).

    Google Scholar 

  • Benjamíni, R., Londrillo, P., Setti, G.: The cosmic black-body radiation and the inverse Compton effect in the radio galaxies: The X-ray background. Nuovo Cimento B52, 495 (1967).

    ADS  Google Scholar 

  • Bergeron, J.: Étude des possibilités d’existence d’un plasma intergalactique dense. Astron. Astrophys. 3, 42 (1969).

    ADS  Google Scholar 

  • Bernas, R., Gradsztajn, E., Reeves, H., Shatzman, E.: On the nucleosynthesis of lithium, beryllium, and boron. Ann. Phys. (N. Y.) 44, 426 (1967).

    Article  ADS  Google Scholar 

  • Bethe, H. A.: Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie (On the theory of the penetration of matter by fast (nuclear) particle beams). Ann. Phys. 5, 325 (1930).

    Article  MATH  Google Scholar 

  • Bethe, H. A.: Bremsformel für Elektronen relativistischer Geschwindigkeit (A braking formula for relativistic electrons). Z. Phys. 76, 293 (1932).

    Article  ADS  Google Scholar 

  • Bethe, H. A.: Nuclear physics B. Nuclear dynamics, theoretical. Rev. Mod. Phys. 9, 69 (1937).

    Article  ADS  MATH  Google Scholar 

  • Bethe, H. A.: Energy production in stars. Phys. Rev. 55, 103, 434 (1939).

    Article  ADS  MATH  Google Scholar 

  • Bethe, H. A., Critchfield, C. L.: The formation of deutrons by proton combination. Phys. Rev. 54, 248 (1938).

    Article  ADS  Google Scholar 

  • Bethe, H. A., Heitler, W.: On the stopping of fast particles and on the creation of positive electrons. Proc. Roy. Soc. London A 146, 83 (1934).

    Article  ADS  Google Scholar 

  • Bethe, H. A., Wills, H. H.: On the annihilation radiation of positrons. Proc. Roy. Soc. London A 150, 129 (1935).

    Article  ADS  MATH  Google Scholar 

  • Bhabha, H. J.: The creation of electron pairs by fast charged particles. Proc. Roy. Soc. London A 152, 559 (1935).

    Article  ADS  MATH  Google Scholar 

  • Bhabha, H. J.: On the calculation of pair creation by fast charged particles and the effect of screening. Proc. Camb. Phil. Soc. 31, 394 (1935).

    Article  ADS  MATH  Google Scholar 

  • Bhabha, H. J.: The scattering of positrons by electrons with exchange on Dirac’s theory of the positron. Proc. Roy. Soc. London A 154, 195 (1936).

    Article  ADS  MATH  Google Scholar 

  • Blatt, J. M., Weisskopf, V. F.: Theoretical nuclear physics. New York: Wiley 1952.

    MATH  Google Scholar 

  • Blin-Stoyle, R. J., Freeman, J. M.: Coupling constants and electromagnetic radiative corrections in beta-decay and the mass of the intermediate vector boson. Nucl. Phys. A 150, 369 (1970).

    Article  ADS  Google Scholar 

  • Bloch, F. von: Bremsvermögen von Atomen mit mehreren Elektronen (Braking capabilities of multi-electron atoms). Z. Phys. 81, 363 (1933).

    Article  ADS  MATH  Google Scholar 

  • Blumenthal, G.R., Gouid, R.J.: Bremsstrahlung, synchrotron radiation, and Compton scattering of high energy electrons traversing dilute gases. Rev. Mod. Phys. 42 (2), 237 (1970).

    Article  ADS  Google Scholar 

  • Bodansky, D., Clayton, D. D., Fowler, W. A.: Nucleosynthesis during silicon burning. Phys. Rev. Lett. 20, 161 (1968).

    Article  ADS  Google Scholar 

  • Bodansky, D., Clayton, D. D., Fowler, W. A.: Nuclear quasi-equilibrium during silicon burning. Ap. J. Suppl. No. 148, 16, 299 (1968).

    Article  ADS  Google Scholar 

  • Bodenheimer, P.: Studies in stellar evolution: II. Lithium depeletion during the pre-main sequence contraction. Ap. J. 142, 451 (1965).

    Article  ADS  Google Scholar 

  • Bodenheimer, P.: Depletion of deuterium and beryllium during pre-main sequence evolution. Ap. J. 144, 103 (1966).

    Article  ADS  Google Scholar 

  • Bradt, H. L., Peters, B.: Investigation of the primary cosmic radiation with nuclear photographic emulsion. Phys. Rev. 74, 1828 (1948).

    Article  ADS  Google Scholar 

  • Bradt, H. L., Peters, B.: The heavy nuclei of the primary cosmic radiation. Phys. Rev. 77, 54 (1950).

    Article  ADS  Google Scholar 

  • Brecher, K., Morrison, P.: Leakage electrons from normal galaxies: The diffuse cosmic X-ray source. Phys. Rev. Lett. 23, 802 (1969).

    Article  ADS  Google Scholar 

  • Breit, G., Wigner, E.: Capture of slow neutrons. Phys. Rev. 49, 519 (1936).

    Article  ADS  MATH  Google Scholar 

  • Brilloin, L.: Les principes de la nouvelle mécanique ondulatoire (Principles of the undulatory mechanics). J. Phys. et le Radium 7, 321 (1926). Remarques sur la mécanique ondulatoire (Notes on undulatory mechanics). J. Phys. Radium 7, 353 (1926).

    Article  Google Scholar 

  • Brown, J. C.: The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18, 489 (1971).

    Article  ADS  Google Scholar 

  • Brown, J. C.: The decay characteristics of models of solar hard X-ray bursts. Solar Phys. 25, 158 (1972).

    Article  ADS  Google Scholar 

  • Brown, J. C.: The directivity and polarization of thick target X-ray bremsstrahlung from solar flares. Solar Phys. 26, 441 (1972).

    Article  ADS  Google Scholar 

  • Brown, J. C.: Thick target X-ray bremsstrahlung from partially ionized targets in solar flares. Solar Phys. 28, 151 (1973).

    Article  ADS  Google Scholar 

  • Brown, R. L., Gould, R. J.: Interstellar absorption of cosmic X-rays. Phys. Rev. D 1, 1, 2252 (1970).

    Article  ADS  Google Scholar 

  • Bruenn, S. W.: The effect of URCA shells on the density of carbon ignition in degenerate stellar cores. Ap. J. 177, 459 (1972).

    Article  ADS  Google Scholar 

  • Burbidge, G. R.: Acceleration of cosmic-ray particles among extragalactic nebulae. Phys. Rev. 107, 269 (1957). Reprod. in: Selected papers on cosmic ray origin theories (ed. S. Rosen). New York: Dover 1969.

    Article  ADS  Google Scholar 

  • Burbidge, G. R.: X-ray and y-ray sources. In: High energy astrophysics—Int. school of physics Enrico Fermi course 35 (ed. L. Gratton). New York: Academic Press 1966.

    Google Scholar 

  • Burbidge, E. M., Burbidge, G. R., Fowler, W. A., Hoyle, F.: Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547 (1957).

    Article  ADS  Google Scholar 

  • Cameron, A. G. W.: Origin of anomalous abundances of the elements in giant stars. Phys. Rev. 93, 932 (1954).

    Google Scholar 

  • Cameron, A. G. W.: Origin of anomalous abundances of the elements in giant stars. Ap. J. 121, 144 (1955).

    Article  ADS  Google Scholar 

  • Cameron, A. G. W.: Photobeta reactions in stellar interiors. Ap. J. 130, 452 (1959).

    Article  ADS  Google Scholar 

  • Cameron, A. G. W.: Pycnonuclear reactions and nova explosions. Ap. J. 130, 916 (1959).

    Article  ADS  Google Scholar 

  • Cameron, A. G. W.: New neutron sources of possible astrophysical interest. Astron. J. 65, 485 (1960).

    Article  Google Scholar 

  • Cameron, A. G. W.: Abundances of the elements in the solar system. Space Sci. Rev. 15, 121 (1973).

    Google Scholar 

  • Cameron, A. G. W., Fowler, W. A.: Lithium and the Process in red-giant stars. Ap. J. 164, 111 (1971).

    Article  ADS  Google Scholar 

  • Canuto, V., Chou, C. K.: Neutrino luminosity by the ordinary URCA process in an intense magnetic field. Astrophys. and Space Sci. 10, 246 (1971).

    Article  ADS  Google Scholar 

  • Canuto, V., Chiu, H. Y., Chou, C. K.: Neutrino bremsstrahlung in an intense magnetic field. Phys. Rev. D2, 281 (1970).

    ADS  Google Scholar 

  • Canuto, V., Chiuderi, C., Chou, C. K.: Plasmon neutrino emission in a strong magnetic field: I. Transverse plasmons; II. Longitudinal plasmons. Astrophys. and Space Sci. 7, 407, 9, 453 (1970).

    Article  ADS  Google Scholar 

  • Caughlan, G. R.: Approach to equilibrium in the CNO bi-cycle. Ap. J. 141, 688 (1965).

    Article  ADS  Google Scholar 

  • Caughlan, G. R., Fowler, W. A.: The mean lifetimes of carbon, nitrogen, and oxygen nuclei in the CNO bi-cycle. Ap. J. 136, 453 (1962).

    Article  ADS  Google Scholar 

  • Cesarsky, D. A., Moffet, A. T., Pasachoff, J. M.: 327 MHz observations of the galactic center: Possible detection of a deuterium absorption line. Ap. J. 180, L 1 (1973).

    Article  ADS  Google Scholar 

  • Chadwick, J.: The existence of a neutron. Proc. Roy. Soc. London A 136, 692 (1932).

    Article  ADS  Google Scholar 

  • Chamberlain, O., Segre, E., Wiegand, C., Ypsilantis, T.: Observation of antiprotons. Phys. Rev. 100, 947 (1955).

    Article  ADS  Google Scholar 

  • Chandrasekhar, S., Henrich, L. R.: An attempt to interpret the relative abundances of the elements and their isotopes. Ap. J. 95, 288 (1942).

    Article  ADS  MATH  Google Scholar 

  • Chiu, H. Y.: Neutrino emission processes, stellar evolution, and supernovae, part I, part II. Ann. Phys. (N. Y.) 15, 1, 16, 321 (1961).

    Article  ADS  Google Scholar 

  • Chiu, H. Y.: Annihilation process of neutrino production in stars. Phys. Rev. 123, 1040 (1961).

    Article  ADS  Google Scholar 

  • Chiu, H. Y.: Stellar physics. Waltham, Mass.: Blaisdell 1968.

    Google Scholar 

  • Chiu, H. Y., Morrison, P.: Neutrino emission from black-body radiation at high stellar temperatures. Phys. Rev. Lett. 5, 573 (1960).

    Article  ADS  Google Scholar 

  • Chiu, H. Y., Salpeter, E. E.: Surface X-ray emission from neutron stars. Phys. Rev. Lett. 12, 413 (1964).

    Article  ADS  Google Scholar 

  • Chiu, H. Y., Stabler, R. C.: Emission of photoaeutrinos and pair annihilation neutrinos from stars. Phys. Rev. 122, 1317 (1961).

    Article  ADS  Google Scholar 

  • Chupp, E. L.: Gamma ray and neutron emissions from the Sun. Space Sci. Rev. 12, 486 (1971).

    Google Scholar 

  • Chupp, E. L., Forrest, D. J., Higbie, P. R., Suri, A. N., Tsai, C., Dunphy, P. P.: Solar gamma ray lines observed during the solar activity of August 2 to August 11, 1972. Nature (GB) 241, 335 (1973).

    Article  ADS  Google Scholar 

  • Christensen, C. J., Nielsen, A., Bahnsen, H., Brown, W. K., Rustad, B. M.: The half-life of the free neutron. Phys. Lett. 26 B, 11 (1967).

    Article  Google Scholar 

  • Clayton, D. D.: Cosmoradiogenic chronologies of nucleosynthesis. Ap. J. 139, 637 (1964).

    Article  ADS  Google Scholar 

  • Clayton, D. D.: Principles of stellar evolution and nucleosynthesis. New York: McGraw-Hill 1968.

    Google Scholar 

  • Clayton, D. D.: Isotopic composition of cosmic importance. Nature 224, 56 (1969).

    Article  ADS  Google Scholar 

  • Clayton, D. D.: New prospect for gamma-ray line astronomy. Nature 234, 291 (1971).

    Article  ADS  Google Scholar 

  • Clayton, D. D., Colgate, S. A., Fishman, G. J.: Gamma-ray lines from young supernova remnants. Ap. J. 155, 75 (1969).

    Article  ADS  Google Scholar 

  • Clayton, D. D., Craddock, W. L.: Radioactivity in supernova remnants. Ap. J. 142, 189 (1965).

    Article  ADS  Google Scholar 

  • Clayton, D. D., Silk, J.: Measuring the rate of nucleosynthesis with a gamma-ray detector. Ap. J. 158, L 43 (1969).

    Article  ADS  Google Scholar 

  • Clifford, F. E., Tayler, R. J.: The equilibrium distribution of nuclides in matter at high temperatures. Mem. R.A.S. 69, 21 (1965).

    ADS  Google Scholar 

  • Cline, T. L., Desai, U. D., Klebesadel, R. W., Strong, I. B.: Energy spectra of cosmic gamma-ray bursts. Ap. J. 185, L1 (1973).

    Article  ADS  Google Scholar 

  • Colgate, S. A., Johnson, M. H.: Hydrodynamic origin of cosmic rays. Phys. Rev. Lett. 5, 235 (1960).

    Article  ADS  Google Scholar 

  • Colgate, S. A., White, R. H.: The hydrodynamic behavior of supernovae explosions. Ap. J. 143, 626 (1966).

    Article  ADS  Google Scholar 

  • Compton, A. H.: A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 207 (1923).

    Google Scholar 

  • Cook, C. W., Fowler, W. A., Lauritsen, C. C., Lauritsen, T.: B12, C12, and the red giants. Phys. Rev. 107, 508 (1957).

    Article  ADS  Google Scholar 

  • Comstock, G. M., Fan, C. Y., Simpson, J. A.: Energy spectra and abundances of the cosmic-ray nuclei helium to iron from the OGOI satellite experiment. Ap. J. 155, 609 (1969).

    Article  ADS  Google Scholar 

  • Couch, R. G., Shane, K. C.: The photodisintegration rate of 24Mg. Ap. J. 169, 413 (1971).

    Article  ADS  Google Scholar 

  • Cowsik, R., Kobetich, E. J.: Comment on inverse Compton models for the isotropic X-ray background and possible thermal emission from a hot intergalactic gas. Ap. J. 177, 585 (1972).

    Article  ADS  Google Scholar 

  • Cox, J. P., Giuli, R. T.: Principles of stellar structure, vol. I, vol. II. New York: Gordon and Breach 1968.

    Google Scholar 

  • Crandall, W.E., Millburn, G. P., Pyle, R.W., Birnbaum, W.:C12 (x,xn)C11 and A27(x, x2pn)Na24 cross sections at high energies. Phys. Rev. 101, 329 (1956).

    Article  ADS  Google Scholar 

  • Culhane, J. L.: Thermal continuum radiation from coronal plasmas at soft X-ray wavelengths. M.N.R.A.S. 144, 375(1969).

    ADS  Google Scholar 

  • Curie, I., Joliot, F.: Émission de protons de grande vitesse par les substances hydrogénées sous l’influence des rayons γ trés pénétrants (Emission of very fast protons by hydrogen substances under the influence of very penetrating γ-rays). Comp. Rend. 194, 273 (1932).

    Google Scholar 

  • Danby, G., Gaillard, J.-M., Goulianos, K., Lederman, L. M., Mistry, N., Schwartz, M., Steinberger, J.: Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos. Phys. Rev. Lett. 9, 36 (1962).

    Article  ADS  Google Scholar 

  • Darwin, Sir C.: Source of the cosmic rays. Nature 164, 1112 (1949). Reprod. in: Selected papers on cosmic ray origin theories (ed. S. Rosen). New York: Dover 1966.

    Article  ADS  Google Scholar 

  • Davidson, K., Ostriker, J. P.: Neutron star accretion in a stellar wind: Model for a pulsed X-ray source. Ap. J. 179, 585 (1973).

    Article  ADS  Google Scholar 

  • Davis, L.: Modified Fermi mechanism for the acceleration of cosmic rays. Phys. Rev. 101, 351 (1956).

    Article  ADS  Google Scholar 

  • Davis, R., Harmer, D. S., Hoffman, K. C.: Search for neutrinos from the Sun. Phys. Rev. Lett. 20, 1205 (1968).

    Article  ADS  Google Scholar 

  • Davisson, C. M., Evans, R. D.: Gamma-ray absorption coefficients. Rev. Mod. Phys. 24, 79 (1952).

    Article  ADS  Google Scholar 

  • Debye, P. von, Hückel, E.: Zur Theorie der Elektrolyte: I. Gefrierpunktserniedrigung und verwandte Erscheinungen; IL Das Grenzgesetz für die elektrische Leitfähigkeit (On the theory of electrolytes: I. Lowering of the freezing point and related phenomena; II. The limiting laws for electrical conductivity). Phys. Z. 24, 185 (1923).

    MATH  Google Scholar 

  • Dirac, P. A. M.: On the annihilation of electrons and protons. Proc. Camb. Phil. Soc. 26, 361 (1930).

    Article  ADS  MATH  Google Scholar 

  • Dismuke, N., Rose, M. E., Perry, C. L., Bell, P. R.: Tables for the analysis of beta spectra. Nat. Bur. Stands. (Wash.) App. Math. Ser. 13 (1952).

    Google Scholar 

  • Donahue, T. M.: The significance of the absence of primary electrons for theories of the origin of the cosmic radiation. Phys. Rev. 84, 972 (1951).

    Article  ADS  Google Scholar 

  • Earl, J. A.: Cloud-chamber observations of primary cosmic-ray electrons. Phys. Rev. Lett. 6, 125 (1961).

    Article  ADS  Google Scholar 

  • Eberhardt, P., Geiss, J., Graf, H., Grogler, N., Krahenbuhl, U., Schwaller, H., Schwarzmüller, J., Stettler, A.: Trapped solar wind noble gases, Kr81/Kr exposure ages, and K/Ar ages in Apollo 11 lunar material. Science 167, 558 (1970).

    Article  ADS  Google Scholar 

  • Eddington, A. S.: The internal constitution of the stars. Nature 106, 14 (1920).

    Article  ADS  Google Scholar 

  • Eddington, A. S.: The internal constitution of the stars. Cambridge: Cambridge University Press 1926. Republished New York: Dover Publ. 1959.

    MATH  Google Scholar 

  • Einstein, A. von: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (On a heuristic point of view concerning the generation and propagation of light). Ann. Phys. 17, 132 (1905).

    Article  MATH  Google Scholar 

  • Einstein, A.: Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? (Does the inertia of a body depend on its energy?). Ann. Phys. 18, 639 (1905).

    Article  Google Scholar 

  • Einstein, A.: Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie (Conservation of the motion of the mass center). Ann. Phys. 20, 627 (1906).

    Article  MATH  Google Scholar 

  • Einstein, A.: Über die vom Relativitätsprinzip geforderte Trägheit der Energie (Variation of inertia with energy on the principle of relativity). Ann. Phys. 23, 371 (1907).

    Article  MATH  Google Scholar 

  • Elsasser, W. M.: Sur le principe de Pauli dans les noyaux (On Pauli’s principle within the nucleus). J. Phys. Radium 4, 549 (1933).

    Article  MATH  Google Scholar 

  • Fanselow, J. L., Hartman, R. C., Hildebrand, R. H., Meyer, P.: Charge composition and energy spectrum of primary cosmic-ray electrons. Ap. J. 158, 771 (1969).

    Article  ADS  Google Scholar 

  • Fassio-Canuto, L.: Neutron beta decay in a strong magnetic field. Phys. Rev. 187, 2141 (1969).

    Article  ADS  Google Scholar 

  • Feenberg, E., Primakoff, H.: Interaction of cosmic-ray primaries with sunlight and starlight. Phys. Rev. 73, 449 (1948).

    Article  ADS  MATH  Google Scholar 

  • Feenberg, E., Trigg, G.: The interpretation of comparative half-lives in the Fermi theory of betadecay. Rev. Mod. Phys. 22, 399 (1950).

    Article  ADS  Google Scholar 

  • Feingold, A. M.: Table of ft values in beta-decay. Rev. Mod. Phys. 23, 10 (1951).

    Article  ADS  Google Scholar 

  • Felten, J. E., Morrison, P.: Recoil photons from scattering of starlight by relativistic electrons. Phys. Rev. Lett. 10, 453 (1963).

    Article  ADS  Google Scholar 

  • Felten, J. E., Morrison, P.: Omnidirectional inverse Compton and synchrotron radiation from cosmic distributions of fast electrons and thermal photons. Ap. J. 146, 686 (1966).

    Article  ADS  Google Scholar 

  • Fermi, E.: Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente (A statistical method for determining the eigenstate of atoms and its application to the theory of the periodical system of the elements). Z. Physik 48, 73 (1928).

    Article  ADS  MATH  Google Scholar 

  • Fermi, E.: Versuch einer Theorie der β-Strahlen I (An attempt at a theory of β-rays I). Z. Physik 88, 161 (1934).

    Article  ADS  Google Scholar 

  • Fermi, E.: The absorption of mesotrons in air and in condensed materials. Phys. Rev. 56, 1242 (1939).

    Article  ADS  MATH  Google Scholar 

  • Fermi, E.: The ionization loss of energy in gases and in condensed materials. Phys. Rev. 57, 485 (1940).

    Article  ADS  Google Scholar 

  • Fermi, E.: On the origin of cosmic radiation. Phys. Rev. 75, 1169 (1949). Reprod. in: Selected papers on cosmic ray origin theories (ed. S. Rosen). New York: Dover 1969.

    Article  ADS  MATH  Google Scholar 

  • Fermi, E.: Galactic magnetic fields and the origin of cosmic radiation. Ap. J. 119, 1 (1954). Reprod. in: Selected papers on cosmic ray origin theories (ed. S. Rosen). New York: Dover 1969.

    Article  ADS  Google Scholar 

  • Fermi, E., Uhlenbeck, G. E.: On the recombination of electrons and positrons. Phys. Rev. 44, 510 (1933).

    Article  ADS  Google Scholar 

  • Festa, G. G., Ruderman, M. A.: Neutrino-pair bremsstrahlung from a degenerate electron gas. Phys. Rev. 180, 1227 (1969).

    Article  ADS  Google Scholar 

  • Feynman, R. P., Gell-Mann, M.: Theory of the Fermi interaction. Phys. Rev. 109, 193 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Field, G. B., Henry, R. C.: Free-free emission by intergalactic hydrogen. Ap. J. 140, 1002 (1964).

    Article  ADS  Google Scholar 

  • Finzi, A.: Vibrational energy of neutron stars and the exponential light curves of type I supernovae. Phys. Rev. Lett. 15, 599 (1965).

    Article  ADS  Google Scholar 

  • Finzi, A.: Cooling of a neutron star by the URCA process. Phys. Rev. 137, B 472 (1965).

    Article  ADS  Google Scholar 

  • Finzi, A., Wolf, R. A.: Type I supernovae. Ap. J. 150, 115 (1967).

    Article  ADS  Google Scholar 

  • Finzi, A., Wolf, R. A.: Hot, vibrating neutron stars. Ap. J. 153, 835 (1968).

    Article  ADS  Google Scholar 

  • Fishman, G. J., Clayton, D. D.: Nuclear gamma rays from 7Li in the galactic cosmic radiation. Ap. J. 178, 337 (1972).

    Article  ADS  Google Scholar 

  • Forman, W., Jones, C. A., Liller, W.: Optical studies of UHURU sources: III. Optical variations of the X-ray eclipsing system HZ Herculis. Ap. J. 177, L 103 (1972).

    Article  ADS  Google Scholar 

  • Fowler, W. A.: Experimental and theoretical results on nuclear reactions in stars. Mem. Soc. Roy. Sci. Liege 14, 88 (1954).

    ADS  Google Scholar 

  • Fowler, W. A.: Completion of the proton-proton reaction chain and the possibility of energetic neutrino emission by hot stars. Ap. J. 127, 551 (1958).

    Article  ADS  Google Scholar 

  • Fowler, W. A.: Experimental and theoretical results on nuclear reactions in stars II. Mem. Soc. Roy. Sci. Liege Ser 5, 3, 207 (1959).

    Google Scholar 

  • Fowler, W. A.: What cooks with solar neutrinos. Nature 238, 24 (1972).

    Article  ADS  Google Scholar 

  • Fowler, W. A., Burbidge, G. R., Burbidge, E. M.: Nuclear reactions and element synthesis in the surfaces of stars. Ap. J. Suppl. No. 17, 2, 167 (1955).

    Article  ADS  Google Scholar 

  • Fowler, W. A., Caughlan, G. R., Zimmerman, B. A.: Thermonuclear reaction rates. Ann. Rev. Astron. Astrophys. 5, 525 (1967).

    Article  ADS  Google Scholar 

  • Fowler, W. A., Caughlan, G. R., Zimmerman, B. A.: Thermonuclear reaction rates. Priv. Comm. (1974).

    Google Scholar 

  • Fowler, W. A., Greenstein, J. L.: Element building reactions in stars. Proc. Nat. Acad. Sci. (Wash.) 42, 173 (1956).

    Article  ADS  Google Scholar 

  • Fowler, W. A., Greenstein, J. L., Hoyle, F.: Nucleosynthesis during the early history of the solar system. J. Geophys. Res. R.A.S. 6, 148 (1962).

    Google Scholar 

  • Fowler, W. A., Hoyle, F.: Nuclear cosmochronology. Ann. Phys. 10, 280 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  • Fowler, W. A., Hoyle, F.: Neutrino processes and pair formation in massive stars and supernovae. Ap. J. Suppl. 9, 201 (1964).

    Article  ADS  Google Scholar 

  • Fowler, W. A., Reeves, H., Silk, J.: Spallation limits on interstellar fluxes of low-energy cosmic rays and nuclear gamma rays. Ap. J. 162, 49 (1970).

    Article  ADS  Google Scholar 

  • Freeman, J. M., Clark, G. J., Ryder, J. S., Burcham, W. E., Sguier, G. T. A., Draper, J. E.: Present values of the weak interaction coupling constants. U. K. Atom. Energy Res. Group, 1972.

    Google Scholar 

  • Freier, P., Lofgren, E. J., Ney, E. P., Oppenheimer, F., Bradt, H. L., Peters, B.: Evidence for heavy nuclei in the primary cosmic radition. Phys. Rev. 74, 213, 1818 (1948).

    Article  ADS  Google Scholar 

  • Freier, P. S., Waddington, C. J.: Singly and doubly charged particles in the primary cosmic radiation. J. Geophys. Res. 73, 4261 (1968).

    Article  ADS  Google Scholar 

  • Friedman, H.: Cosmic X-ray sources: A progress report. Science 181, 395 (1973).

    Article  ADS  Google Scholar 

  • Fröberg, C. E.: Numerical treatment of Coulomb wave functions. Rev. Mod. Phys. 27, 399 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gamow, G.: Zur Quantentheorie des Atomkernes (On the quantum theory of the atomic nucleus). Z. Physik 51, 204 (1928).

    Article  ADS  MATH  Google Scholar 

  • Gamow, G.: Expanding universe and the origin of the elements. Phys. Rev. 70, 572 (1946).

    Article  ADS  Google Scholar 

  • Gamow, G., Schoenberg, M.: Neutrino theory of stellar collapse. Phys. Rev. 59, 539 (1941).

    Article  ADS  MATH  Google Scholar 

  • Gandelman, G. M., Pinaev, V. S.: Emission of neutrino pairs by electrons and the role played by it in stars. Sov. Phys. JETP 10, 764 (1960).

    Google Scholar 

  • Gardner, E., Lattes, C. M. G.: Production of mesons by the 184 inch Berkeley cyclotron. Science 107, 270 (1948).

    Article  ADS  Google Scholar 

  • Garvey, G. T., Gerace, W. J., Jaffe, R. L., Talmi, I., Kelson, I.: Set of nuclear-mass relations and a resultant mass table. Rev. Mod. Phys. 41, S1 (1969).

    Article  ADS  Google Scholar 

  • Giacconi, R., Murray, S., Gursky, H., Kellogg, E., Schreier, E., Tananbaum, H.: The UHURU catalog of X-ray sources. Ap. J. 178, 281 (1972).

    Article  ADS  Google Scholar 

  • Gilbert, A., Cameron, A. G. W.: A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446 (1965).

    Article  ADS  Google Scholar 

  • Ginzburg, V. L.: Elementary processes for cosmic ray astrophysics. New York: Gordon and Breach 1969.

    Google Scholar 

  • Gold, T.: Rotating neutron stars as the origin of the pulsating radio sources. Nature 218, 731 (1968).

    Article  ADS  Google Scholar 

  • Goldreich, P., Julian, W. H.: Pulsar electrodynamics. Ap. J. 157, 869 (1969).

    Article  ADS  Google Scholar 

  • Goldreich, P., Morrison, P.: On the absorption of gamma rays in intergalactic space. Soviet Phys. JETP 18, 239 (1964).

    Google Scholar 

  • Goldschmidt, V. M.: Geochemische Verteilungsgesetze der Elemente: IX. Die Mengenverhältnisse der Elemente und der Atom-Arten (Geochemical distribution laws of the elements: IX. The abundances of elements and of types of atoms). Skrift. Norske Videnskaps-Akad. Oslo I. Mat. Nat. No. 4 (1937).

    Google Scholar 

  • Gould, R. J.: High-energy photons from the Compton-synchrotron process in the Crab nebula. Phys. Rev. Lett. 15, 577 (1965).

    Article  ADS  Google Scholar 

  • Gould, R. J., Schréder, G.: Opacity of the universe to high-energy photons. Phys. Rev. Lett. 16, 252 (1966).

    Article  ADS  Google Scholar 

  • Graboske, H. C., de Witt, H. E., Grossman, A. S., Cooper, M. S.: Screening factors for nuclear reactions: II. Intermediate screening and astrophysical applications. Ap. J. 181, 457 (1973).

    Article  ADS  Google Scholar 

  • Gradsztajn, E.: Production of Li, Be, and B isotopes in C, N, and O. In: High energy nuclear reactions in astrophysics (ed. B. Shen). New York: W. A. Benjamin 1967.

    Google Scholar 

  • Green, A.E.S.: Coulomb radius constant from nuclear masses. Phys. Rev. 95, 1006 (1954).

    Article  ADS  Google Scholar 

  • Greenstein, J. L.: A search for He3 in the Sun. Ap. J. 113, 531 (1951).

    Article  ADS  Google Scholar 

  • Greenstein, J. L., Richardson, R. S.: Lithium and the internal circulation of the Sun. Ap. J. 113, 536(1951).

    Article  ADS  Google Scholar 

  • Grevesse, N.: Solar abundances of lithium, beryllium, and boron. Solar Phys. 5, 159 (1968).

    Article  ADS  Google Scholar 

  • Gurney, R. W., Condon, E. U.: Wave mechanics and radioactive disintegration. Nature 122, 493 (1928).

    Article  Google Scholar 

  • Gurney, R. W., Condon, E. U.: Quantum mechanics and radioactive disintegration. Phys. Rev. 33, 127(1929).

    Article  ADS  MATH  Google Scholar 

  • Hansen, C. J.: Some weak interaction processes in highly evolved stars. Astrophys. and Space Sci. 1, 499 (1968).

    Article  ADS  Google Scholar 

  • Hansen, C. J.: Explosive carbon-burning nucleosynthesis. Astrophys. and Space Sci. 14, 389 (1971).

    Article  ADS  Google Scholar 

  • Hayakawa, S.: Cosmic ray physics. New York: Wiley 1969.

    Google Scholar 

  • Hayakawa, S., Hayashi, C., Nishida, M.: Rapid thermonuclear reactions in supernova explosions. Suppl. Prog. Theor. Phys. (Japan) 16, 169 (1960).

    Article  ADS  Google Scholar 

  • Hayashi, C., Hoshi, R., Sugimoto, D.: Evolution of stars. Prog. Theor. Phys. (Japan) Suppl. 22, 1 (1962).

    Article  ADS  Google Scholar 

  • Heisenberg, W.: Über den Bau der Atomkerne I (On the structure of atomic nuclei I). Z. Physik 77, 1 (1932).

    Article  MathSciNet  ADS  Google Scholar 

  • Hehler, W.: The quantum theory of radiation. Oxford: Oxford University Press 1954.

    Google Scholar 

  • Hehler, W., Nordheim, L.: Sur la production des paires par des chocs de particules lourdes (On the production of pairs by the collision of heavy particles). J. Phys. Radium 5, 449 (1934).

    Article  Google Scholar 

  • Henry, R. C., Fritz, G., Meekins, J. F., Friedman, H., Byram, E. T.: Possible detection of a dense intergalactic plasma. Ap. J. Lett. 153, L 11 (1968).

    Article  ADS  Google Scholar 

  • Hess, V. F.: Über die Absorption der y-Strahlen in der Atmosphäre (On the absorption of γ-rays in the atmosphere). Phys. Z. 12, 998 (1911).

    Google Scholar 

  • Hess, V. F.: Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten (On observations of the penetrating radiation during seven balloon flights). Phys. Z. 13, 1084 (1912).

    Google Scholar 

  • Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., Collins, R. A.: Observation of a rapidly pulsating radio source. Nature 217, 709 (1968).

    Article  ADS  Google Scholar 

  • Van Hieu, N., Shabalin, E. P.: Role of the γ+γ→γ + v+v̄ process in neutrino emission by stars. Sov. Phys. JETP 17, 681 (1963).

    Google Scholar 

  • van Horn, H. M., Salpeter, E. E.: WKB approximation in three dimensions. Phys. Rev. 157, 751 (1967).

    Article  ADS  Google Scholar 

  • Howard, W. M., Arnett, W. D., Clayton, D. D.: Explosive nucleosynthesis in helium zones. Ap. J. 165, 495(1971).

    Article  ADS  Google Scholar 

  • Howard, W. M., Arnett, W. D., Clayton, D. D., Woosley, S. E.: Nucleosynthesis of rare nuclei from seed nuclei in explosive carbon burning. Ap. J. 175, 201 (1972).

    Article  ADS  Google Scholar 

  • Hoyle, F.: The synthesis of elements from hydrogen. M.N.R.A.S. 106, 343 (1946).

    ADS  Google Scholar 

  • Hoyle, F.: On nuclear reactions occuring in very hot stars: I. The synthesis of elements from carbon to nickel. Ap. J. Suppl. 1, 121 (1954).

    Article  ADS  Google Scholar 

  • Hoyle, F., Fowler, W. A.: Nucleosynthesis in supernovae. Ap. J. 132, 565 (1960).

    Article  ADS  Google Scholar 

  • Hoyle, F., Tayler, R. J.: The mystery of the cosmic helium abundance. Nature 203, 1108 (1964).

    Article  ADS  Google Scholar 

  • Hudson, H. S.: Thick-target processes and white light flares. Solar Phys. 24, 414 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  • Hull, M. H., Briet, G.: Coulomb wave functions. In: Handbuch der Physik, vol. XLI: Nuclear reactions; II: Theory (ed. S. Flügge), p. 408. Berlin-Göttingen-Heidelberg: Springer 1959.

    Google Scholar 

  • Iben, I.: The CI37 solar neutrino experiment and the solar helium abundance. Ann. Phys. (N. Y.) 54, 164 (1969).

    Article  ADS  Google Scholar 

  • Inman, C. L., Ruderman, M. A.: Plasma neutrino emission from a hot, dense electron gas. Ap. J. 140, 1025 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  • Ito, K.: Stellar synthesis of the proton-rich heavy elements. Prog. Theor. Phys. (Japan) 26, 990 (1961).

    Article  ADS  Google Scholar 

  • de Jager, C., Kundu, M. R.: A note on bursts of radio emission and high energy (> 20 KeV) X-rays from solar flares. Space Res. 3, 836 (1963).

    Google Scholar 

  • Jelley, J. V.: High-energy γ-ray absorption in space by a 3.5° K microwave field. Phys. Rev. Lett. 16, 479 (1966).

    Article  ADS  Google Scholar 

  • Källén, G.: Radioactive corrections to β-decay and nucleon form factors. Nucl. Phys. B1, 225 (1967).

    Google Scholar 

  • Kinman, T. D.: An attempt to detect deuterium in the solar atmosphere. M.N.R. A. S. 116, 77 (1956).

    ADS  Google Scholar 

  • Klebesadel, R. W., Strong, I. B., Olson, R. A.: Observations of gamma-ray bursts of cosmic origin. Ap. J. 182, L 85 (1973).

    Article  ADS  Google Scholar 

  • Klein, O., Nishina, Y.: Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac (On the scattering of radiation by free electrons according to the new relativistic quantum dynamics by Dirac). Z. Physik 52, 853 (1929).

    Article  ADS  MATH  Google Scholar 

  • Kodama, T.: β-stability line and liquid-drop mass formulas. Prog. Theor. Phys. (Japan) 45, 1112 (1971).

    Article  ADS  Google Scholar 

  • Kolhörster, W.: Messungen der durchdringenden Strahlung im Freiballon in größeren Höhen (Measurements of the penetrating radiation from a balloon at greater altitudes). Phys. Z. 14, 1153(1913).

    Google Scholar 

  • Konopinski, E. J.: The experimental clarification of the laws of β-radioactivity. Ann. Rev. Nucl. Sci. 9, 99 (1959).

    Article  ADS  Google Scholar 

  • Konopinski, E. J.: The theory of beta radioactivity. Oxford: Oxford at the Clarendon Press 1966.

    Google Scholar 

  • Kramers, H. A.: On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag. 46, 836 (1923).

    Google Scholar 

  • Kramers, H. A.: Wellenmechanik und halbzahlige Quantisierung (Wave mechanics and seminumerical quantization). Z. Phys. 39, 828 (1926).

    Article  ADS  MATH  Google Scholar 

  • Kuchowicz, B.: Nuclear astrophysics: A bibliographical survey. New York: Gordon and Breach 1967.

    Google Scholar 

  • Kulsrud, R. M., Ostriker, J. P., Gunn, J. E.: Acceleration of cosmic rays in supernova remnants. Phys. Rev. Lett. 28, 636 (1972).

    Article  ADS  Google Scholar 

  • Lamb, F. K., Pethick, C. J., Pines, D.: A model for compact X-ray sources: Accretion by rotating magnetic stars. Ap. J. 184, 271 (1973).

    Article  ADS  Google Scholar 

  • Landau, L., Pomeranchuk, I.: Limits of applicability of the theory of bremsstrahlung electron and pair production for high energies. Dokl. Akad. Nauk. USSR 92, 535 (1953).

    MATH  Google Scholar 

  • Landstreet, J. D.: Synchrotron radiation of neutrinos and its astrophysical significance. Phys. Rev. 153, 1372(1967).

    Article  ADS  Google Scholar 

  • Lattes, C. M. G., Occhialini, G. P. S., Powell, C. F.: Observations of the tracks of slow mesons in photographic emulsions. Nature 160, 453 (1947).

    Article  ADS  Google Scholar 

  • Lederer, C. M., Hollander, J. M., Perlman, J.: Table of isotopes. New York: Wiley 1967.

    Google Scholar 

  • Lin, R. P., Hudson, H. S.: 10–100 KeV electron acceleration and emission from solar flares. Solar Phys. 17, 412 (1971).

    Article  ADS  Google Scholar 

  • Lingenfelter, R. E.: Solar flare optical, neutron, and gamma-ray emission. Solar Phys. 8, 341 (1969).

    Article  ADS  Google Scholar 

  • Lingenfelter, R. E., Ramaty, R.: High energy nuclear reactions in solar flares. In: High energy nuclear reactions in astrophysics (ed. B. Shen). New York: W. A. Benjamin 1967.

    Google Scholar 

  • Lyons, P. B.: Total yield measurements in 24Mg(α, γ)28Si. Nucl. Phys. A 130, 25 (1969).

    Article  ADS  Google Scholar 

  • Lyons, P. B., Toevs, J. W., Sargood, J. W.: Total yield measurements in 27Al(p, γ)28Si. Phys. Rev. C 2, 22041 (1969).

    Google Scholar 

  • Macklin, R. L.: Were the lightest stable isotopes produced by photodissociation? Ap. J. 162, 353 (1970).

    Article  ADS  Google Scholar 

  • Major, J. K., Biedenharn, L. C.: Sargent diagram and comparative half-lives for electron capture transitions. Rev. Mod. Phys. 26, 321 (1954).

    Article  ADS  Google Scholar 

  • Marion, J. B., Fowler, W. A.: Nuclear reactions with the neon isotopes in stars. Ap. J. 125, 221 (1957).

    Article  ADS  Google Scholar 

  • Marshak, R. E., Bethe, H. A.: On the two-meson hypothesis. Phys. Rev. 72, 506 (1947).

    Article  ADS  Google Scholar 

  • Matinyan, S. G., Tsilosani, N. N.: Transformation of photons into neutrino pairs and its significance in stars. Sov. Phys. JETP 14, 1195 (1962).

    Google Scholar 

  • Mayer, M. G.: On closed shells in nuclei. Phys. Rev. 74, 235 (1948).

    Article  ADS  Google Scholar 

  • McCammon, D., Bunner, A. N., Coleman, P. L., Kraushaar, W. L.: A search for absorption of the soft X-ray diffuse flux by the small Magellanic cloud. Ap. J. 168, L 33 (1971).

    Article  ADS  Google Scholar 

  • Meneguzzi, M., Audouze, J., Reeves, H.: The production of the elements Li, Be, B by galactic cosmic rays in space and its relation with stellar observations. Astron. Astrophys. 15, 337 (1971).

    ADS  Google Scholar 

  • Michaud, G., Fowler, W. A.: Thermonuclear reaction rates at high temperatures. Phys. Rev. C 2, 22041 (1970).

    Google Scholar 

  • Michaud, G., Fowler, W. A.: Nucleosynthesis in silicon burning. Ap. J. 173, 157 (1972).

    Article  ADS  Google Scholar 

  • Migdal, A. B.: Bremsstrahlung and pair production in condensed media at high energies. Phys. Rev. 103, 1811 (1956).

    Article  ADS  MATH  Google Scholar 

  • Milne, D. K.: Nonthermal galactic radio sources. Austr. J. Phys. 23, 425 (1970).

    ADS  Google Scholar 

  • Mitler, H. E.: Cosmic-ray production of deuterium, He3, lithium, beryllium, and boron in the Galaxy. Smithsonian Ap. Obs. Spec. Rpt. 330 (1970).

    Google Scholar 

  • Möller, C.: On the capture of orbital electrons by nuclei. Phys. Rev. 51, 84 (1937).

    Article  ADS  Google Scholar 

  • Morrison, P.: On gamma-ray astronomy. Nuovo Cimento 7, 858 (1958).

    Article  Google Scholar 

  • Morrison, P., Olbert, S., Rossi, B.: The origin of cosmic rays. Phys. Rev. 94, 440 (1954).

    Article  ADS  MATH  Google Scholar 

  • Murota, T., Ueda, A.: On the foundation and the applicability of Williams-Weizsäcker method. Prog. Theor. Phys. 16, 497 (1956).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Murota, T., Ueda, A., Tanaka, H.: The creation of an electron pair by a fast charged particle. Prog. Theor. Phys. 16, 482 (1956).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Myers, W. D.: Droplet model nuclear density distributions and single-particle potential wells. Nucl. Phys. A 145, 387 (1970).

    Article  ADS  Google Scholar 

  • Myers, W. D., Swiatecki, W. J.: Nuclear masses and deformations. Nucl. Phys. 81, 1 (1966).

    Google Scholar 

  • Neddermeyer, S. H., Anderson, C. D.: Note on the nature of cosmic-ray particles. Phys. Rev. 51, 884 (1937).

    Article  ADS  Google Scholar 

  • Nelms, A. T.: Graphs of the Compton energy-angle relationship and the Klein-Nishina formula from 10 KeV to 500 MeV. Cir. Nat. Bur. Stands. No. 542 (1953).

    MATH  Google Scholar 

  • Nishimura, J.: Theory of cascade showers. In: Handbuch der Physik, vol. XLVI/2, p. 1. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Nishina, Y., Takeuchi, M., Ichimiya, T.: On the nature of cosmic ray particles. Phys. Rev. 52, 1198(1937).

    Article  ADS  Google Scholar 

  • Nishina, Y., Tomonaga, S., Kobayasi, M.: On the creation of positive and negative electrons by heavy charged particles. Sci. Pap. Inst. Phys. Chem. Res. Japan 27, 137 (1935).

    Google Scholar 

  • Nikishov, A. I.: Absorption of high-energy photons in the universe. Soviet Phys. J.E.T.P. 14, 393 (1962).

    Google Scholar 

  • Novikov, I. D., Syunyaev, R. A.: An explanation of the anolmalous helium abundance in the star 3 Cen A. Soviet Astr. A. J. 11, 2, 252 (1967).

    ADS  Google Scholar 

  • Oda, M.: Observational results on diffuse cosmic X-rays. In: Non-solar X- and gamma ray astronomy—I. A.U. Symp. No. 37 (ed. L. Gratton). Dordrecht, Holland: D. Reidel 1970.

    Google Scholar 

  • Öpik, E. J.: Stellar models with variable composition: II. Sequences of models with energy generation proportional to the fifteenth power of temperature. Proc. Roy. Irish Acad. A 54, 49 (1951).

    Google Scholar 

  • Öpik, E. J.: The chemical composition of white dwarfs. Mem. Soc. Roy. Sci. Liege 14, 131 (1954).

    Google Scholar 

  • Oppenheimer, J. R., Serber, R.: Note on the nature of cosmic-ray particles. Phys. Rev. 51, 1113(1937).

    Article  ADS  Google Scholar 

  • Ostriker, J. P., Gunn, J. E.: On the nature of pulsars: I. Theory. Ap. J. 157, 1395 (1969).

    ADS  Google Scholar 

  • Pacini, F.: Energy emission from a neutron star. Nature 216, 567 (1967).

    Article  ADS  Google Scholar 

  • Paczynski, B.: Carbon ignition in degenerate stellar cores. Astrophys. Lett. 11, 53 (1972).

    ADS  Google Scholar 

  • Parker, E. N.: Hydromagnetic waves and the acceleration of cosmic rays. Phys. Rev. 99, 241 (1955). Reprod. in: Selected papers on cosmic ray origin theories (ed. S. Rosen). New York: Dover 1969.

    Article  ADS  Google Scholar 

  • Parker, E. N.: Origin and dynamics of cosmic rays. Phys. Rev. 109, 1328 (1958). Reprod. in: Selected papers on cosmic ray origin theories (ed. S. Rosen). New York: Dover 1969.

    Article  ADS  MATH  Google Scholar 

  • Parker, P. D., Bahcall, J. N., Fowler, W. A.: Termination of the proton-proton chain in stellar interiors. Ap. J. 139, 602 (1964).

    Article  ADS  Google Scholar 

  • Patterson, J. R., Winkler, H., Spinka, H. M.: Experimental investigation of the stellar nuclear reaction 16O + 16O at low energies. Bull. Am. Phys. Soc. 13, 1495 (1968).

    Google Scholar 

  • Patterson, J. R., Winkler, H., Zaidins, C. S.: Experimental investigation of the stellar nuclear reaction 12C + 12C at low energies. Ap. J. 157, 367 (1969).

    Article  ADS  Google Scholar 

  • Pauli, W.: Les théories quantities du magnétisive l’électron magnetique (The theory of magnetic quantities: The magnetic electron). Rpt. Septiene Couseil. Phys. Solvay, Bruxelles, 1930.

    Google Scholar 

  • Peterson, L. E., Winckler, J. R.: Gamma ray burst from a solar flare. J. Geophys. Res. 64, 697 (1959).

    Article  ADS  Google Scholar 

  • Peterson, V. L., Bahcall, J. N.: Exclusion principle inhibition of beta decay in stellar interiors. Ap. J. 138, 437 (1963).

    Article  ADS  Google Scholar 

  • Petrosian, V., Beaudet, G., Salpeter, E. E.: Photoneutrino energy loss rates. Phys. Rev. 154, 1445 (1967).

    Article  ADS  Google Scholar 

  • Pinaev, V. S.: Some neutrino pair production processes in stars. Sov. Phys. JETP 18, 377 (1964).

    Google Scholar 

  • Pokrowski, G. I.: Versuch der Anwendung einiger thermodynamischer Gesetzmäßigkeiten zur Beschreibung von Erscheinungen in Atomkernen (Thermodynamical principles of nuclear phenomena). Phys. Z. 32, 374 (1931).

    MATH  Google Scholar 

  • Pollack, J. B., Fazio, G. G.: Production of π mesons and gamma radiation in the Galaxy by cosmic rays. Phys. Rev. 131, 2684 (1963).

    Article  ADS  Google Scholar 

  • Pontecorvo, B.: The universal Fermi interaction and astrophysics. Sov. Phys. JETP 9, 1148 (1959).

    Google Scholar 

  • Prendergast, K. H., Burbidge, G. R.: On the nature of some galactic X-ray sources. Ap. J. 151, L 83 (1968).

    Article  ADS  Google Scholar 

  • Preston, M. A.: Physics of the nucleus. Reading, Mass.: Addison-Wesley 1962.

    MATH  Google Scholar 

  • Pringle, J. E., Rees, M. J.: Accretion disc models for compact X-ray sources. Astron. and Astrophys. 21, 1 (1972).

    ADS  Google Scholar 

  • Radin, J.: Cross section for C12(α, αn)C11 at 920 MeV. Phys. Rev. C 2, 793 (1970).

    ADS  Google Scholar 

  • Ramaty, R.: Gyrosynchrotron emission and absorption in a magnetoactive plasma. Ap. J. 158, 753 (1969).

    Article  ADS  Google Scholar 

  • Ramaty, R., Lingenfelter, R. E.: Galactic cosmic-ray electrons. J. Geophys. Res. 71, 3687 (1966).

    Article  ADS  Google Scholar 

  • Ramaty, R., Petrosian, V.: Free-free absorption of gyrosynchrotron radiation in solar microwave bursts. Ap. J. 178, 241 (1972).

    Article  ADS  Google Scholar 

  • Ramaty, R., Stecker, F. W., Misra, D.: Low-energy cosmic ray positrons and 0.51-MeV gamma rays from the Galaxy. J. Geophys. Res. 75, 1141 (1970).

    Article  ADS  Google Scholar 

  • Rawitscher, G. H.: Effect of the finite size of the nucleus on μ-pair production by gamma rays. Phys. Rev. 101, 423 (1956).

    Article  ADS  Google Scholar 

  • Reeves, H.: Stellar energy sources. In: Stellar structure-stars and stellar systems VIII (ed. L. H. Aller and D. B. McLaughlin). Chicago, Ill.: University of Chicago Press 1963.

    Google Scholar 

  • Reeves, H.: Nuclear reactions in stellar surfaces and their relations with stellar evolution. New York: Gordon and Breach 1971.

    Google Scholar 

  • Reeves, H., Fowler, W. A., Hoyle, F.: Galactic cosmic ray origin of Li, Be and B in stars. Nature 226, 727 (1970).

    Article  ADS  Google Scholar 

  • Reeves, H., Stewart, P.: Positron-capture processes as a possible source of the p elements. Ap. J. 141, 1432(1965).

    Article  ADS  Google Scholar 

  • Reines, F., Cowan, C. L.: Detection of the free neutrino. Phys. Rev. 92, 830 (1953).

    Article  ADS  Google Scholar 

  • Ritus, V. I.: Photoproduction of neutrinos on electrons and neutrino radiation from stars. Sov. Phys. JETP 14, 915 (1962).

    Google Scholar 

  • Röntgen, W. C.: On a new kind of rays. Nature 103, 274 (1896).

    Google Scholar 

  • Rosenberg, L.: Electromagnetic interactions of neutrinos. Phys. Rev. 129, 2786 (1963).

    Article  ADS  MATH  Google Scholar 

  • Rosenfeld, A. H., Barash-Schmidt, N., Barbaro-Galtieri, A., Price, L. R., Söding, P., Worn, C. G., Roos, M., Willis, W. J.: Data on particles and resonant states. Rev. Mod. Phys. 40, 77 (1968).

    Article  ADS  Google Scholar 

  • Rossi, B.: The disintegration of mesotrons. Rev. Mod. Phys. 11, 296 (1939).

    Article  ADS  Google Scholar 

  • Rossi, B.: High energy particles. New York: Prentice-Hall 1952.

    Google Scholar 

  • Rutherford, E.: Uranium radiation and the electrical conduction produced by it. Phil. Mag. 47, 109 (1899).

    Google Scholar 

  • Rutherford, E.: The scattering of α and β particles by matter and the structure of the atom. Phil. Mag. 21, 669(1911).

    MATH  Google Scholar 

  • Rutherford, E.: The structure of the atom. Phil. Mag. 27, 488 (1914).

    Google Scholar 

  • Rutherford, E., Chadwick, J.: The disintegration of elements by α-particles. Nature 107, 41 (1921).

    Article  ADS  Google Scholar 

  • Rutherford, E., Soddy, F.: The cause and nature of radioactivity, part I, part II. Phil. Mag. 4, 370, 569 (1902).

    Google Scholar 

  • Rutherford, E., Soddy, F.: The radioactivity of uranium. A comparative study of the radioactivity of radium and thorium. Condensation of the radioactive emanations. The products of radioactive change and their specific material nature. Phil. Mag. 5, 441, 445, 561, 576 (1903).

    Google Scholar 

  • Ryan, M. J., Ormes, J. F., Balasubrahmanyam, V. K.: Cosmic-ray proton and helium spectra above 50 GeV. Phys. Rev. Lett. 28, 985 (1972).

    Article  ADS  Google Scholar 

  • Ryter, C., Reeves, H., Gradsztajn, E., Audouze, J.: The energetics of L nuclei formation in stellar atmospheres and its relevance to X-ray astronomy. Astron. Astrophys. 8, 389 (1970).

    ADS  Google Scholar 

  • Sakata, S., Inoue, T.: On the correlations between mesons and Yukawa particles. Prog. Theor. Phys. 1, 143 (1946).

    Article  ADS  Google Scholar 

  • Salpeter, E. E.: Nuclear reactions in the stars: I. Proton-proton chain. Phys. Rev. 88, 547 (1952).

    Article  ADS  Google Scholar 

  • Salpeter, E. E.: Nuclear reactions in stars without hydrogen. Ap. J. 115, 326 (1952).

    Article  ADS  Google Scholar 

  • Salpeter, E. E.: Energy production in stars. Ann. Rev. Nucl. Sci. 2, 41 (1953).

    Article  ADS  Google Scholar 

  • Salpeter, E. E.: Electron screening and thermonuclear reactions. Austr. J. Phys. 7, 373 (1954).

    Article  ADS  MATH  Google Scholar 

  • Salpeter, E. E.: Nuclear reactions in stars: II. Protons on light nuclei. Phys. Rev. 97, 1237 (1955).

    Article  ADS  Google Scholar 

  • Salpeter, E. E.: Nuclear reactions in stars. Buildup from helium. Phys. Rev. 107, 516 (1957).

    Article  ADS  Google Scholar 

  • Salpeter, E. E., Van Horn, H. M.: Nuclear reaction rates at high densities. Ap. J. 155, 183 (1969).

    Article  ADS  Google Scholar 

  • Sanders, R. H.: S-process nucleosynthesis in thermal relaxation cycles. Ap. J. 150, 971 (1967).

    Article  ADS  Google Scholar 

  • Sargent, W. L. W., Jugaku, J.: The existence of He3 in 3 Centauri A. Ap. J. 134, 777 (1961).

    Article  ADS  Google Scholar 

  • Sauter, F.: Über den atomaren Photoeffekt bei großer Härte der anregenden Strahlung (Atomic photoelectric effect excited by very hard rays). Ann. Phys. 9, 217 (1931).

    Article  Google Scholar 

  • Schatzman, E.: Les reactions thermonucléaires aux grandes densités, gaz dégénérés et non dégénérés (Thermonuclear reactions at large densities, degenerate and nondegenerate gases). J. Phys. Radium 9, 46 (1948).

    Article  Google Scholar 

  • Schatzman, E.: L’isotope 3He das les étoiles. Application a la théorie des novae et des naines blanches (The helium three isotope in stars. Application of the theory of novae and of white dwarfs). Compt. Rend. 232, 1740 (1951).

    Google Scholar 

  • Schatzman, E.: White dwarfs. Amsterdam: North Holland 1958.

    MATH  Google Scholar 

  • Schott, G. A.: Electromagnetic radiation and the mechanical reactions arising from it. Cambridge: Cambridge Univ. Press 1912.

    Google Scholar 

  • Schramm, D. N.: Explosive r-process nucleosynthesis. Ap. J. 185, 293 (1973).

    Article  ADS  Google Scholar 

  • Schreier, E., Levinson, R., Gursky, H., Kellogg, E., Tananbaum, H., Giacconi, R.: Evidence for the binary nature of Centaurus X-3 from UHURU X-ray observations. Ap. J. 172, L 79 (1972).

    Article  ADS  Google Scholar 

  • Schwartz, D. A.: The isotropy of the diffuse cosmic X-rays determined by OSO-III. Ap. J. 162, 439 (1970).

    Article  ADS  Google Scholar 

  • Schwarzschild, M.: Structure and evolution of stars. Princeton, N. J.: Princeton Univ. Press 1958. Reprod. New York: Dover 1965.

    Google Scholar 

  • Schwarzschild, M., Härm, R.: Red giants of population II. Ap. J. 136, 158 (1962).

    Article  ADS  Google Scholar 

  • Schwarzschild, M., Härm, R.: Hydrogen mixing by helium-shell flashes. Ap. J. 150, 961 (1967).

    Article  ADS  Google Scholar 

  • Seagrave, J. D.: Radiative capture of protons by C13. Phys. Rev. 85, 197 (1952).

    Article  ADS  Google Scholar 

  • Sears, R. L., Brownlee, R. R.: Stellar evolution and age determinations. In: Stellar structure—Stars and stellar systems VIII (ed. L. H. Aller and D. B. McLaughlin). Chicago, Ill.: Univ. of Chicago Press 1965.

    Google Scholar 

  • Seeger, P. A., Fowler, W. A., Clayton, D. D.: Nucleosynthesis of heavy elements by neutron capture. Ap. J. Suppl. No. 9, 11, 121 (1965).

    Article  ADS  Google Scholar 

  • Seeger, P. A., Schramm, D. N.: r-Process production ratios of chronologic importance. Ap. J. 160, L 157 (1970).

    Article  ADS  Google Scholar 

  • Shapiro, M. M., Silberberg, R.: Heavy cosmic ray nuclei. Ann. Rev. Nucl. Sci. 20, 323 (1970).

    Article  ADS  Google Scholar 

  • Shaw, P. B., Clayton, D. D., Michel, F. C.: Photon-induced beta decay in stellar interiors. Phys. Rev. 140, B 1433 (1965).

    Article  ADS  Google Scholar 

  • Shklovsky, I. S.: On the origin of cosmic rays. Dokl. Akad. Nauk (SSSR) 91, 475 (1953).

    Google Scholar 

  • Suberberg, R., Tsao, C. H.: Partial cross-sections in high energy nuclear reactions and astrophysical applications: I. Targets with Z=28. Ap. J. Suppl. No. 220, 25, 315 (1973).

    Article  ADS  Google Scholar 

  • Silk, J.: Diffuse cosmic X and gamma radiation: The isotropic component. Space Sci. Rev. 11, 671 (1970).

    Article  ADS  Google Scholar 

  • Silk, J.: Diffuse X and gamma radiation. Ann. Rev. Astron. Astrophys. 11, 269 (1973).

    Article  ADS  Google Scholar 

  • Simnett, G. H., McDonald, F. B.: Observations of cosmic-ray electrons between 2.7 and 21.5 MeV. Ap. J. 157, 1435 (1969).

    Article  ADS  Google Scholar 

  • SÖding, P., Bartels, J., Barbaro-Galtieri, A., Enstrom, J. E., Lasinski, T. A., Rittlnblrg, A., Rosenfeld, A. H., Trippe, T. G., Barash-Schmidt, N., Bricman, C., Chaioripka, V.: Review of particle properties. Phys. Lett. 39 B, 1 (1972).

    Google Scholar 

  • Spinka, H., Winkler, H.: Experimental investigation of the 16O + 16O total reaction cross section at astrophysical energies. Ap. J. 174, 455 (1972).

    Article  ADS  Google Scholar 

  • Sterne, T. E.: The equilibrium theory of the abundance of the elements: A statistical investigation of assemblies in equilibrium in which transmutations occur. M.N.R.A.S. 93, 736 (1933).

    ADS  Google Scholar 

  • Sternheimer, R. M.: Density effect for the ionization loss in various materials. Phys. Rev. 103, 511(1956).

    Article  ADS  Google Scholar 

  • Stobbe, M. von: Zur Quantenmechanik photoelektrischer Prozesse (On the quantum mechanics of photoelectric processes). Ann. Phys. 7, 661 (1930).

    Article  MATH  Google Scholar 

  • Street, J., Stevenson, E. C.: New evidence for the existence of a particle of mass intermediate between the proton and electron. Phys. Rev. 52, 1003 (1937).

    Article  ADS  Google Scholar 

  • Suess, H. E., Urey, H. C.: Abundances of the elements. Rev. Mod. Phys. 28, 53 (1956).

    Article  ADS  Google Scholar 

  • Takakura, T.: Implications of solar radio bursts for the study of the solar corona. Space Sci. Rev. 5, 80 (1966).

    Article  ADS  Google Scholar 

  • Takakura, T.: Theory of solar bursts. Solar Phys. 1, 304 (1967).

    Article  ADS  Google Scholar 

  • Takakura, T.: Interpretation of time characteristics of solar X-ray bursts referring to associated microwave bursts. Solar Phys. 6, 133 (1969).

    Article  ADS  Google Scholar 

  • Takakura, T., Kai, K.: Energy distribution of electrons producing microwave impulsive bursts and X-ray bursts from the Sun. Pub. Astron. Soc. Japan 18, 57 (1966).

    ADS  Google Scholar 

  • Tananbaum, H., Gursky, H., Kellogg, E. M., Levinson, R., Schreier, E., Giacconi, R.: Discovery of a periodic pulsating binary X-ray source from UHURU. Ap. J. 174, L 143 (1972).

    Article  ADS  Google Scholar 

  • Tayler, R. J.: The origin of the elements. Prog. Theor. Phys. 29, 490 (1966).

    Google Scholar 

  • Taylor, B. N., Parker, W. H., Langenberg, D. N.: Determination of e/h, using macroscopic quantum phase coherence in superconductors: Implications for quantum electrodynamics and the fundamental physical constants. Rev. Mod. Phys. 41, 375 (1969).

    Article  ADS  Google Scholar 

  • Thomas, L. H.: The calculation of atomic fields. Proc. Camb. Phil. Soc. 23, 542 (1927).

    Article  ADS  MATH  Google Scholar 

  • Thomson, J. J.: Conductivity of a gas through which cathode rays are passing. Phil. Mag. 44, 298 (1897).

    Google Scholar 

  • Thomson, J. J.: Conduction of electricity through gases. Cambridge: Cambridge University Press 1906. Republ. New York: Dover 1969.

    Google Scholar 

  • Tiomno, J., Wheeler, J. A.: Charge-exchange reaction of the /i-meson with the nucleus. Rev. Mod. Phys. 21, 153 (1949).

    Article  ADS  MATH  Google Scholar 

  • Toevs, J. W., Fowler, W. A., Barnes, C. A., Lyons, P. B.: Stellar rates for the 28Si(α, γ)32S and 16O(α, γ)20Ne reactions. Ap. J. 169, 421 (1971).

    Article  ADS  Google Scholar 

  • Tolman, R. C.: Thermodynamic treatment of the possible formation of helium from hydrogen. J. Am. Chem. Soc. 44, 1902 (1922).

    Article  Google Scholar 

  • Trubnikov, B. A.: Particle interactions in a fully ionized plasma. Rev. of Plasma Phys. 1, 105 (1965).

    ADS  Google Scholar 

  • Truran, J. W.: The influence of a variable initial composition on stellar silicon burning. Astrophys. and Space Sci. 2, 384 (1968).

    Article  ADS  Google Scholar 

  • Truran, J. W.: Charged particle thermonuclear reactions in nucleosynthesis. Astrophys. and Space Sci. 18, 306 (1972).

    Article  ADS  Google Scholar 

  • Truran, J. W., Arnett, W. D.: Nucleosynthesis in explosive oxygen burning. Ap. J. 160, 181 (1970).

    Article  ADS  Google Scholar 

  • Truran, J. W., Arnett, W. D., Tsuruta, S., Cameron, A. G. W.: Rapid neutron capture in supernova explosions. Astrophys. and Space Sci. 1, 129 (1968).

    Article  ADS  Google Scholar 

  • Truran, J. W., Cameron, A. G. W.: Evolutionary models of nucleosynthesis in the Galaxy. Astrophys. and Space Sci. 14, 179 (1971).

    Article  ADS  Google Scholar 

  • Truran, J. W., Cameron, A. G. W.: The/? process in explosive nucleosynthesis. Ap. J. 171, 89 (1972).

    Article  ADS  Google Scholar 

  • Truran, J. W., Cameron, A. G. W., Gilbert, A.: The approach to nuclear statistical equilibrium. Can. J. Phys. 44, 576 (1966).

    Google Scholar 

  • Truran, J. W., Cameron, A. G. W., Hilf, E.: In: Proc. inst. conf. prop. nucl. far from regular betastability Geneva report CERN 70–30 (1970).

    Google Scholar 

  • Tsuda, H., Tsuji, H.: Synthesis of Fe-group elements by the rapid nuclear process. Prog. Theor. Phys. 30, 34 (1963).

    Article  ADS  Google Scholar 

  • Tsuji, H.: Synthesis of 4 N and their neighboring nuclei by the rapid nuclear process. Prog. Theor. Phys. 29, 699 (1963).

    Article  ADS  Google Scholar 

  • Tsuruta, S., Cameron, A. G. W.: Composition of matter in nuclear statistical equilibrium at high densities. Can. J. Phys. 43, 2056 (1965).

    Article  ADS  Google Scholar 

  • Tsuruta, S., Cameron, A. G. W.: URCA shells in dense stellar interiors. Astrophys. and Space Sci. 7, 374 (1970).

    Article  ADS  Google Scholar 

  • Tsytovich, V. N.: Acceleration by radiation and the generation of fast particles under cosmic conditions. Sov. Astron. A. J. 7, 471 (1964). Reprod. in: Selected papers on cosmic ray origin theories (ed. S. Rosen). New York: Dover 1969.

    ADS  Google Scholar 

  • Tsytovich, V. N.: Statistical acceleration of particles in a turbulent plasma. Usp. Fiz. Nauk. 89, 89 (1966).

    Google Scholar 

  • Überall, H.: High-energy interferance effect of bremsstrahlung and pair production in crystals. Phys. Rev. 103, 1055 (1956).

    Article  ADS  Google Scholar 

  • Überall, H.: Polarization of bremsstrahlung from monocrystalline targets. Phys. Rev. 107, 223 (1957).

    Article  ADS  MATH  Google Scholar 

  • Urey, H. C., Bradley, C. A.: On the relative abundances of the isotopes. Phys. Rev. 38, 718 (1931).

    Article  ADS  Google Scholar 

  • Vauclair, S., Reeves, H.: Spallation processes in stellar surfaces: Anomalous helium ratios. Astron. Astrophys. 18, 215 (1972).

    ADS  Google Scholar 

  • Villard, M. P.: Sur le rayonnement du radium (On the radiation of radium). Compt. Rend. 130, 1178(1900).

    Google Scholar 

  • Wagoner, R. V.: Synthesis of the elements within objects exploding from very high temperatures. Ap. J. Suppl. No. 162, 18, 247 (1969).

    Article  ADS  Google Scholar 

  • Wagoner, R. V.: Big bang nucleosynthesis revisited. Ap. J. 179. 343 (1973).

    Article  ADS  Google Scholar 

  • Wagoner, R. V., Fowler, W. A., Hoyle, F.: On the synthesis of elements at very high temperatures. Ap. J. 148, 3 (1967).

    Article  ADS  Google Scholar 

  • Wallerstein, G., Conti, P. S.: Lithium and beryllium in stars. Ann. Rev. Astr. Astrophys. 7, 99 (1969).

    Article  ADS  Google Scholar 

  • Wapstra, A. H., Gove, N. B.: The 1971 atomic mass evaluation. Nuclear Data Tables 9, 265 (1971).

    ADS  Google Scholar 

  • Webber, W. R.: The spectrum and charge composition of the primary cosmic radiation. In: Handbuch der Physik, vol. XLVI/2: Cosmic Rays II, p. 181 (ed. K. Sitte). Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Weinreb, S.: A new upper limit to the galactic deuterium-to-hydrogen ratio. Nature 195, 367 (1962).

    Article  ADS  Google Scholar 

  • Weizsäcker, C. F. von: Zur Theorie der Kernmassen (On the theory of nuclear masses). Z. Physik 96, 431 (1935).

    Article  ADS  MATH  Google Scholar 

  • Weizsäcker, C. F. von: Über Elementumwandlungen im Innern der Sterne I (On transformation of the elements in stellar interiors I). Phys. Z. 38, 176 (1937).

    MATH  Google Scholar 

  • Weizsäcker, C. F. von: Über Elementumwandlungen im Innern der Sterne II (On transformation of the elements in stellar interiors II). Phys. Z. 39, 633 (1938).

    MATH  Google Scholar 

  • Wentzel, D. G.: Fermi acceleration of charged particles. Ap. J. 137, 135 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  • Wentzel, D. G.: Motion across magnetic discontinuities and Fermi acceleration of charged particles. Ap. J. 140, 1013 (1964).

    Article  ADS  Google Scholar 

  • Wentzel, G.: Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik (An overall description of the quantum requirements for the use of the wave mechanics). Z. Physik 38, 518 (1926).

    Article  ADS  MATH  Google Scholar 

  • Weymann, R.: The energy spectrum of radiation in the expanding universe. Ap. J. 145, 560 (1966).

    Article  ADS  Google Scholar 

  • Weymann, R.: Possible thermal histories of intergalactic gas. Ap. J. 147, 887 (1967).

    Article  ADS  Google Scholar 

  • Weymann, R., Sears, R. L.: The depth of the convective envelope on the lower main sequence and the depletion of lithium. Ap. J. 142, 174 (1965).

    Article  ADS  Google Scholar 

  • Wheaton, W. A., Ulmer, M. P., Baity, W. A., Datlowe, D. W., Elcan, M. J., Peterson, L. E., Klebesadel, R. W., Strong, I. B., Cline, T. L., Desai, V. D.: The direction and spectral vari ability of a cosmic gamma-ray burst. Ap. J. 185, L 57 (1973).

    Article  ADS  Google Scholar 

  • Wheeler, J. A.: Mechanism of capture of slow mesons. Phys. Rev. 71, 320 (1947).

    Article  ADS  Google Scholar 

  • Wigner, E., Seitz, F.: On the constitution of metallic sodium II. Phys. Rev. 46, 509 (1934).

    Article  ADS  Google Scholar 

  • Wildhack, W. A.: The proton-deuteron transformation as a source of energy in dense stars. Phys. Rev. 57, 81 (1940).

    Article  ADS  Google Scholar 

  • De Witt, H. E., Graboske, H. C., Cooper, M. S.: Screening factors for nuclear reactions: I. General theory. Ap. J. 181, 439 (1973).

    Article  ADS  Google Scholar 

  • Wolf, R. A.: Rates of nuclear reactions in solid-like stars. Phys. Rev. 137, B 1634 (1965).

    Article  ADS  Google Scholar 

  • Woosley, S. E., Arnett, W. D., Clayton, D. D.: Hydrostatic oxygen burning in stars: II. Oxygen burning at balanced power. Ap. J. 175, 731 (1972).

    Article  ADS  Google Scholar 

  • Woosley, S. E., Arnett, W. D., Clayton, D. D.: The explosive burning of oxygen and silicon. Ap. J. Suppl. No. 231, 26, 231 (1973).

    Article  ADS  Google Scholar 

  • Yiou, F., Seide, C., Bernas, R.: Formation cross sections of lithium, beryllium, and boron isotopes produced by spallation of oxygen by high-energy protons. J. Geophys. Res. 74, 2447 (1969).

    Article  ADS  Google Scholar 

  • Yukawa, H.: On the interaction of elementary particles I. Proc. Phys. Math. Soc. Japan 17, 48 (1935).

    Google Scholar 

  • Yukawa, H.: On a possible interpretation of the penetrating component of the cosmic ray. Proc. Phys. Math. Soc. Japan 19, 712 (1937).

    Google Scholar 

  • Yukawa, H.: On the interaction of elementary particles IV. Proc. Phys. Math. Soc. Japan 20, 720 (1938).

    MATH  Google Scholar 

  • Zaidi, M. H.: Emission of neutrino-pairs from a stellar plasma. Nuovo Cimento 40 A, 502 (1965).

    Article  ADS  Google Scholar 

  • Zeldovich, I. B.: Nuclear reactions in super-dense cold hydrogen. Sov. Phys. JETP 6, 760 (1968).

    ADS  Google Scholar 

  • Zobel, W., Maienschein, F. C., Todd, J. H., Chapman, G. T.: ONRL 4183 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, K.R. (1974). Nuclear Astrophysics and High Energy Particles. In: Astrophysical Formulae. Springer Study Edition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11188-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11188-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09064-9

  • Online ISBN: 978-3-662-11188-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics