Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 38))

Abstract

Gladiolus is a monocotyledonous floral bulb crop which ranked fifth in 1993 for the number of stems (79 663) shipped worldwide (USDA 1994). In Florida alone, about 3600 acres are devoted to cut flower production, and about 120 acres to the production of stock corms of Gladiolus (Wilfret 1980). Its production areas are severely plagued by viral, microbial, and fungal pathogens, so that a typical cultivar lasts only a few years before it succumbs to disease and is removed from production. It has not been possible to effectively breed pathogen resistance into Gladiolus using conventional breeding methods so this plant represents a commercially important floral crop that would benefit from disease resistance mediated by genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajaj YPS, Sidhu MMS, Gill APS (1982) Some factors affecting the in vitro propagation of Gladiolus. Sci Hortic 18: 269–275

    Article  Google Scholar 

  • Bajaj YPS, Sidhu MMS, Gill APS (1992) Micropropagation of Gladiolus. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 20. High-tech and micropropagation IV. Springer, Berlin Heidelberg New York, pp 135–143

    Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal pertubation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18: 675–689

    Article  PubMed  CAS  Google Scholar 

  • Dantu PK, Bhojwani SS (1987) In vitro propagation and corm formation in Gladiolus. Gartenbauwissenschaft 2: 90–93

    Google Scholar 

  • Dellaporta S, Wood J, Hicks J (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1: 19–21

    Article  CAS  Google Scholar 

  • De Bruyn MH, Ferreira DI (1992) In vitro corm production of Gladiolus dalenii and G. tristis. Plant Cell Tissue Organ Cult 31: 123–128

    Article  Google Scholar 

  • Graves SCR, Goldman SL (1987) Agrobacterium tumefaciens-mediated transformation of the monocot genus Gladiolus: detection of expression of T-DNA-encoded genes. J Bacteriol 169: 1745–1746

    Google Scholar 

  • Hussey G (1977) In vitro propagation of Gladiolus by precocious axillary shoot formation. Sci Hortic 6: 287–296

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS-functions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907

    PubMed  CAS  Google Scholar 

  • Kamo K (1994) Effect of phytohormones on plant regeneration from callus of Gladiolus cultivar Jenny Lee. In Vitro Cell Dev Biol Plant 20P: 26–32

    Google Scholar 

  • Kamo K, Chen J, Lawson R (1990) The establishment of cell suspension cultures of Gladiolus that regenerate plants. In Vitro Cell Dev Biol 26: 425–430

    Google Scholar 

  • Kamo K, Blowers A, Smith F, Van Eck J, Lawson R (1995) Stable transformation of Gladiolus using suspension cells and callus. J Am Hortic Sci 120: 347–352

    Google Scholar 

  • Leach F, Aoyagi K (1991) Promoter analysis of the highly expressed ro1C and rolD root-inducing genes of Agrobacterium rhizogenes: enhancer and tissue-specific DNA determinants are dissociated. Plant Sci 79: 69–76

    Article  CAS  Google Scholar 

  • Lilien-Kipnis H, Kochba M (1987) Mass propagation of new Gladiolus hybrids. Acta Hortic 212: 631–638

    Google Scholar 

  • Logan AE, Zettler FW (1985) Rapid in vitro propagation of virus-indexed gladioli. Acta Hortic 164: 169–180

    Google Scholar 

  • Maniatis R, Fritsch EF, Sambrook J (ed) (1982) Molecular cloning-a laboratory manual. Cold Spring Harbor Lab, Cold Spring Harbor

    Google Scholar 

  • McElroy D, Blowers A, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin (Actl) 5’ region for use in monocot transformation. Mol Gen Genet 231: 150–160

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Odell JT, Nagy F, Chua N (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812

    Article  PubMed  CAS  Google Scholar 

  • Russell JA, Roy MK, Sanford JC (1992) Major improvements in biolistic transformation of suspension-cultured tobacco cells. In Vitro Cell Dev Biol 29P: 97–105

    Google Scholar 

  • Sanford JC, DeVit MJ, Russell JA, Smith FD, Harpending RP, Roy MK, Johnston SA (1991) An improved, helium-driven biolistic device. Technique 3: 3–16

    CAS  Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217: 483–510

    Article  PubMed  CAS  Google Scholar 

  • Simonsen J, Hildebrandt AC (1971) In vitro growth and differentiation of Gladiolus plants from tissue culture. Can J Bot 49: 1817–1819

    Article  Google Scholar 

  • Steel RG, Torrie JH (1980) Principles and procedures of statistics. McGraw-Hill, New York Stefaniak B (1994) Somatic embryogenesis and plant regeneration of Gladiolus (Gladiolus hort) Plant Cell Rep 13: 386–389

    Google Scholar 

  • Sutter EG (1986) Micropropagation of Ixia viridifolia and a Gladiolus x homoglossum hybrid. Sci Hortic 29: 181–189

    Article  Google Scholar 

  • USDA (1994) Fresh fruits, vegetables and ornamental crops. WS-04–94, Jan 25

    Google Scholar 

  • Washington DC Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardmentmediated transient and stable transformation of maize. Plant Cell Rep 12: 84–88

    Google Scholar 

  • Velten J, Velten L, Hain R, Schell J (1984) Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. EMBO J 3: 2723–2730

    PubMed  CAS  Google Scholar 

  • Wilfret G (1980) Gladiolus. In: Larson RA (ed) Introduction to floriculture. Academic Press, New York, pp 165–181

    Google Scholar 

  • Zhang W, McElroy D, Wu R (1991) Analysis of rice Actl 5’ region activity in transgenic rice plants. The Plant Cell 3: 1155–1165

    PubMed  CAS  Google Scholar 

  • Ziv M (1979) Transplanting Gladiolus plants propagated in vitro. Sci Hortic 11: 257–260

    Article  Google Scholar 

  • Ziv M, Halevy AH, Shilo R (1970) Organs and plantlets regeneration of Gladiolus through tissue culture. Ann Bot 34: 671–676

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kamo, K., Blowers, A., Smith, F., van Eck, J. (1996). Genetic Transformation of Gladiolus . In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering VII. Biotechnology in Agriculture and Forestry, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09368-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09368-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08240-5

  • Online ISBN: 978-3-662-09368-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics