Skip to main content

Genetic Transformation in Liriodendron tulipifera L. (Yellow Poplar)

  • Chapter
Plant Protoplasts and Genetic Engineering V

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 29))

Abstract

Liriodendron tulipifera L. (yellow poplar) is one of the most common hardwood forest species in eastern North America, growing throughout the eastern United States and into southern Ontario, Canada. The species is most abundant and reaches its largest size in the lower Ohio River valley and in the Appalachian mountains of North Carolina, Tennessee, Kentucky, and West Virginia (Fowells 1965). Although it is an early-stage successional species on most sites, the rapid growth rate of yellow poplar and the large size of mature trees (up to 60 m) make it a dominant canopy species. These growth characteristics, along with its straight form, self-pruning ability, and wood of highly desirable working quality (Wilcox and Taft 1969), make yellow poplar a valuable timber species. It has been employed for furniture (mostly hidden parts), plywood, corestock, millwork, siding, and other light construction lumber. It is also used for such glue-wood products as chipboard, flakeboard, and oriented strandboard. Breeding programs have been established to take advantage of genetic variation in characteristics such as height growth (Farmer et al. 1983) and wood-specific gravity (Thorbjornsen 1961; Wilcox and Taft 1969). Bees are a primary pollinator of yellow poplar, and the species is known as a good honey producer. Yellow poplar is widely planted as an ornamental landscape tree, admired for its symmetrical leaves and yellow, green, and orange flowers. A number of horticultural cultivars have been described for the species (Santamour and McArdle 1984; see also Merkle and Sommer 1991 for more details).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An G, Costa MA, Mitra A, Ha S-B, Marton L (1988) Organ-specific and developmental regulation of the nopaline synthase promoter in transgenic tobacco plants. Plant Physiol 88: 547–552

    Article  PubMed  CAS  Google Scholar 

  • Battraw MJ, Hall TC (1990) Histochemical analysis of CaMV 35S promoter-ß-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol 15: 527–538

    Article  PubMed  CAS  Google Scholar 

  • Benfry PN, Ren L, Chua N-H (1989) The CaMV 35S enhancer contains at least two domains which confer different developmental and tissue-specific expression patterns. EMBO J 8: 2195–2202

    Google Scholar 

  • DeBlock M (1990) Factors influencing the tissue culture and the Agrobacterium tumefaciensmediated transformation of hybrid aspen and poplar clones. Plant Physiol 93: 1110–1116

    Article  CAS  Google Scholar 

  • De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42: 389–466

    Article  Google Scholar 

  • Ellis DD, McCabe DE, Mclnnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Bio/Technology 11: 84–89

    Article  CAS  Google Scholar 

  • Farmer RE, Barnett PE, Thor E, Rennie JC (1983) Heritability estimates for height growth of Tennessee yellow-poplar. Silvae Genet 32: 15–18

    Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissig B, Cornai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206: 192–199

    Google Scholar 

  • Fowells HA (1965) Silvics of forest trees of the United States. Agriculture handbook 271. USDA For Serv, Washington DC, 762 pp

    Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR, Willets NG, Rice TB, Mackey CJ, Kruger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618

    PubMed  CAS  Google Scholar 

  • Harris RR, DeRobertis GA, Pierce DA, Moynihan MR, Everett NP (1990) Heterogeneity of X-gluc staining in transgenic maize callus. In Vitro Cell Dev Biol 26 (Abstr II): 69

    Google Scholar 

  • Huang Y, Diner AM, Karnosky DF (1991) Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell Dev Biol 27P:201–207

    Google Scholar 

  • Lida A, Yamashita T, Yamada Y, Morikawa H (1991) Efficiency of particle bombardment-mediated transformation is influenced by cell cycle in synchronized cultured cells of tobacco. Plant Physiol 97: 1585–1587

    Article  Google Scholar 

  • Jefferson RA, Kavanaugh TA, Bevan MW (1987) GUS fusions: ß-glucuronidase as a versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907

    PubMed  CAS  Google Scholar 

  • Klein TM, Kornstein L, Sanford JC, Fromm ME (1989) Genetic transformation of maize cells by particle bombardment. Plant Physiol 91: 440–444

    Article  PubMed  CAS  Google Scholar 

  • McCabe DE, Swain WF, Mertinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6: 923–926

    Article  Google Scholar 

  • McCown BH, McCabe DE, Russell DR, Robinson DJ, Barton KA, Raffa KF (1991) Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep 9: 590–594

    Article  CAS  Google Scholar 

  • McGranahan GH, Leslie CA, Uratsu SL, Martin LA, Dandekar AM (1988) Agrobacteriummediated transformation of walnut somatic embryos and regeneration of transformed plants. Bio/Technology 6: 800–804

    Google Scholar 

  • Meijier EGM, Schilperoort RA, Rueb S, van Os-Ruygrok PE, Hensgens LAM (1991) Transgenic rice cell lines and plants: expression of transferred chimeric genes. Plant Mol Biol 16: 807–820

    Article  Google Scholar 

  • Merkte SA, Sommer HE (1986) Somatic embryogenesis in tissue cultures of Liriodendron tulipifera. Can J For Res 16: 420–422

    Article  Google Scholar 

  • Merkle SA, Sommer HE (1987) Regeneration of Liriodendron tulipifera (family Magnoliaceae) from protoplast culture. Am J Bot 74: 1317–1321

    Article  Google Scholar 

  • Merkle SA, Sommer HE (1991) Yellow-poplar (Liriodendron spp.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 16. Trees [II. Springer, Berlin Heidelberg New York, pp 94–110

    Google Scholar 

  • Merkle SA, Wiecko AT, Sotak RJ, Sommer HE (1990) Maturation and conversion of Liriodendron tulipifera somatic embryos. In Vitro Cell Dev Biol 26: 1086–1093

    Google Scholar 

  • Merkle SA, Schlarbaum SE, Cox RA, Schwarz OJ (1991) Mass propagation of somatic embryo-derived plantlets of yellow-poplar for field testing. Proc 21st Southern forest tree improvement Conf, Knoxville, Tenn. Available from National Technical Information Service Spring field, Virginia 22161 USA, pp 56–68

    Google Scholar 

  • Merkle SA, Wilde HD, Sommer HE (1993) In vitro culture of Liriodendron tulipifera. In: Ahuja MR (ed) Micropropagation of woody plants. Kluwer Academic, Dordrecht pp 281–302

    Google Scholar 

  • Meyer P, Walgenbach E, Bussman K, Hombrecher G, Saedler H (1985) Synchronized tobacco protoplasts are efficiently transformed by DNA. Mol Gen Genet 201: 513–518

    Article  CAS  Google Scholar 

  • Okada K, Takabe I, Nagata T (1986) Expression and integration of genes introduced into highly synchronized plant protoplasts. Mol Gen Genet 205: 398–403

    Article  CAS  Google Scholar 

  • Rensing C, Kues U, Stahl U, Nies DH, Friedrich B (1992) Functional expression of bacterial mercuric ion reductase in Saccharomyces cerevisiae. J Bacteriol 174: 1288–1295

    PubMed  CAS  Google Scholar 

  • Rogers SG, Horsch RB, Fraley RT (1986) Gene transformation in plants: production of transformed plants using Ti plasmid vectors. Methods Enzymol 118: 627–640

    Article  CAS  Google Scholar 

  • Rogers SO, Bendich Ai (1985) Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant Mol Biol 5: 69–76

    Article  CAS  Google Scholar 

  • Santamour FS Jr, McArdle AJ (1984) Cultivar checklist for Liquidambar and Liriodendron. J Arboric 10 (11): 309–312

    Google Scholar 

  • Scott RJ, Draper J (1987) Transformation of carrot tissues derived from proembryogenic suspension cells: a useful transformation system for gene expression studies in plants. Plant Mol Biol 8: 265–274

    Article  CAS  Google Scholar 

  • Sotak RJ, Sommer HE, Merkle SA (1991) Relation of the developmental stage of zygotic embryos of yellow-poplar to their developmental potential. Plant Cell Rep 10: 175–178

    Article  Google Scholar 

  • Sterijiades R, Dean JFD, Eriksson K-E L (1992) Laccase from sycamore maple ( Acer pseudoplantanus) polymerizes monolignols. Plant Physiol 99: 1162–1168

    Google Scholar 

  • Sullivan J, Lagrimini LM (1993) Transformation of Liquidambar styraciflua using Ayrobacterium tumefaciens. Plant Cell Rep 12: 303–306

    Article  CAS  Google Scholar 

  • Thorbjornsen E (1961) Variation in density and fiber length in wood of yellow-poplar. J Tech Assoc Pulp Pap Ind 44: 192–195

    CAS  Google Scholar 

  • Wann SR (1989) Somatic embryogenesis in woody species. In: Janick J (ed) Horticultural reviews, vol 10. Timber Press, Portland, pp 153–181

    Google Scholar 

  • Wilcox JR, Taft KA (1969) Genetics of yellow-poplar. USDA For Sery Res Pap WO-6, 12 pp

    Google Scholar 

  • Wilde HD, Merkle SA, Meagher RB (1991) Transfer of foreign genes into yellow-poplar (Liriodendron tulipifera). In: Ahuja MR (ed) Woody plant biotechnology. Plenum Press, New York pp 227–232

    Chapter  Google Scholar 

  • Wilde HD, Meagher RB, Merkle SA (1992) Expression of foreign genes in transgenic yellow-poplar plants. Plant Physiol 98: 114–120

    Article  PubMed  CAS  Google Scholar 

  • Wilde HD, Seffens WS, Thomas TL (1995) Gene expression in somatic embryos. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 30. Somatic embryogenesis and synthetic seed I. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wilde, H.D., Merkle, S.A. (1994). Genetic Transformation in Liriodendron tulipifera L. (Yellow Poplar). In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering V. Biotechnology in Agriculture and Forestry, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09366-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09366-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08182-8

  • Online ISBN: 978-3-662-09366-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics