Skip to main content

Wheat × Thinopyrum Hybrids

  • Chapter
Wheat

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 13))

Abstract

The perennial grasses of the Poaceae tribe Triticeae have broadened the genetic base of wheat (Triticum L.) since the first hybrids were made during the early 1930’s (Tsitsin 1962, 1975). Only a few species were involved in these early hybridization programs, but as advances in hybridization techniques (Kruse 1967, 1974), embryo rescue (Rommel 1958), chromosome doubling (Blakeslee and Avery 1937; Gavaudan and Gavaudan 1937), control of chromosome pairing (Riley and Chapman 1958; Wall et al. 1971; Riley 1974; Sears 1976), and chromosome manipulations (Morris and Sears 1967; Riley et al. 1968; Sears 1981,1983; Riley and Law 1984; Gale and Miller 1987; Knott 1987) were made, more species became utilized in the wide crosses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso LC, Kimber G (1980) A hybrid between diploid Agropyron junceum and Triticum aestivum. Cereal Res Commun 8: 355–358

    Google Scholar 

  • Alonso LC, Kimber G (1981) The analysis of meiosis in hybrids. II. Triploid hybrids. Can J Genet Cytol 23: 221–234

    Google Scholar 

  • Appels R, Reddy P, McIntyre CL, Moran LB, Frankel OH, Clarke BC (1989) The molecular-cytogenetic analysis of grasses and its application to studying relationships among species of the Triticeae. Genome 31: 122–133

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JM (1936) Hybridization of Triticum and A gropyron. I. Crossing results and description of the first generation. Can J Res 14-C: 190–202

    Google Scholar 

  • Armstrong JM, McLennan HA (1944) Amphiploidy in Triticum-Agropyron hybrids. Sci Agric 24: 285–298

    Google Scholar 

  • Bajaj YPS, Gosal SS (1986) Biotechnology of wheat improvement. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2. Crops I. Springer, Berlin Heidelberg New York Tokyo, pp 3–38

    Google Scholar 

  • Bakshi JS, Schlehuber AM (1959) Identification of a substituted chromosome pair in a Triticum- Agropyron line. Proc Okl Acad Sci 39: 16–21

    Google Scholar 

  • Barkworth ME, Dewey DR (1985) Genomically based genera in the perennial Triticeae of North America: identification and membership. Am J Bot 72: 767–776

    Article  Google Scholar 

  • Baum BR, Estes JR, Gupta PK (1987) Assessment of the genomic system of classification in the Triticeae. Am J Bot 79: 1388–1395

    Article  Google Scholar 

  • Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants by treatment with colchicine. J Heredity 28: 393–411

    CAS  Google Scholar 

  • Brajcich P, Pfeiffer W, Autrique E (1986) Durum wheat. Names; parentage; pedigrees and origins. CIMMYT, Mexico, DF

    Google Scholar 

  • Brakke MK (1987) Virus diseases of wheat. In: Heyne EG (ed) Wheat and wheat improvement. Second Ed Am Soc Agron, Crop Sci Soc Am, Soil Sci Soc Am, Madison, WI, pp 585–624

    Google Scholar 

  • Brettell RIS, Banks PM, Cauderon Y, Chen X, Cheng ZM, Larkin PJ, Waterhouse PM (1988) A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Ann Appl Biol 113: 599–603

    Article  Google Scholar 

  • Caldwell RM, Schafer JF, Compton LE, Patterson FL (1956) Resistencia a la roya de la hoja derivada de Agropyron elongatum. (Leaf rust resistance derived from A. elongatum) In: Rep 3rd Int Conf on wheat Rust, Mexico, DF, pp 102–104

    Google Scholar 

  • Cauderon Y (1958) Etude cytogénétique des Agropyron français et de leurs hybrides avec les Blés. Ann Amél Plantes 58: 389–567

    Google Scholar 

  • Cauderon Y (1966a) Genome analysis in the genus Agropyron. In: Proc 2nd Int Wheat genetics Symp, Lund. Hereditas (Suppl) 2: 218–234

    Google Scholar 

  • Cauderon Y (1966b) Etude cytogénétique de l’évolution du matériel issu du croisement entre Triticum aestivum et Agropyron intermedium. I. Création de types d’addition stables. Ann Amél Plantes 16: 43–70

    Google Scholar 

  • Cauderon Y (1977) Alloploidy. In: Interspecific hybridization in plant breeding. Proc 8th Eucarpia Congr, Madrid, pp 131–143

    Google Scholar 

  • Cauderon Y (1979) Use ofAgropyron species for wheat improvement. In: Proc Conf Broadening genetic base of crops. Pudoc, Wageningen, pp 175–186

    Google Scholar 

  • Cauderon Y, Ryan G (1974) Aegilops speltoides promotion of homoeologous pairing in one Triticum aestivum X Agropyron intermedium derivative. Wheat Inf Sery 39: 1–5

    Google Scholar 

  • Cauderon Y, Saigne R (1961) New interspecific and intergeneric hybrids involving Agropyron. Wheat Inf Sery 12: 13–14

    Google Scholar 

  • Cauderon Y, Saigne R, Dauge M (1973) The resistance of wheat rusts of Agropyron intermedium and its use in wheat improvement. In: Proc 4th Int wheat genetics Symp, Columbia, MO, pp 401–407

    Google Scholar 

  • Cauderon Y, Autran JC, Joudrier P, Kobrehel K (1978) Identification de chromosomes d’Agropyron intermedium impliqués dans la synthèse des gliadines, des ß-amylases et des péroxidases à l’aide de lignées d’addition Ble X Agropyron. Ann Amél Plantes 28: 257–267

    CAS  Google Scholar 

  • Charpentier A, Feldman M, Cauderon Y (1986a) Chromosomal pairing at meiosis of F, hybrid and backcross derivatives of Triticum aestivum X hexaploid Agropyron junceum. Can J Genet Cytol 28: 1–6

    Google Scholar 

  • Charpentier A, Feldman M, Cauderon Y (1986b) Genetic control of meiotic pairing in tetraploid Agropyron elongatum. I. Pattern of pairing in natural and induced tetraploids and in F, triploid hybrids. Can J Genet Cytol 28: 783–788

    Google Scholar 

  • Charpentier A, Cauderon Y, Feldman M (1988a) Control of chromosome pairing in Agropyron elongatum. In: Proc 7th Wheat genetics Symp, Cambridge, pp 231–236

    Google Scholar 

  • Charpentier A, Feldman M, Cauderon Y (1988b) The effect of different doses of Phl on chromosome pairing in hybrids between tetraploid Agropyron elongatum and common wheat. Genome 30: 974–977

    Article  Google Scholar 

  • Charpentier A, Feldman M, Cauderon Y (1988c) The effect of different Agropyron elongatumchromosomes on pairing in Agropyron — common wheat hybrids. Genome 30: 978–983

    Article  Google Scholar 

  • Chenicek KJ, Hart GE (1987) Identification and chromosomal locations of acontinase gene loci in Triticeae species. Theor Appl Genet 74: 261–268

    Article  Google Scholar 

  • Chueca MC, Cauderon Y (1977) Induction d’apariement homeologues entre les chromosome du Blétendre et un télosome d’Agropyron intermedium par croisement avec des Aegilops. Ann Amél Plantes 27: 135–150

    Google Scholar 

  • Cocking EC, Davey MR (1987) Gene transfer in cereals. Science 236: 1259–1262

    Article  PubMed  CAS  Google Scholar 

  • Comecau A, Fedak G, St-Pierre CA, Thieriault C (1985) Intergeneric hybrids between Triticum aestivum and species of Agropyron and Elymus. Cereal Res Commun 13: 149–153

    Google Scholar 

  • de la Pena A, Lörz H, Schell J (1987) Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature (London) 325: 274–276

    Article  Google Scholar 

  • Dewey DR (1962) The genome structure of intermediate wheatgrass. J Hered 53: 282–290

    Google Scholar 

  • Dewey DR (1963a) Cytology and morphology of a synthetic Agropyron trichophorum X Agropyron desertorum hybrid. Am J Bot 50: 552–562

    Article  Google Scholar 

  • Dewey DR (1983b) Morphology and cytology of synthetic hybrids of Agropyron trichophorum X Agropyron cristatum. Am J Bot 50: 1028–1034

    Article  Google Scholar 

  • Dewey DR (1964) Synthetic hybrids of New World and Old World agropyrons. I. TetraploidAgropyron spicatum x diploid Agropyron cristatum. Am J Bot 51: 763–769

    Article  Google Scholar 

  • Dewey DR (1967) Synthetic hybrids of New World and Old World agropyrons. IV.TetraploidAgropyron spicatum F. inerme x tetraploid Agropyron desertorum. Am J Bot 54: 403–409

    Article  Google Scholar 

  • Dewey DR (1975) Genome relationships of diploid Agropyron libanoticum with diploid and tetraploid Agropyron stipifolium. Bot Gaz 136: 116–121

    Article  Google Scholar 

  • Dewey DR (1978) Morphology, cytology and fertility of Agropyron podperae and its hybrids with A. intermedium. Crop Sci 18: 315–320

    Article  Google Scholar 

  • Dewey DR (1980) Hybrids and induced amphiploids involving Agropyron curvifolium, A. repens and A. desertorum. Crop Sci 20: 473–478

    Article  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization in the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 209–279

    Chapter  Google Scholar 

  • Dewey DR, Pendse PC (1967) Cytogenetics of crested wheatgrass triploids. Crop Sci 7:345–349 Driscoll CJ (1981) New approaches to wheat breeding. In: Evans LT, Peacock WJ (eds) Wheat science-today and tomorrow. Univ Press, Cambridge, pp 97–106

    Google Scholar 

  • Dvorak J (1971) Hybrids between a diploid Agropyron elongatum and Aegilops squarrosa. Can J Genet Cytol 21: 243–254

    Google Scholar 

  • Dvorak J (1980) Homoeology between Agropyron elongatum chromosomes and T. aestivum chromosomes. Can J Genet Cytol 22: 237–259

    Google Scholar 

  • Dvorak J (198la) Chromosome differentiation in polyploid species of Elytrigia,with special reference to the evolution of diploid-like chromosome pairing in polyploid species. Can J Genet Cytol 23:287–303

    Google Scholar 

  • Dvorak J (198 lb) Genome relationships among E. stipfolia, E. elongata 4x, E. caespitosa, E. intermedia and E. elongata 10x. Can J Genet Cytol 23:481–492

    Google Scholar 

  • Dvorak J (1987) Chromosomal distribution of genes in diploid Elytrigia elongata that promote or suppress pairing of wheat homoeologous chromosomes. Genome 29: 34–40

    Article  Google Scholar 

  • Dvorak J, Chen KC (1984) Phylogenetic relationships between chromosomes of wheat and chromosome 2E of Elytrigia elongata. Can J Genet Cytol 26: 128–132

    Google Scholar 

  • Dvorak J, Knott DR (1974) Disomic and diteleosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Can J Genet Cytol 16: 399–417

    Google Scholar 

  • Dvorak J, Ross K (1986) Expression of tolerance of Na`, K*, Mg’, Cl-and SO ions and sea water in the amphiploid of Triticum aestivum X Elytrigia elongata. Crop Sci 26: 658–660

    Article  CAS  Google Scholar 

  • Dvorak J, Sosulski FW (1974) Effects of additions and substitutions of Agropyron elongatum chromosomes on quantitative characters in wheat. Can J Genet Cytol 16: 627–637

    Google Scholar 

  • Dvorak J, McGuire PE, Mendlinger S (1984) Inferred chromosome morphology of the ancestral genome of Triticum. Plant Syst Evol 144: 209–220

    Article  Google Scholar 

  • Dvorak J, Ross K, Mendlinger S (1985) Transfer of salt tolerance from Elytrigia pontica (Podp.) Holub to wheat by the addition of an incomplete Elytrigia genome. Crop Sci 25: 306–309

    Article  Google Scholar 

  • Dvorak J, Kasarda DD, Dietler MD, Lew EJL, Anderson OD, Litts J, Shewry PR (1986) Chromosomal location of seed storage protein genes in the genome of Elytrigia elongata. Can J Genet Cytol 28: 818–830

    CAS  Google Scholar 

  • Eizenga GC (1987) Locating the Agropyron segment in wheat-A gropyron transfer no. 12. Genome 29: 365–366

    Article  Google Scholar 

  • Elliot FC (1957) X-ray induced translocation of Agropyron stem rust resistance to common wheat. J Hered 48: 77–81

    CAS  Google Scholar 

  • Endo TR, Gill BS (1984) The heterochromatin distribution and genome evolution in diploid species of Elymus and Agropyron. Can J Genet Cytol 26: 669–678

    Google Scholar 

  • Espinase A, Kimber G (1981) The analysis of meiosis in hybrids. IV. Pentaploid hybrids. Can J Genet Cytol 23: 623–638

    Google Scholar 

  • Evans LE (1962) Karyotype analysis and chromosome designations for diploid Agropyron elongatum (Host) P.B. Can J Genet Cytol 4: 267–271

    Google Scholar 

  • Fatih AMB (1983) Analysis of the breeding potential of wheat-Agropyron and wheat-Elymus derivatives. I. Agronomic and quality characteristics. Hereditas 98: 287–295

    Article  PubMed  CAS  Google Scholar 

  • Fatih AMB (1986) Genotypic and phenotypic associations of grain yield, grain protein and yield related characteristics in wheat-Agropyron derivatives. Hereditas 105: 141–153

    Article  Google Scholar 

  • Fedak G (1985a) Intergeneric hybrids between Hordeum vulgare and Agropyron intermedium var. trichophorum. Z Pflanzenzucht 95: 45–49

    Google Scholar 

  • Fedak G (1985b) Alien species as sources of physiological traits for wheat improvement. Euphytica 34: 673–680

    Article  Google Scholar 

  • Fedak G, Armstrong KC, Handyside R (1988) Use of callus cultures to induce alien chromosome

    Google Scholar 

  • translocations in wheat. XVI Int Congr Genet, Toronto, Abstr 35.37.8 of poster presentation Feldman M (1983) Gene transfer from wild species into cultivated plants. Acta Biol Yug Genet 15: 145–161

    Google Scholar 

  • Forster BP, Miller TE (1985) A 513 deficient hybrid between Triticum aestivum and Agropyron junceum. Cereal Res Commun 13: 93–95

    Google Scholar 

  • Forster BP, Gorham J, Miller TE (1987a) Salt tolerance of an amphiploid between Triticumaestivum and Agropyron junceum. Plant Breed 98: 1–15

    Article  CAS  Google Scholar 

  • Forster BP, Reader SM, Forsyth SA, Koebner RMD, Miller TE, Gale MD, Cauderon Y (1987b) An assessment of the homoeologyof six Agropyron intermedium chromosomes added to wheat. Genet Res 50: 91–97

    Article  CAS  Google Scholar 

  • Forster BP, Miller TE, Law CN (1988a) Salt tolerance of two wheat-Agropyron junceum disomic addition lines. Genome 30: 559–564

    Google Scholar 

  • Forster BP, Miller TE, Law CN (1988b) The potential for transferring genes conferring salt tolerance from Thinopyrum bessarabicum into wheat. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 267–270

    Google Scholar 

  • Gale MD, Miller TE (1987) The introduction of alien genetic variation into wheat. In: Lupton FGH (ed) Wheat breeding: its scientific basis. Chapman and Hall, London, pp 173–210

    Google Scholar 

  • Gale MD, Sharp PJ, Chao S, Law CN (1989) Applications of genetic markers in cytogenetic manipulations of wheat genomes. Genome 31: 137–142

    Article  Google Scholar 

  • Gasser CS, Fraley R (1989) Genetically engineering plants for crop improvement. Science 244: 1293–1299

    Article  PubMed  CAS  Google Scholar 

  • Gaul H (1953) Genomanalytische Untersuchungen bei Triticum X Agropyron intermedium unter Berucksichtingung von Secale cereale X A. intermedium. Z Indukt Abstamm Vererb 85: 505–546

    CAS  Google Scholar 

  • Gavaudan P, Gavaudan N (1937) Modifications numériques et morphlogiques des chromosomes induites chez les végétaux por l’action de la colchicine. C R Soc Biol Paris 126: 985–988

    CAS  Google Scholar 

  • Giorgi B (1978) A homoeologous pairing mutant isolated in Triticum durum cv. Cappelli. Mutat Breed Newsl 11: 4–5

    Google Scholar 

  • Goodman RM, Hauptli H, Crossway A, Knauf VC (1987) Gene transfer in crop improvement. Science 236: 48–54

    Article  PubMed  CAS  Google Scholar 

  • Gorham J, Wyn Jones RG (1989) Utilization of Triticeae for improving salt tolerance in wheat. In: Proc Int Symp Evaluation and utilization of genetic resources in wheat improvement. ICARDA, Aleppo (in press)

    Google Scholar 

  • Gorham J, McDonnell E, Budrewicz E, Wyn Jones RG (1985) Salt tolerance in the Triticeae: growth and solute accumulation in leaves of Thinopyrum bessarabicum. J Exp Bot 36: 1021–1031

    Article  CAS  Google Scholar 

  • Gorham J, Budrewicz E, McDonnell E, Wyn Jones RG (1986a) Salt tolerance in the Triticeae: salinity-induced changes in the leaf solute composition of some perennial Triticeae. J Exp Bot 37: 1114–1128

    Article  CAS  Google Scholar 

  • Gorham J, Forster BP, Budrewicz E, Wyn Jones RG, Miller TE, Law CN (1986b) Salt tolerance in the Triticeae: solute accumulation and distribution in an amphiploid derived from Triticum aestivum cv. Chinese Spring and Thinopyrum bessarabicum. J Exp Bot 37: 1435–1449

    Article  CAS  Google Scholar 

  • Gould F (1988) Evolutionary biology and genetically engineered crops. Bio Science 38: 26–33

    Google Scholar 

  • Gulick P, Dvorak J (1987) Gene induction and repression by salt treatment in roots of the salinity sensitive Chinese Spring x Elytrigia elongata amphiploid. Proc Natl Acad Sci USA 84: 99–103

    Article  PubMed  CAS  Google Scholar 

  • Gulick PJ, Edge M, Ross K, Dvofâk J (1987) Genetic and molecular structure of salt tolerance of Elytrigia elongata as expressed in bread wheat. J Cell Biochem Suppl 11B: 36

    Google Scholar 

  • Gupta PK, Baum BR (1989) Stable classification and nomendature in the Triticeae: desirability, limitations and prospects. Euphytica 41: 191–197

    Google Scholar 

  • Gupta PK, Fedak G (1986a) Intergeneric hybrids between x Triticosecalecv. Welsh (2n = 42) and three genotypes of Agropyrum intermedium (2n =42). Can J Genet Cytol 28: 176–179

    Google Scholar 

  • Gupta PK, Fedak G (1986b) Hybrids of bread wheat (Triticum aestivum) with Thinopyrum scirpeum (4x) and Thinopyrum junceum (6x). Z Pflanzenzücht 97: 107–111

    Google Scholar 

  • Gupta PK, Fedak G (1988) Meiotic analysis of callus regenerated plants from a cross between Triticum aestivum (2n = 42) and Agropyron elongatum (2n = 70). In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 293–296 -

    Google Scholar 

  • Gustafson JP, Dera AR (1989) Alien gene manipulation and expression in wheat. Genome 31: 134–136

    Article  Google Scholar 

  • Hart GE (1987) Genetic and biochemical studies of enzymes. In: Heyne EG (ed) Wheat and wheat improvement. Second ed Am Soc Agron, Crop Sci Soc Am, Soil Sci Soc Am, Madison, WI, pp 199–214

    Google Scholar 

  • Hart GE, Tuleen NE (1983) Chromosomal location of eleven Elytrigia elongata ( Agropyron elon-gatum) isozyme structural genes. Genet Res 41: 181–202

    Article  Google Scholar 

  • Hart GE, McMillin DE, Sears ER (1976) Determination of the chromosonal location of a glutamate oxaloacetate transaminase structural gene using Triticum-Agropyron translocations. Genetics 83: 49–61

    PubMed  CAS  Google Scholar 

  • Heneen WK (1963) Meiosis in the interspecific hybrid Elymus farctus x E. repens (= Agropyronjunceum X A. repens). Hereditas 49: 107–118

    Article  Google Scholar 

  • Heneen WK (1977) Chromosomal polymorphism in isolated populations of Elymus (Agropyron) in the Aegean. III. Elymus diae. Hereditas 86: 225–236

    Article  Google Scholar 

  • Heneen WK, Runemark H (1972) Cytology of the Elymus (Agropyron) elongatus complex. Hereditas 70: 155–164

    Article  Google Scholar 

  • Hsiao C,Wang RRC, Dewey DR (1986) Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Can J Genet Cytol 28: 109–120

    Google Scholar 

  • Jaaska V (1972) Enzyme variability and phylogenetic relationships in the grass genera A gropyron Gaertn. and Elymus L. I. Agropyron intermedium (Host) Beauv. and Agropyron elongatum (Host) Beauv. Proc Acad Sci Estonian SSR 21: 207–218

    CAS  Google Scholar 

  • Jackson RG, Casey J (1982) Cytogenetic analyses of autoploids: Models and methods for triploid to octoploids. Am J Bot 69: 487–501

    Google Scholar 

  • Jauhar PP (1988a) A reassessment of genome relationships between Thinopyrum bessarabicum and T. elongatum of the Triticeae. Genome 30: 903–914

    Article  Google Scholar 

  • Jauhar PP (1988b) Meiotic and reproductive stability of Thinopyrum bessarabicum x Th. elongatum amphiploids: Their potential as sources of genes for wheat improvement. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 323–328

    Google Scholar 

  • Jauhar PP, Crane CF (1989) An evaluation of Baum et al.’s assessment of the genomic system of classification in the Triticeae. Am J Bot 76: 571–576

    Article  Google Scholar 

  • Jenkins BC, Mochizuki A (1957) A new amphiploid from a cross between Triticum durum and Agropyron elongatum (2n = 14). Wheat Inf Sery 5: 15

    Google Scholar 

  • Johnson R (1966) The substitution of a chromosome from Agropyron elongatum for chromosomes of hexaploid wheat. Can J Genet Cytol 8: 279–292

    Google Scholar 

  • Johnson R, Kimber G (1967) Homoeologous pairing of a chromosome from Agropyron elongatum with those of Triticum aestivum and Aegilops speltoides. Genet Res 10: 63–71

    Article  Google Scholar 

  • Joshi BC (1986) Cytogenetics of wheat. India J Genet (Suppl) 46: 72–79

    Google Scholar 

  • Kellogg E (1989) Comments on genomic genera in the Triticeae (Poaceae). Am J Bot 76: 796–805

    Article  Google Scholar 

  • Kerguelen M (1975) Les Gramineae (Poaceae) de la flore française. Essai de mise au point taxonomique et nomenclature. Lejeunia N S 75: 1–344

    Google Scholar 

  • Kibirige-Sebunya I, Knott DR (1983) Transfer of stem rust resistance to wheat from an Agropyron chromosome having a gametocidal effect. Can J Genet Cytol 25: 215–221

    Google Scholar 

  • Kihara H (1954) Considerations on the evolution and disribution of Aegilops species based on the analyser-method. Cytologia 19: 336–357

    Article  Google Scholar 

  • Kihara H (1963) Interspecific relationships in Triticum and Aegilops. Seiken Ziho 15: 1–12

    Google Scholar 

  • Kihara H (1975) Origin of cultivated plants with special reference to wheat. Seiken Ziho 25: 1–24

    Google Scholar 

  • Kihara H (1982) Wheat studies — retrospect and prospects. Elsevier, Amsterdam

    Google Scholar 

  • Kihara H, Nishiyama I (1930) Genomanalyse bei Triticum and Aegilops. I. Genomaffinitäten in tri-, tetra-and pentaploiden Weizenbastarden. Cytologia 1: 270–284

    Google Scholar 

  • Kimber G (1983) Genome analysis in the genus Triticum. In: Proc 6th.Int Wheat genetics Symp, Kyoto, pp 23–28

    Google Scholar 

  • Kimber G (1984a) Evolutionary relationships and their influence on plant breeding. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 281–293

    Chapter  Google Scholar 

  • Kimber G (1984b) Technique selection for the introduction of alien variation in wheat. Z Pflanzenzücht 92: 215–221

    Google Scholar 

  • Kimber G, Abu Bakar M (1979) Wheat hybrid information system. Cereal Res Commun 7: 257–280

    Google Scholar 

  • Kimber G, Alonso LC (1981) The analysis of meiosis in hybrids. III. Tetraploid hybrids. Can J Genet Cytol 23: 235–254

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat: an introduction. Coll Agric Univ Missouri, Columbia, MO, Spec Rep 353

    Google Scholar 

  • Kimber G, Hulse MM (1978) The analysis of chromosome pairing in hybrids and the evolution of wheat. In: Proc 5th Int Wheat genetics Symp, New Delhi, pp 63–72

    Google Scholar 

  • Kimber G, Riley R (1963) Haploid angiosperms. Bot Rev 29: 480–531

    Article  Google Scholar 

  • Knott DR (1958) The inheritance in wheat of a blue endosperm colour derived from Agropyron elongatum. Can J Bot 3: 572–574

    Google Scholar 

  • Knott DR (1961) The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can J Plant Sci 41: 109–143

    Article  Google Scholar 

  • Knott DR (1964) The effect on wheat of an Agropyron chromosome carrying rust resistance. Can J Genet Cytol 6: 500–507

    Google Scholar 

  • Knott DR (1980) Mutation of a gene for yellow pigment linked to Lr19 in wheat. Can J Genet Cytol 22: 651–654

    CAS  Google Scholar 

  • Knott DR (1986) Novel approaches to wheat breeding. In: Smith EL (ed) Genetic improvement in yield in wheat. Crop Sci Soc Am, Spec Publ 13, pp 25–40

    Google Scholar 

  • Knott DR (1987) Transferring alien genes to wheat. In: Heyne EG (ed) Wheat and wheat improvement. Second ed Am Soc Agron, Crop Sci Soc Am, Soil Sci Soc Am, Madison, WI, pp 462–471

    Google Scholar 

  • Knott DR, Dvorak J (1976) Alien germplasm as a source of resistance to disease. Annu Rev Phytopathol 14: 211–235

    Article  Google Scholar 

  • Knott DR, Dvorak J, Nanda JS (1977) The transfer to wheat and homoeology of an A gropyron elongatum chromosome carrying resistance to stem rust. Can J Genet Cytol 19: 75–79

    Google Scholar 

  • Krolow KD, Lukaszewski AJ, Gustafson JP (1985) Preliminary results on the incorporation of D and E-genome chromosomes into 4x triticale. Proc EUCARPIA meeting on Triticale, Claremont-Ferrand, pp 289–295

    Google Scholar 

  • Kruse A (1967) Intergeneric hybrids between Hordeum vulgare L. ssp. distichum (v. Pallas, 2n 14) and Secale cereale L. (v. Petkus, 2n = 14). Kgl Vet Landboh0jsk Arsskr, pp 82–92

    Google Scholar 

  • Kruse A (1974) Hordeum X Agropyrum hybrids. Hereditas 77:291–294

    Google Scholar 

  • Lacadena JR (1977) Interspecific gene transfer in plant breeding. In: Interspecific hybridization in plant breeding. Proc 8th Eucarpia Congr, Madrid, pp 45–62

    Google Scholar 

  • Lacadena JR, Ramos A (1968) Meiotic behavior in a haploid plant of Triticum durum Desf. Genet Iber 20: 55–71

    Google Scholar 

  • Lapitan NLV, Gill BS, Sears RG (1987) Genomic and phylogenetic relationships among rye and perennial species in the Triticeae. Crop Science 27: 682–687

    Article  Google Scholar 

  • Larson RI, Atkinson TG (1970) Identity of the wheat chromosomes replaced by A gropyron chromosomes in a triple alien chromosome substitution line immune to wheat streak mosaic. Can J Genet Cytol 12: 145–150

    Google Scholar 

  • Larson RI, Atkinson TG (1972) Isolation of A gropyron elongatum chromosomes conferring resistance to the wheat curl mite on a Triticum/Agropyron hybrid. Can J Genet Cytol 14: 731–732

    Google Scholar 

  • Law CN, Snape JW, Worland Al (1987) Aneuploidy in wheat and its uses in genetic analysis. In: Lupton FGH (ed) Wheat breeding: its scientific basis. Chapman and Hall, London, pp 71–108

    Google Scholar 

  • Li Z, Mu S, Jiang L, Zhou H (1983) A cytogenetic study of blue-grained wheat. Z Pflanzenzücht 90: 265–272

    Google Scholar 

  • Liang GH, Wang RRC, Niblett CL, Heyne EG (1979) Registration of B–6–37–1 wheat germplasm (Reg. N. EP118). Crop Sci 19: 421

    Article  Google Scholar 

  • Lilienfeld FA (1951) Kihara H: Genome analysis in Triticum and Aegilops. Concluding review. Cytologia 16: 101–123

    Article  Google Scholar 

  • Limin AE, Fowler DB (1988) Cold hardiness expression in interspecific hybrids and amphiploids of the Triticeae. Genome 30: 361–365

    Article  Google Scholar 

  • Littlejohn GM (1988) Salt tolerance of amphiploids and derivatives of crosses between wheat and wild

    Google Scholar 

  • Thinopyrum species. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 845–849

    Google Scholar 

  • Liu ZW, Wang RRC (1989) Genome analysis of Thinopyrum caespitosum. Genome 32: 141–145

    Article  Google Scholar 

  • Lörz H, Göbel E, Brown P (1988) Advances in tissue culture and progress towards genetic transformation of cereals. Plant Breeding 100: 1–25

    Article  Google Scholar 

  • Löve A (1980) Chromosome number reports LXVII. Poaceae-Triticeae. Taxon 29: 163–169

    Article  Google Scholar 

  • Löve A (1982) Generic evolution of the wheatgrasses. Biol Zentralbl 101: 199–212

    Google Scholar 

  • Löve A (1984) Conspectus of the Triticeae. Fedd Rep 95: 425–521

    Google Scholar 

  • Löve A (1986) Some taxonomical adjustments in eurasiatic wheatgrasses. V eroeffGeobot Inst Eidg Tech Hochsch Stift Puebel Zuer 87: 43–52

    Google Scholar 

  • Love RM, Suneson CA (1945) Cytogenetics of certain Triticum-Agropyron hybrids and their fertile derivatives. Am J Bot 32: 451–456

    Article  Google Scholar 

  • Lucas H, Jahier J (1988) Phylogenetic relationships in some diploid species of Triticeae: cytogenetic analysis of interspecific hybrids. Theor Appl Genet 75: 498–502

    Article  Google Scholar 

  • Lyubimova VF (1970) Cytogenetic investigations of hybrids obtained from crossing Agropyron glaucum Roem. et. Schult. with Agropyron elongatum (Host) B.P. Genetika 6: 5–14

    Google Scholar 

  • Maan SS (1987) Interspecific and intergeneric hybridization in wheat. In: Heyne EG (ed) Wheat and wheat improvement. Second ed Am Soc Agron, Crop Sci Soc Am, Soil Sci Soc Am, Madison, WI, pp 453–461

    Google Scholar 

  • Maan SS, Gordon J (1988) Compendium of alloplasmic lines and amphiploids in the Triticeae. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 1325–1371

    Google Scholar 

  • Marais GF (1990) Preferential transfer in bread wheat of a chromosome with a segment derived from Thinopyrum distichum (Thunb) Löve. Plant Breeding 104: 152–159

    Article  Google Scholar 

  • Marais GF, Marais A (1989) The assignment of a Thinopyrum distichum (Thunb) Löve derived translocation to the long arm of wheat chromosome 7D by using endopepidase polymorphisms. Theor Appl Genet 79: 182–186

    Google Scholar 

  • Marais GF, Roux HS, Pretorius ZA, Pienaar RdeV (1988) Resistance to leaf rust of wheat derived from Thinopyrum distichum (Thunb.) Löve. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 369–373

    Google Scholar 

  • Martin A, Chapman V (1977) A hybrid between Hordeum chilense X Triticum aestivum. Cereal Res Commun 5: 365–368

    Google Scholar 

  • May CE, Appels R (1987) The molecular genetics of wheat: toward an understanding of 16 billion base pairs of DNA. In: Heyne EG (ed) Wheat and wheat improvement. Second ed Am Soc Agron, Crop Sci Soc Am, Soil Sci Soc Am, Madison, WI, pp 166–198

    Google Scholar 

  • McGuire PE, Dvofâk J (1981) High salt-tolerance potential in wheatgrasses. Crop Sci 21: 702–705

    Article  Google Scholar 

  • McGuire PE (1984) Chromosome pairing in triploid and tetraploid hybrids in Elytrigia (Triticeae, Poaceae). Can J Genet Cytol 26: 519–522

    Google Scholar 

  • McIntosh RA (1988) Catalogue of gene symbols for wheat. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 1225–1323

    Google Scholar 

  • Mochizuki A (1960) Addition of individual chromosomes ofAgropyron to durum wheat. Wheat Inf Sery 6: 81–85

    Google Scholar 

  • Mochizuki A (1962) Agropyron addition lines of durum wheat. Seiken Ziho 13:133–138

    Google Scholar 

  • Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Quisenberry KS, Reitz LP (eds) Wheat and wheat improvement. Am Soc Agron, Madison, WI, pp 19–87

    Google Scholar 

  • Moustakas M, Coucoli H (1982) Karyotype and seed protein profile determination of Agropyron striatulatum natural Greek populations. Wheat Inf Sery 55: 27–31

    Google Scholar 

  • Moustakas M, Symeonidis L, Coucoli H (1986) Seed protein electrophoresis in Agropyron junceum (L.) P.B. complex. Ann Bot (London) 57: 35–40

    Google Scholar 

  • Mujeeb-Kazi A, Bernard M (1982) Somatic chromosome variation in backcross-1 progenies from intergeneric hybrids involving some Triticeae. Cereal Res Commun 10: 41–45

    Google Scholar 

  • Mujeeb-Kazi A, Bernard M (1985) Intergeneric hybridization to induce alien genetic transfers into Triticum aestivum. Pak J Bot 17: 271–289

    Google Scholar 

  • Mujeeb-Kazi A, Kimber G (1985) The production, cytology and practicallity of wide hybrids in the Triticeae. Cereal Res Commun 13: 111–124

    Google Scholar 

  • Mujeeb-Kazi A, Rodriguez R (1981) Cytogenetics of intergeneric hybrids involving genera within the Triticeae. Cereal Res Commun 9: 39–45

    Google Scholar 

  • Mujeeb-Kazi A, Roldan S, Miranda JL (1984) Intergeneric hybrids of Triticum aestivum L. with several Agropyron and Elymus species. Cereal Res Commun 12: 75–79

    Google Scholar 

  • Mujeeb-Kazi A, Roldan S, Suh DY, Sitch LA, Farooq S (1987) Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespitose Agropyron species. Genome 29: 537–553

    Article  Google Scholar 

  • Mujeeb-Kazi A, Roldan S, Suh DY, Ter-Kuile N, Farooq S (1989) Production and cytogenetics of Triticum aestivum L. hybrids with some rhizomatous species. Theor Appl Genet 77: 162–168

    Article  Google Scholar 

  • Napier KV, Walton PD (1983) Hybrids between Agropyron trachycaulum and A. intermedium. Euphytica 32: 231–239

    Article  Google Scholar 

  • Napier KV, Walton PD (1984) Hybrids between tetraploid Agropyron spicatum and A. intermedium. Z Pflanzenzücht 92: 221–228

    Google Scholar 

  • OhlendorfA (1955) Zytologische Untersuchungen an Weizen-Quecken-Bastarden. Züchter 22: 332–351

    Google Scholar 

  • Okamoto M (1957) Asynaptic effect of the chromosome V. Wheat Inf Sery 5: 6

    Google Scholar 

  • Ortiz LT, Gonzalez A, Chueca MC, Cauderon Y (1986a) Chromosomal structure of homozygous common wheat lines obtained from wheat x Agropyron X Aegilops speltoides derivatives. I. A screening of the reciprocal translocations. Can J Genet Cytol 28: 69–75

    Google Scholar 

  • Ortiz LT, Gonzales A, Chueca MC, Cauderon Y (19866) Chromosomal structure of homozygous common wheat lines obtained from (wheat X Agropyron) X Aegilops speltoides derivatives. II. A screening of paracentric inversions. Can J Genet Cytol 28: 906–912

    Google Scholar 

  • Östergren G (1940a) Cytology of Agropyron junceum, A. repens and their spontaneous hybrids. Hereditas 26: 305–316

    Article  Google Scholar 

  • Östergren G (1940b) A hybrid between Triticum turgidum and Agropyron junceum. Hereditas 26: 395–398

    Article  Google Scholar 

  • Peto FH (1936) Hybridization between wheat and Elymus. II. Cytology of the male parents and F, generation. Can J Res Sect C 14: 206–214

    Google Scholar 

  • Petrova KA (1970) Morphological and cytological investigation of Agropyron elongatum (Host) P.B. x Elymus mollis Trin. 2n = 28 F, hybrids and amphiploids. In: Otdalen Gibridiz i Poliploidiya, USSR, Nauk, Moscow, pp 158–176

    Google Scholar 

  • Pienaar RdeV (1981) Genome relationships in wheat x Agropyron distichum (Thunb) Beauv. hybrids. Z Pflanzenzücht 87: 193–212

    Google Scholar 

  • Pienaar RdeV (1983) Cytogenetic studies in Triticum-Elytrigia amphiploid hybrids. In: Proc 6th Int Wheat genetics Symp, Kyoto, pp 327–333

    Google Scholar 

  • Pienaar RdeV (1988) Hexaploid “wheats” with novel third genomes. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 403–408

    Google Scholar 

  • Pienaar RdeV, Littlejohn GM, Sears ER (1988) Genomic relationships in Thinopyrum. S A J Bot 54: 541–550

    Google Scholar 

  • Plourde A, Comeau A, Fedak G, St-Pierre C-A (1989) Intergeneric hybrids of Triticum aestivum X Leymus multicaulis. Genome 32: 282–287

    Article  Google Scholar 

  • Pope WK, Love RM (1952) Comparative cytology of colchicine induced amphiploids of interspecific hybrids: Agropyron trichophorum X Triticum durum, T. timopheevi and T. macho. Hilgardia 21: 411–429

    Google Scholar 

  • Riley R (1974) Cytogenetics of chromosome pairing in wheat. Genetics 78: 193–203

    PubMed  CAS  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behavior of hexaploid wheat. Nature (London) 182: 713–715

    Article  Google Scholar 

  • Riley R, Kimber G (1966) The transfer of alien genetic variation to wheat. Rep Plant Breed Inst, Cambridge, pp 6–36

    Google Scholar 

  • Riley R, Law CN (1984) Chromosome manipulation in plant breeding: progress and prospects. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 301–322

    Chapter  Google Scholar 

  • Riley R, Chapman V, Johnson R (1968) The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet Res 12: 199–219

    Article  Google Scholar 

  • Rommel M (1958) Eine vereinfachte Methode der Embryokultur bei Getreide. Züchter 28: 149–151

    Google Scholar 

  • Rosenberg 0 (1909) Cytologische and Morphologische Studien an Drosera longifolia X rotundifolia. Kungl Svensk Vetensk Acad Handl 43: 1–64

    Google Scholar 

  • Schlehuber AM, Sebesta EE (1959) Progress in wheatgrass breeding. Proc Okl Acad Sci 39:6–16 Schulz-Schaeffer J, Haller SE (1988) Alien chromosome addition in durum wheat. II. Advanced progeny. Genome 30: 303–306

    Google Scholar 

  • Schulz-Sheaffer J, McNeal FH (1977) Alien chromosome addition in wheat. Crop Sci 17:891–896 Scoles GJ, Kibirige-Sebunya JN (1983) Preferential abortion of gametes in wheat induced by an Agropyron chromosome. Can J Genet Cytol 25: 1–6

    Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Missouri Agric Exp Stn Res Bull 572: 59 pp

    Google Scholar 

  • Sears ER (1958) The aneuploids of common wheat. In: Proc 1st Int Wheat genetics Symp. Winnipeg, pp 221–229

    Google Scholar 

  • Sears ER (1966a) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds )

    Google Scholar 

  • Chromosome manipulations and plant genetics. Oliver and Boyd, Edinburgh London, pp 29–45

    Google Scholar 

  • Sears ER (1966b) Chromosome mapping with the aid of telocentrics. In: Proc 2nd Int Wheat genetics Symp, Lund. Hereditas (Suppl) 2: 370–381

    Google Scholar 

  • Sears ER (1969) Wheat cytogenetics. Annu Rev Genet 3: 451–468

    Article  Google Scholar 

  • Sears ER (1972) Chromosome engineering in wheat. In: Stadler genetics Symp, Univ Missouri, Columbia, MO, 4: 25–38

    Google Scholar 

  • Sears ER (1973)A gropyron-wheat transfers induced by homoeologous pairing. In: Proc 4th Int Wheat genetics Symp, Columbia, MO, pp 191–199

    Google Scholar 

  • Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10: 31–51

    Article  PubMed  CAS  Google Scholar 

  • Sears ER (1977) Analysis of wheat-Agropyron recombinant chromosomes. In: Interspecific hybridization in plant breeding. Proc 8th Eucarpia Congr, Madrid, pp 63–72

    Google Scholar 

  • Sears ER (1981) Transfer of alien genetic material to wheat. In: Evans LV, Peacock WJ (eds) Wheat science — today and tomorrow. Univ Press, Cambridge, pp 75–89

    Google Scholar 

  • Sears ER (1983) The transfer to wheat of interstitial segments of alien chromosomes. In: Proc 6th Int Wheat genetics Symp, Kyoto, pp 1–12

    Google Scholar 

  • Sears ER (1984) Mutations in wheat that raise the level of meiotic chromosome pairing. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 295–300

    Chapter  Google Scholar 

  • Sears ER, Sears LMS (1978) The telocentric chromosomes of common wheat. In Proc 5th Int Wheat genetics Symp, New Delhi, pp 389–407

    Google Scholar 

  • Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8: 137–143

    Google Scholar 

  • Sharma HC, Gill BS (1983a) Current status of wide hybridization in wheat. Euphytica 32: 17–23

    Article  Google Scholar 

  • Sharma HC, Gill BS (1983b) New hybrids between Agropyron and wheat. 2. Production, morphology and cytogenetic analysis of F, hybrids and their backcross-1 derivatives. Theor Appl Genet 66: 111–121

    Article  Google Scholar 

  • Sharma HC, Gill BS, Sears RG (1984a) Inflorescence culture of wheat-Agropyron hybrids: callus induction, plant regeneration, and potential in overcoming sterility barriers. Plant Cell, Tissue Organ Cult 3: 247–255

    Google Scholar 

  • Sharma HC, Gill BS, Uyemoto JK (1984b) High levels of resistance inAgropyron species to barley yellow dwarf and wheat streak mosaic viruses. Phytopathol Z 110: 143–147

    Article  Google Scholar 

  • Sharma HC, Aylward SG, Gill BS (1987) Partial amphiploid from Triticum aestivum X Agropyron scirpeum cross. Bot Gaz 148: 258–262

    Article  Google Scholar 

  • Sharma HC, Ohm HW, Lister RM, Foster JE, Shukle RH (1989) Response of wheatgrasses and wheat X wheatgrass hybrids to barley yellow dwarf virus. Theor Appl Genet 77: 369–374

    Article  Google Scholar 

  • Shebeski LH, Wu YS (1952) Inheritance in wheat of stem rust resistance derived from Agropyron elongatum. Sci Agric 32: 26–35

    Google Scholar 

  • Shepherd KW, Islam AK MR (1988) Fourth compendium of wheat-alien chromosome lines. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 1373–1381

    Google Scholar 

  • Shukle RH, Lampe DJ, Lister EM, Foster JE (1987) Aphid feeding behaviour: relationship to barley yellow dwarf virus resistance in Agropyron species. Phytopathol 77: 726–729

    Article  Google Scholar 

  • Simmonds NW (1984) Gene manipulation in plant breeding. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 637–658

    Chapter  Google Scholar 

  • Sinigovets MY (1976) The effect of single Agropyron chromosomes on common wheat. Genetika 12: 15–21

    Google Scholar 

  • Smith DC (1943) Intergeneric hybridization of Triticum and other grasses principally Agropyron. J Hered 34: 219–224

    Google Scholar 

  • Smith EL, Schlehuber AM, Young HC Jr, Edwards LH (1968) Registration of `Agent’ Wheat. Crop Sci 8: 511–512

    Article  Google Scholar 

  • Soliman KM, Bernardin JE, Qualset Co (1980) Effects of an Agropyron chromosome on endosperm proteins in common wheat (Triticum aestivum L.). Biochem Genet 18: 465–482

    Article  PubMed  CAS  Google Scholar 

  • Stebbins GL, Pun FT (1953) Artificial hybrids in the Gramineae, tribe Hordeae. VI. Agropyron intermedium and the problem of genome homologies in the Triticeae. Genetics 38: 600–608

    PubMed  CAS  Google Scholar 

  • Stoddard SL, Gill BS, Lommel SA (1987) Genetic expression of wheat streak mosaic virus resistance in two wheat-wheatgrass hybrids. Crop Sci 27: 514–519

    Article  Google Scholar 

  • The TT, Baker EP (1970) Homoeologous relationships between two Agropyron intermedium chromosomes and wheat. Wheat Inf Sery 31: 29–31

    Google Scholar 

  • Townley-Smith TF (1965) Cytogenetic study of Agropyron chromosomes carrying rust resistance. M Sc Thesis, Univ Saskatchewan, 38 pp

    Google Scholar 

  • Tsitsin NV (ed) (1962) Wide hybridization in plants. Isr Prog Sci Trans], Jerusalem

    Google Scholar 

  • Tsitsin NV (1975) Origin of new species and forms of plants. In: Proc 12th Int Botan Congr Leningrad, pp 3–10

    Google Scholar 

  • Tsujimoto H, Panayotov I, Tsunewaki K (1987) Behaviour of an extra chromosome carried by

    Google Scholar 

  • alloplasmic common wheat lines having Agropyron trichophyrum cytoplasm. Jpn J Genet 62:291–299

    Google Scholar 

  • Tzvelev NN (1976) Tribe 3. Triticeae Dum. In: Poaceae URSS, Vauka, Leningrad, pp 105–206

    Google Scholar 

  • Unrau J, Person C, Kuspira J (1956) Chromosome substitution in hexaploid wheat. Can J Bot 34: 629–640

    Article  Google Scholar 

  • Veruschkine SM (1936) The main lines of work with Triticum-Agropyron hybrids at the Saratov Station. Selekc Semenov 8: 23–25

    Google Scholar 

  • Vinall HN, Hein MA (1937) Breeding miscellaneous grasses. USDA Yearb, pp 1032–1102

    Google Scholar 

  • Vos DJ (1983) Observation of introgression of Agropyron elongatum into triticale. In: Proc 6th Int Wheat genetics Symp, Kyoto, pp 897–902

    Google Scholar 

  • Wall AM, Riley R, Chapman V (1971) Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet Res 18: 311–328

    Article  Google Scholar 

  • Wang RRC (1985) Genome analysis of Thinopyrum bessarabicum and T. elongatum. Can J Genet Cytol 27: 722–728

    Google Scholar 

  • Wang RRC (1986a) Diploid perennial intergeneric hybrids in the tribe Triticeae. I. A gropyron cristatum X Pseudoroegneria libanotica and Critesion violaceum X Psathyrostachys juncea. Crop Sci 26: 75–78

    Article  Google Scholar 

  • Wang RRC (1986b) Diploid perennial intergeneric hybrids in the tribe Triticeae. II. Hybrids of Thinopyrum elongatum with Pseudoroegneria spicata and Critesion violaceum. Biol Zentrabl 105: 361–368

    Google Scholar 

  • Wang RRC (1986c) Amphiploids of the diploid hybrid Thinopyrum bessarabicum X T. elongatum. In: 78th Annu Meet Amr Agron Soc, New Orleans, Louisiana, Abstr, 86 pp

    Google Scholar 

  • Wang RRC (1987) Progenies of Thinopyrum elongatum X Agropyron mongolicum. Genome 29: 738–743

    Article  Google Scholar 

  • Wang RRC (1988) Diploid perennial intergeneric hybrids in the tribe Triticeae. IV. Hybrids among Thinopyrum bessarabicum, Pseudoroegneria spicata, and Secale montanum. Genome 30: 356–360

    Article  Google Scholar 

  • Wang RRC (1989) An assessment of genome analysis based on chromosome pairing in hybrids of perennial Triticeae. Genome 32: 179–189

    Article  Google Scholar 

  • Wang RRC, Hsiao C (1989) Genome relationships between Thinopyrum bessarabicum and T. elongatum: revisited. Genome 32: 802–809

    Article  Google Scholar 

  • Wang RRC, Liang GH, Heyne EG (1977) Effectiveness of the ph gene in inducing homoeologous chromosome pairing in Agrotricum. Theor Appl Genet 51: 139–142

    Google Scholar 

  • Wang RRC, Dewey DR, Hsiao C (1985) Intergeneric hybrids ofAgropyron and Pseudoroegneria. Bot Gaz 146: 268–274

    Article  Google Scholar 

  • Whelan EDP (1988) Transmission of a chromosome from decaploid Agropyron elongatum that confers resistance to the wheat curl mite in common wheat. Genome 30: 293–298

    Article  Google Scholar 

  • Whelan EDP, Hart GE (1988) A spontaneous translocation that confers wheat curl mite resistance from decaploid Agropyron elongatum to common wheat. Genome 30: 289–292

    Article  Google Scholar 

  • Whelan EDP, Thomas JB (1988) Resistance to colonization by the wheat curl mite in Triticum-Agropyron hybrids and Robertsonian translocations. In: Proc 7th Int Wheat genetics Symp, Cambridge, pp 913–916

    Google Scholar 

  • Whelan EDP, Atkinson TG, Larson RI (1983) Registration of LRS-IF193 wheat germplasm. Crop Sci 23: 194

    Article  Google Scholar 

  • Whelan EDP, Conner RL, Thomas JB, Kuzyk AD (1986) Transmission of a wheat alien chromosome translocation with resistance to the wheat curl mite in common wheat, Triticum aestivum L. Can J Genet Cytol 28: 294–297

    Google Scholar 

  • White WJ (1940) Intergeneric crosses between Triticum and Agropyron. Sci Agric 21: 198–232

    Google Scholar 

  • Wienhues A (1966) Transfer of rust resistance of Agropyron to wheat by addition, substitution and translocation. In: Proc 2nd Int Wheat genetics Symp, Lund. Hereditas (Suppl) 2: 328–341

    Google Scholar 

  • Wienhues A (1973) Translocations between wheat chromosomes and an Agropyron chromosome conditioning rust resistance. In: Proc 4th Int Wheat genetics Symp, Columbia, MO, pp 201–207

    Google Scholar 

  • Wienhues A (1979a) Translokationlinien mit Resistenz gegen Braunrost (Puccinia recondita) aus Agropyron intermedium. Ergebnisse aus der Rückkreuzung mit Winterweizensorten. Z Pflanzenzücht 82: 149–161

    Google Scholar 

  • Wienhues A (1979b) Resistenz gegen Gelbrost (Puccinia striiformis) aus Agropyron intermedium übertragen in den Winterweizen. Z Pflanzenzücht 82: 201–211

    Google Scholar 

  • Wong RS, Wells DG, Gardner WS (1974) Cytogenetics and breeding behavior of a hexaploidAgrotricum immune from wheat streak mosaic virus. Crop Sci 14: 406–407

    Article  Google Scholar 

  • Wu LP, Zheng CM, Jia ZP, Yuan JX (1989) Chromosome pairing in hybrids of ph lb and nulli5B-tetra5D wheat with rye and Agrotricum. Plant Breeding 102: 281–285

    Google Scholar 

  • Wyn Jones RG, Gorham J (1986) The potential for enhancing the salt tolerance of wheat and other important crop plants. Outlook Agric 15: 33–39

    Google Scholar 

  • Yasumuro Y, Morris R, Sharma DC, Schmidt JW (1981) Induced pairing between a wheat (Triticum aestivum) and an Agropyron elongatum chromosome. Can J Genet Cytol 23: 49–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de V.Pienaar, R. (1990). Wheat × Thinopyrum Hybrids. In: Bajaj, Y.P.S. (eds) Wheat. Biotechnology in Agriculture and Forestry, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10933-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10933-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08081-4

  • Online ISBN: 978-3-662-10933-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics