Skip to main content

The Role of Phytohormones in the Function and Biology of Mycorrhizas

  • Chapter
Mycorrhiza

Abstract

In recent years, mycorrhizal research has increasingly concentrated on studies into the physiological bases of the function and regulation of the different types of associations between plant roots and soil fungi. Despite major advances, the several recently published reviews still reflect the immense lack of knowledge in mycorrhizal physiology. The regulation of ectomycorrhiza formation was the subject of reviews by Nylund (1988) and Wallander (1992). The aspect of nutrient transfer in VAM was discussed by Schwab et al. (1991). The regulation of VAM symbiosis has been recently reviewed by Koide and Schreiner (1992). Most of the reviewers considered at least some functions to be potentially regulated by phytohormones. Several possible phytohormone actions were pointed out by Allen (1985), the importance of hormones in root exudates of VAM plants was discussed by Barea (1986), and the hormonal involvement in ectomycorrhizal development was considered by Mudge (1987). A review concentrating on hormonal regulation of mycorrhizal interactions was given by Gogala (1991). Due to the lack of knowledge, research and reviews on the regulation and biology of mycorrhizas contain much speculation. This is especially so in the case of phytohormone function (see Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. 2nd edn. Academic Press San Diego

    Google Scholar 

  • Allen MF (1985) Phytohormone action: an integrative approach to understanding diverse mycorrhizal responses. In: Molina R (ed) Proc. 6th NACOM. Forest Research Laboratory, Corvallis, OR, pp 158–160

    Google Scholar 

  • Allen MF, Moore TS Jr, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can J Bot 58: 371–374

    Article  CAS  Google Scholar 

  • Allen MF, Moore TS Jr, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60: 468–471

    Article  CAS  Google Scholar 

  • Arditti J (1967) Factors affecting the germination of orchid seeds. Bot Rev 33:1–197 Arditti J, Ernst R ( 1984 ) Physiology of germinating orchid seeds. In: Arditti J (ed)

    Google Scholar 

  • Orchid biology. Reviews and perspectives. III. Cornell University Press, Ithaca, pp 178–222

    Google Scholar 

  • Ashford AE, Allaway WG, Peterson CA, Cairney JWG (1989a) Nutrient transfer and the fungus-root interface. Aust J Plant Physiol 16: 85–97

    Article  CAS  Google Scholar 

  • Ashford AE, Peterson CA, Carpenter JL, Cairney JWG, Allaway WG (1989b) Structure and permeability of the fungal sheath in the Pisonia mycorrhiza. Protoplasma 147: 149–161

    Article  Google Scholar 

  • Azcón R, Azcón-Aguillar C, Barea JM (1978) Effects of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza. New Phytol 80: 359–364

    Article  Google Scholar 

  • Azcón-Aguilar C, Rodriquez-Navarro DN, Barea JM (1981) Effects of ethrel on the formation and responses to VA mycorrhiza in Medicago and Triticum. Plant Soil 60: 461–468

    Article  Google Scholar 

  • Baas R, Kuiper D (1989) Effects of vesicular-arbuscular mycorrhizal infection and phosphate on Plantago major sp. pleiosperma in relation to internal cytokinin concentrations. Physiol Plant 76: 211–215

    Article  CAS  Google Scholar 

  • Barea JM (1986) Importance of hormones of root exudates in mycorrhizal phenomena. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. Proc 1st Eur Symp on Mycorrhizae, Dijon, 1–5 July 1985, pp 177–188

    Google Scholar 

  • Barea JM, Azon-Aquilar C (1982) Production of plant growth regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43: 810–813

    CAS  PubMed  Google Scholar 

  • Barroso J, Pais MS (1990) Nuclear features in infected roots of Ophrys lutea Cay. ( Orchidaceae ). New Phytol 115: 93–98

    Google Scholar 

  • Barroso J, Chaves Neves H, Pais MS (1978) Production of indole-3-ethanol and indole-3-acetic acid by the mycorrhizal fungus of Ophrys lutea ( Orchidaceae ). New Phytol 103: 745–749

    Article  Google Scholar 

  • Baser CM, Garrett JE, Mitchell RJ, Cox GS (1987) Indolebutyric acid and ectomycorrhizal inoculation increase lateral root initiation and development on container-grown black oak seedlings. Can J For Res 17: 36–39

    Article  CAS  Google Scholar 

  • Bécard G, Piché Y (1989) New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 112: 77–83

    Article  Google Scholar 

  • Berta G, Gianinazzi-Pearson V, Gay G, Torri G (1988) Morphogenetic effects of endomycorrhiza formation on the root system of Calluna vulgaris ( L.) Hull. Symbiosis 5: 33–44

    CAS  Google Scholar 

  • Berta G, Fusconi A, Trotta A, Scannerini A (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114: 207–215

    Article  Google Scholar 

  • Beyrle H, Penningsfeld F, Hock B (1991) The role of nitrogen concentration in determining the outcome to the interaction between Dactylorhiza incarnata L. Soo and Rhizoctonia sp. New Phytol 117: 665–672

    Article  CAS  Google Scholar 

  • Björkman E (1942) Ãœber die Bedingungen der Mycorrhizabildung bei Kiefer und Fichte. Symb Bot Ups 6: 2

    Google Scholar 

  • Boller T (1989) Primary signals and second messengers in the reaction of plants to pathogens. In: Boss WF, Morre DJ, Liss AR (eds) Second messengers in plant growth and development. Alan R. Liss, New York, pp 227–255

    Google Scholar 

  • Boller T, Gehri A, Mauch F, Vögeli U (1983) Chitinase in bean leaves: induction by ethylene, purification, properties and possible function. Planta 157: 22–31

    Article  CAS  Google Scholar 

  • Bonfante-Fasolo P, Gianinazzi-Pearson V (1982) Ultrastructural aspects of endomycorrhiza in the Ericaceae. III. Morphology of the dissociated symbionts and modifications occurring during their reassociation in axenic culture. New Phytol 91: 691–704

    Article  Google Scholar 

  • Bonfante-Fasolo P, Gianinazzi-Pearson V (1986) Wall and plasmalemma modifications in mycorrhizal symbiosis. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. Proc 1st Eur Symp on Mycorrhizae, Dijon, 1–5 July 1985, pp 65–73

    Google Scholar 

  • Bonfante-Fasolo P, Dexheimer J, Gianinazzi S, Gianinazzi-Pearson V, Scannerini S (1981) Cytochemical modifications in the host-fungus interface during intracellular interactions in vesicular-arbuscular mycorrhizae. Plant Sci Lett 22: 13–21

    Article  Google Scholar 

  • Bowen GD (1969) Nutrient status effects on loss of amides and amino acids from pine roots. Plant Soil 30: 139

    Article  CAS  Google Scholar 

  • Bowen GD (1987) The biology and physiology of infection and its development. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, pp 27–57

    Google Scholar 

  • Bracker CE, Littlefield JL (1973) Structural concepts of host-pathogen interfaces. In: Byrd RJW, Cutting CV (eds) Fungal pathogenicity and the plant’s response. Academic Press, London, pp 159–318

    Google Scholar 

  • Chappell J, Hahlbrock K, Boller T (1984) Rapid induction of ethylene biosynthesis in cultured parsley cells by fungal elicitor and its relationship to the induction of phenylalanine ammonia-lyase. Planta 161: 475–480

    Article  CAS  Google Scholar 

  • Clifford PE, Offler CE, Patrick JW (1986) Growth regulators have rapid effects on photosynthate unloading from seed coats of Phaseolus vulgaris L. Plant Physiol 80: 635–637

    Article  CAS  PubMed  Google Scholar 

  • Coleman MD, Bledsoe CS, Smit BA (1990) Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings. New Phytol 115: 275–284

    Article  CAS  Google Scholar 

  • Cox G, Sanders FE (1974) Ultrastructure of the host-fungus interface in a vesiculararbuscular mycorrhiza. New Phytol 73: 901–912

    Article  Google Scholar 

  • Craft CB, Miller CO (1974) Detection and identification of cytokinins produced by mycorrhizal fungi. Plant Physiol 54: 586–588

    Article  Google Scholar 

  • De Bock F, Fer A (1992) Effect of abscisic acid on the transfer of sucrose from host, Pelargonium zonale (L.) Aiton, to a phanerogamic parasite, Cuscuta reflexa Roxb. Aust J Plant Physiol 19: 679–691

    Article  Google Scholar 

  • DeVries HE, Mudge KW, Lardner JP (1987) Ethylene production by several ectomycorrhizal fungi and effects on host root morphology. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Proc 7th NACOM, Gainesville, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 245 pp

    Google Scholar 

  • Dewan MM, Sivasithamparam K (1988) A plant-growth-promoting sterile fungus from wheat and rye-grass roots with potential for suppressing take-all. Trans Br Mycol Soc 91: 687–717

    Article  Google Scholar 

  • Dexheimer J, Gianinazzi S, Gianinazzi-Pearson V (1979) Ultrastructural cytochemistry of the host-fungus interface in the endomycorrhizal association Glomus mosseaelAllium cepa. Z Pflanzenphysiol 92: 191–206

    Google Scholar 

  • Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41: 339–367

    Article  CAS  Google Scholar 

  • Dixon RK, Garett HE, Cox GS (1988a) Cytokinin activity in Citrus jambhiri Lush. seedlings colonized by vesicular-arbuscular mycorrhizal fungi. Trees 2: 39–44

    Article  CAS  Google Scholar 

  • Dixon RK, Garett HE, Cox GS (1988b) Cytokinins in the root pressure exudate of Citrus jambhiri Lush. colonized by vesicular-arbuscular mycorrhizae. Tree Physiol 4: 9–18

    Article  CAS  PubMed  Google Scholar 

  • Downie DC (1943) Notes on germination of Corallorhiza innata. Trans and Proc Bot Soc Edinb 35: 120–125

    Article  Google Scholar 

  • Downie DC (1957) Corticium solanii an orchid endophyte. Nature 179:160 Duddridge JA, Read DJ (1984) Modification of the host-fungus interface in mycorrhizas synthesized between Suillus bovinus (Fr.) O. Kuntz and Pinus sylvestris L. New Phytol 96:583–588

    Google Scholar 

  • Dumas E, Tahiri-Alaoui A, Gianinazzi S, Gianinazzi-Pearson V (1989) Observations on modification in gene expression with VA endomycorrhiza development in tobacco: qualitative and quantitative changes in protein profiles. In: GianinazziPearson V, Nardon P, Margulis L, Smith DC (eds) Endocytobiology IV. 4th Int Colloq on Endocytobiology and symbiosis, INSA-Villeurbanne, France, July 4–8, 1989, pp 153–161

    Google Scholar 

  • Durand N, Debaud JC, Casselton LA, Gay G (1992) Isolation and preliminary characterization of 5-fluorindole-resistant and IAA-overproducer mutants of the ectomycorrhizal fungus Hebeloma cylindrosporum Romagnesi. New Phytol 121: 545–553

    Article  CAS  Google Scholar 

  • Ecker JR, Davis RW (1987) Plant defense genes are regulated by ethylene. Proc Natl Acad Sci USA 84: 5202–5206

    Article  CAS  PubMed  Google Scholar 

  • Edmunds S, Kempest M, Michalski L (1985) Production of cytokinin like substances by mycorrhizal fungi of pine (Pinus sylvestris) in cultures with and without metabolites of actinomycetes. Acta Microbiol Pol 34: 177–186

    Google Scholar 

  • Edriss MH, Davis RM, Burger DW (1984) Influence of mycorrhizal fungi on cytokinin production in sour orange. J Am Soc Hortic Sci 109: 587–590

    CAS  Google Scholar 

  • Ek M, Ljungquist PO, Stenstrom E (1983) Indole-3-acetic acid production by mycorrhizal fungi determined by gas chromatography-mass spectrometry. New Phytol 94: 401–407

    Article  CAS  Google Scholar 

  • Fonnesbech M (1972) Growth hormones and propagation of Cymbidium in vitro. Physiol Plant 27: 310–316

    Article  CAS  Google Scholar 

  • Fortin JA (1967) Action inhibitrice de l’acide 3-indolyl-acetique sur la croissance de quelques Basidiomycetes mycorrhizateurs. Physiol Plant 20: 528–532

    Article  CAS  Google Scholar 

  • Fortin JA (1970) Interaction entre Basidiomycetes mycorrhizateurs et racines de pin en presence d’acide indo1–3y1 acetique. Physiol Plant 23: 365–371

    Article  CAS  Google Scholar 

  • Frankenberger WT Jr, Poth M (1987) Biosynthesis of indole-3-acetic acid by the pine ectomycorrhizal fungus Pisolithus tinctorius. Appl Environ Microbiol 53: 2908–2913

    CAS  PubMed  Google Scholar 

  • Garcia-Garrido JM, Toro N, Ocampo JA (1993) Presence of specific polypeptides in onion roots colonized by Glomus mosseae. Mycorrhiza 2: 175–177

    Article  CAS  Google Scholar 

  • Gay G (1986) Effect of glucose on indole-3-acetic acid production by the ectomycor- rhizal fungus Hebeloma hiemale in pure culture. Physiol Veg 24: 185–192

    CAS  Google Scholar 

  • Gay G, Debaud JC (1986) Preliminary study of IAA synthesis by ericoid endomycorrhizal fungi. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. Proc 1st Eur Symp on Mycorrhizae, Dijon, 1–5 July 1985, pp 677–682

    Google Scholar 

  • Gay G, Debaud JC (1987) Genetic study on indole-3-acetic acid production by ectomycorrhizal Hebeloma species: inter-and intraspecific variability in homo-and dikaryotic mycelia. Appl Microbiol Biotechnol 26: 141–146

    Article  CAS  Google Scholar 

  • Gay G, Rouillon R, Bernillon J, Favre-Bonvin J (1989) IAA biosynthesis by the ectomycorrhizal fungus Hebeloma hiemale as affected by different precursors. Can J Bot 67: 2235–2239

    Article  CAS  Google Scholar 

  • Gay G, Durand N, Debaud JC (1990) Role of fungal IAA in the Hebeloma/Pinus ectomycorrhizal symbiosis. In: Gianinazzi-Pearson V, Nardon P, Margulis L, Smith DC (eds) Endocytobiology IV. 4th Int Colloq on Endocytobiology and Symbiosis, INSA-Villeurbanne, France, July 4–8, 1989, pp 111–114

    Google Scholar 

  • Gay JL, Woods AM (1987) Induced modifications in plasma membranes of infected cells. In: Pegg GF, Ayres PG (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 79–91

    Google Scholar 

  • Gogala N (1967) Die Wuchsstoffe des Pilzes Boletus edulis var. pinicolus Witt. und ihre Wirkung auf die Keimung der Samen der Kiefer Pinus sylvestris L. Biol Vestn (Lj) 15: 29–39 (in Slovene)

    Google Scholar 

  • Gogala N (1970) Einfluss der natürlichen Cytokinine von Pinus sylvestris L. und anderer Wuchsstoffe auf das Myzelwachstum von Boletus edulis var. pinicolus. Vitt. Oesterr Bot. Z. 118: 321–333

    Article  CAS  Google Scholar 

  • Gogala N (1971) Growth substances in mycorrhiza of the fungus Boletus pinicola Vitt. and the pine tree Pinus sylvestris L. Razprave 14: 123–202

    Google Scholar 

  • Gogala N (1973) Einfluss der natürlichen Cytokinine von Monotropa hypopitys L. auf das Myzelwachstum von Mykorrhizapilzen. Oesterr Bot. Z. 121: 255–267

    Article  CAS  Google Scholar 

  • Gogala N (1987a) Hormonal regulation of mycorrhiza. In: Kossuth SV, Pywell NA (eds) Proc current topics in forest research: emphasis on contributions by women scientists. Gainesville, 1986. Southeastern Forest Experiment Station Asheville, NC, pp 163–167

    Google Scholar 

  • Gogala N (1987b) Jasmonid acid and methyl jasmonate — growth inhibitors for mycorrhizal fungi. In: Sylvia DM, Hung LL, Graham JM (eds) Mycorrhizae in the next decade. Proc 7th NACOM, Gainesville, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 198 pp

    Google Scholar 

  • Gogala N (1989) Growth substances in root exudate of Pinus sylvestris — their influence on mycorrhizal fungi. Agric Ecosyst Environ 28: 151–154

    Article  Google Scholar 

  • Gogala N (1991) Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experientia 47: 331–340

    Article  CAS  Google Scholar 

  • Gogala N, Pohleven F (1976) The effect of cytokinins and auxins on the growth of mycorrhizal fungus Suillus variegatus. Acta Bot Croat 35: 129–134

    CAS  Google Scholar 

  • Graham JH, Linderman RG (1980) Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum f.sp. pini, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas — fir roots. Can J Microbiol 26: 1340–1347

    Article  CAS  PubMed  Google Scholar 

  • Graham JH, Linderman RG (1981) Effect of ethylene on root growth, ectomycorrhiza formation, and Fusarium infection of Douglas-fir. Can J Bot 59: 149–155

    Article  CAS  Google Scholar 

  • Guern J (1987) Regulation from within: the hormone dilemma. Ann Bot 60 (Suppl 4): 75–102

    CAS  Google Scholar 

  • Gunze CMB, Hennessy DMR (1980) Effect of host-applied auxin on development of endomycorrhiza in cowpeas. Trans Br Mycol Soc 74: 247–252

    Article  CAS  Google Scholar 

  • Hacskaylo E (1971) Carbohydrate physiology of ectomycorrhizae. In: Hacskaylo E (ed) Mycorrhizae. US Dep Agric Misc Publ 1189. US Government Printing Office, Washington, pp 175–182

    Google Scholar 

  • Hadley G (1975) Fine structure of orchid mycorrhiza. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 335–351

    Google Scholar 

  • Hanley KM, Greene DW (1987) Gibberellin-like compounds from two ectomycorrhizal fungi and the GA3 response on Scotch pine seedlings. Hortic Sci 22: 591–594

    CAS  Google Scholar 

  • Harley J (1969) The biology of mycorrhiza, 2nd edn. Leonard Hill, London Harley JL, Smith SE ( 1983 ) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Haystead A, Malajczuk N, Grove TS (1988) Underground transfer of nitrogen between pasture plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 108: 417–423

    Article  Google Scholar 

  • Ho I (1987a) Comparison of eight Pisolithus tinctorius isolates for growth rate, enzyme activity, and phytohormone production. Can J For Res 17: 31–35

    Article  CAS  Google Scholar 

  • Ho I (1987b) Enzyme activity and phytohormone production of a mycorrhizal fungus Laccaria laccata. Can J For Res 17: 855–858

    Article  CAS  Google Scholar 

  • Ho I, Trappe JM (1987) Enzymes and growth substances of Rhizopogon sp. in relation to mycorrhizal host and infrageneric taxonomy. Mycologia 79: 553–558

    Article  CAS  Google Scholar 

  • Hock B, Liebmann S, Beyrle H, Dressel K (1992) Phytohormone analysis by enzyme immunoassays. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Academic Press, London, pp 249–273

    Google Scholar 

  • Kampert M, Strzelczyk E (1978) Production of cytokinins by mycorrhizal fungi of pine (Pinus sylvestris L.). Bull Acad Pol Sci 26: 499–503

    CAS  Google Scholar 

  • Kampert M, Strzelczyk E (1989) Effect of amino acids on cytokinin-like substances production by mycorrhizal fungi of pine (Pinus sylvestris L.). Agric Ecosyst Environ 28: 219–228

    Article  Google Scholar 

  • Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43: 557–581

    Article  CAS  Google Scholar 

  • Kope HH, Warcup JH (1986) Synthesized ectomycorrhizal associations of some Australian herbs and shrubs. New Phytol 104: 591–599

    Article  Google Scholar 

  • Kraigher H, Grayling A, Wang TL, Hanke DE (1991) Cytokinin production by two ectomycorrhizal fungi in liquid culture. Phytochemistry 30: 2249–2254

    Article  CAS  Google Scholar 

  • Laloue M, Hall RH (1973) Cytokinins in Rhizopogon roseolus. Plant Physiol 51: 559–562

    Article  CAS  PubMed  Google Scholar 

  • Last FT, Pelham J, Mason PA, Ingleby K (1979) Influence of leaves on sporophore production by fungi forming sheathing mycorrhizas with Betula ssp. Nature 280: 168–169

    Article  Google Scholar 

  • Lee TT, Rock GL, Stoessl A (1978) Effects of orchinol and related phenanthrenes on the enzymatic degradation of indole-3-acetic acid. Phytochemistry 17: 1721–1726

    Article  CAS  Google Scholar 

  • Levy Y, Krikun J (1980) Effect of vesicular-arbuscular mycorrhiza on Citrus jambhiri Lush. water relations. New Phytol 85: 25–31

    Article  Google Scholar 

  • Liebmann S, Hock B (1989) Auxin concentrations in roots of spruce during in vitro ectomycorrhizal synthesis. Plant Physiol (Life Sci Adv) 8: 99–104

    Google Scholar 

  • Lonsane K, Kumar PKR (1991) Fungal plant growth regulators. In: Arora DK, Elander RP, Mukerji KG (eds) Handbook of applied mycology, vol 4. Marcel Dekker, INC, New York, pp 565–602

    Google Scholar 

  • Mauch F, Hadwiger LA, Boller T (1984) Ethylene: symptom, not signal for the induction of chitinase and 3–1,3—glucanase in pea pods by pathogens and elicitors. Plant Physiol 76: 607–611

    Article  CAS  PubMed  Google Scholar 

  • McArthur DAJ, Knowles NR (1992) Resistance responses of potato to vesiculararbuscular mycorrhizal fungi under varying abiotic phosphorus levels. Plant Physiol 100: 341–351

    Article  CAS  PubMed  Google Scholar 

  • McDougall DT, Dufrenoy J (1944) Mycorrhizal symbiosis in Aplectrum, Coralloriza and Pinus. Plant Physiol 19: 440–465

    Article  Google Scholar 

  • Melin E (1963) Some effects of forest tree roots on mycorrhizal Basidiomycetes. In: Mosse B, Nutman PS (eds) Symbiotic associations. Cambridge University Press, Cambridge, pp 124–145

    Google Scholar 

  • Miller CO (1967) Zeatin and zeatin riboside from a mycorrhizal fungus. Science 157: 1055–1057

    Article  PubMed  Google Scholar 

  • Miller CO (1971) Cytokinin production by mycorrhizal fungi. USDA Misc Publ 1189: US Government Printing Office, Washington, pp 168–174

    Google Scholar 

  • Miura G, Hall RH (1973) Trans-ribosylzeatin, its biosynthesis in Zea mays endosperm and the mycorrhizal fungus, Rhizopogon roseolus. Plant Physiol 51: 563–569

    Article  CAS  PubMed  Google Scholar 

  • Mudge KW (1987) Hormonal involvement in ectomycorrhizal development. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Proc 7th NACOM, Gainesville, Institute of Food and Agricultural Sciences, University of Florida, Gainessville, pp 228–230

    Google Scholar 

  • Nakamura SJ (1982) Nutritional conditions required for the nonsymbiotic culture of an achlorophyllous orchid Galeola septentrionalis. New Phytol 90: 701–716

    Article  CAS  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18: 243–270

    Article  Google Scholar 

  • Ng PP, Cole All, Jameson PE, McWha JA (1982) Cytokinin production by ectomycorrhizal fungi. New Phytol 91: 57–62

    Article  CAS  Google Scholar 

  • Nylund JE (1988) The regulation of mycorrhiza formation — carbohydrate and hormone theories reviewed. Scand J For Res 3: 465–479

    Article  Google Scholar 

  • Nylund JE, Wallander H (1989) Effects of ectomycorrhiza on host growth and carbon balance in a semi-hydrophonic cultivation system. New Phytol 112: 389–398

    Article  Google Scholar 

  • Paek Y, Shim GB, Kim JJ, Kang KW (1990) Micropropagation and in vitro breeding of temperate Cymbidium. In: Proc 13th World Orchid Conf 1990, Auckland, pp 232–237

    Google Scholar 

  • Pall LM (1981) Adenosine 3,5-phosphate in fungi. Microbiol Rev 45:462–480 Palme K, Diefenthal T, Hesse T, Nitschke K, Campos N, Feldwisch J, Garbers C, Hesse F, Schwonke S, Schell J (1989) Signalling elements in higher plants: identification and molecular analysis of an auxin binding protein, GTP-binding

    Google Scholar 

  • regulatory proteins and calcium sensitive proteins. In: Lugtenberg BJJ (ed) Signal molecules in plants and plant-microbe interactions. NATO ASI Series, vol. H 36. Springer Berlin, Heidelberg, New York, pp 71–83

    Google Scholar 

  • Paradies I, Konze JR, Elstner EF, Paaxton J (1980) Ethylene: indicator but not inducer of phytoalexin synthesis in soybean. Plant Physiol 66: 1106–1109

    Article  CAS  PubMed  Google Scholar 

  • Pena-Cortes H, Prat S, Sanchez-Serrano JJ, Willmitzer L (1989) The wound-induced expression of the proteinase inhibitor II gene in potato and tomato plants is mediated by abscisic acid. NATO Int Symp Signal perception and transduction in higher plants, Toulouse, July 9–13, 1989 (Abstr)

    Google Scholar 

  • Philips DA, Tsai SM (1992) Flavonoids as plant signals to rhizosphere microbes. Mycorrhiza 1: 55–58

    Article  Google Scholar 

  • Pohleven F (1989) The influence of zeatin on the ion absorption and transport in mycorrhizal fungus Suillus variegatus. Biol Vestn 37: 67–78

    Google Scholar 

  • Pohleven F (1990) The influence of cytokinin 2IPA on ion transport and membrane fluidity in mycelia of the mycorrhizal fungus Suillus variegatus. Agric Ecosyst Environ 28: 399–402

    Article  CAS  Google Scholar 

  • Pohleven F, Gogala N (1986) The influence of natural cytokinins on the content of K, P, Ca and Na in the mycelium of the mycorrhizal fungus Suillus variegatus. Biol Vestn 34: 79–88

    Google Scholar 

  • Pokojska A, Strzelczyk E (1988) Effect of organic acids on production of auxin-like substances by ectomycorrhizal fungi. Symbiosis 6: 211–224

    CAS  Google Scholar 

  • Pokojska-Burdziej A (1981) The effect of carbon and nitrogen sources on auxins and gibberellin-like substances synthesis by bacteria isolated from the roots of pine seedlings (Pinus sylvestris L.). Acta Microbiol Pol 30: 347–354

    CAS  PubMed  Google Scholar 

  • Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae. Academic Press, New York, pp 299–350

    Google Scholar 

  • Read DJ (1984) The structure and function of the vegetative mycelium of mycorrhizal roots. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 215–240

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391

    Article  Google Scholar 

  • Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 193–217

    Google Scholar 

  • Ream W (1989) Agrobacterium tumefaciens and interkingdom genetic exchange. Annu Rev Phytopathol 27:583–618

    Google Scholar 

  • Rouillon R, Gay G, Bernillon J, Favre-Bonvin J, Bruchet G (1986) Analysis by HPLC-mass spectrometry of the indole compounds released by the ectomycorrhizal fungus Hebeloma hiemale in pure culture. Can J Bot 64: 1893–1897

    Article  CAS  Google Scholar 

  • Rudawska M (1980) Effect of pine root extractives on growth regulators and IAAoxidase activity in pure cultures of mycorrhizal fungi. Acta Physiol Plant 2: 133–144

    CAS  Google Scholar 

  • Rudawska M (1982) Effect of various organic sources of nitrogen on the growth of mycelium and content of auxin and cytokinin in cultures of some mycorrhizal fungi. Acta Physiol Plant 4: 11–20

    CAS  Google Scholar 

  • Rudawska M (1983) The effect of nitrogen and phosphorus on auxin and cytokinin production by mycorrhizal fungi. Arbor Kornickie 28: 219–236

    Google Scholar 

  • Rupp LA, Mudge KW (1984) Is ethylene involved in ectomycorrhizae formation on mugo pine? In: Molina R (ed) Proc N Am Conf Mycorrhizae. Oregon State Univ, Corvallis, p 355

    Google Scholar 

  • Rupp LA, Mudge KW (1985) Ethephon and auxin induce mycorrhiza-like changes in the morphology of root organ cultures of mugo pine. Physiol Plant 64: 316–322

    Article  CAS  Google Scholar 

  • Rupp LA, Mudge KW, Negm FB (1989a) Involvement of ethylene in ectomycorrhiza formation and dichotomous branching of roots of mugo pine seedlings. Can J Bot 67: 477–482

    Article  CAS  Google Scholar 

  • Rupp LA, DeVries HE II, Mudge KW (1989b) Effect of aminocyclopropane carboxylic acid and aminothoxylglycine on ethylene production by ectomycorrhizal fungi. Can J Bot 67: 483–485

    Article  CAS  Google Scholar 

  • Sauter M, Hager A (1989) The mycorrhizal fungus Amanita muscaria induces chitinase activity in roots and in suspension-cultured cells of its host Picea abies. Planta 179: 61–66

    Article  CAS  Google Scholar 

  • Schwab SM, Menge JA, Tinker PB (1991) Regulation of nutrient transfer between host and fungus in vesicular-arbuscular mycorrhizas. New Phytol 117: 387–398

    Article  CAS  Google Scholar 

  • Sharada K, Ikegami H, Hyakumachi M (1992) 2,4-D induced, c-AMP mediated, sclerotial formation in Rhizoctonia solani. Mycol Res 96: 863–866

    Google Scholar 

  • Simpson DG (1986) Auxin stimulates lateral root formation of container grown interior Douglas fir seedlings. Can J For Res 16: 1135–1139

    Article  CAS  Google Scholar 

  • Slankis V (1949) Wirkung von ß-Indolylessigsäure auf die dichotomische Verzweigung isolierter Wurzeln von Pinus sylvestris. Sven Bot Tidskr 43: 603–607

    Google Scholar 

  • Slankis V (1967) Renewed growth of ectotrophic mycorrhizae as an indicator of unstable symbiotic relationship. Proc 14th IUFRO congress, vol 5, pp 84–99

    Google Scholar 

  • Slankis V (1971) Formation of ectomycorrhizae of forest trees in relation to light, carbohydrates and auxins. In: Hacskaylo E (ed) Mycorrhizae. Proc 1st NACOM 1969. Misc Publ 1189, US Government Printing Office, Washington, DC

    Google Scholar 

  • Slankis V (1973) Hormonal relationships in mycorrhizal development. In: Marks GC (ed) Ectomycorrhizae. Academic Press, New York, pp 232–298

    Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39: 221–244

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (1990) Tansley review No 20. Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114: 1–38

    Google Scholar 

  • Stegnar P, Gogala N, Pohleven F (1978) The uptake of cadmium, zinc, phosphorus, and plant hormone kinetin by ectomycorrhizal fungi. Acta Bot Croat 37: 67–73

    CAS  Google Scholar 

  • Strauss MS, Reisinger DM (1976) Effects of naphtaleneacetic acid on seed germination. Am Orchid Soc Bull 45: 722–723

    CAS  Google Scholar 

  • Strzelczyk E, Kampert M (1987) Effect of B-group vitamins on cytokinin-like substances production by ectomycorrhizal-fungi of pine (Pinus sylvestris L.). Symbiosis 3: 135–146

    CAS  Google Scholar 

  • Strzelczyk E, Pokojska A (1989) Effect of B-group vitamins on auxin-like substances production by ectomycorrhizal fungi of pine (Pinus sylvestris L.). Agric Ecosystems Environ 28: 483–491

    Article  Google Scholar 

  • Strzelczyk E, Pokojska-Burdziej A (1984) Production of auxins and gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere of pine (Pinus sylvestris L.). Plant Soil 81: 185–194

    Article  CAS  Google Scholar 

  • Strzelczyk E, Sitek J, Kowalski S (1976) Production of gibberellin-like substances by fungi isolated from mycorrhizae of pine (Pinus sylvestris L.). Acta Microbiol Pol 27: 145–153

    Google Scholar 

  • Strzelczyk E, Sitek J, Kowalski S (1977) Synthesis of auxin from tryptophan and tryptophan precursors by fungi isolated from mycorrhizae of Pinus sylvestris L. Acta Microbiol Pol 26: 255–264

    CAS  PubMed  Google Scholar 

  • Strzelczyk E, Kampert M, Michalski L (1985) Production of cytokinin-like substances by mycorrhizal fungi of pine (Pinus sylvestris L.) in cultures with and without metabolites of actinomycetes. Acta Microbiol Pol 34: 177–186

    CAS  PubMed  Google Scholar 

  • Strzelczyk E, Pokojska W, Kampert M, Michalski L, Kowalski S (1989) Production of plant growth regulators by non-mycorrhizal fungi associated with the roots of forest trees. In: Vanoura V, Kunc F (eds) Interrelationships between microorganisms and plants in soil. Proc Int Symp Liblice, Czechoslovakia. Acad Publ Czech Acad Sci, Prague 1989

    Google Scholar 

  • Tinker PB (1984) The role of microorganisms in mediating and facilitating the uptake of plant nutrients from soil. Plant Soil 76: 77–91

    Article  CAS  Google Scholar 

  • Tomaszewski M, Wojciechowska B (1973) The role of growth regulators released by fungi in pine mycorrhizae. Plant growth substances (8th Int Conf on Plant Growth Substances, Tokyo), pp 217–227

    Google Scholar 

  • Trewavas AJ (1981) How do plant growth substances work? Plant Cell Environ 4: 203–228

    CAS  Google Scholar 

  • Trewavas AJ (1991) How do plant growth substances work? II Plant Cell Environ 14: 1–12

    Article  CAS  Google Scholar 

  • Ulrich JM (1960) Auxin production by mycorrhizal fungi. Physiol Plant 13: 429–444

    Article  CAS  Google Scholar 

  • Wallander H (1992) Regulation of ectomycorrhizal symbiosis in Pinus sylvestris L. seedlings. Influence of mineral nutrition. Swedish University of Agricultural Sciences, Department of Forest Mycology and Pathology, Uppsala

    Google Scholar 

  • Wallander H, Nylund JE (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of Pinus sylvestris L. ectomycorrhiza. New Phytol 120: 495–503

    Article  CAS  Google Scholar 

  • Wallander H, Nylund JE, Sundberg B (1992a) Ectomycorrhiza and nitrogen effects on root IAA: results contrary to current theory. Mycorrhiza 1: 91–92

    Article  CAS  Google Scholar 

  • Wallander H, Nylund JE, Sundberg B (1992b) Influence of endogenous IAA, carbohydrates and minerals on ectomycorrhizal development in Pinus sylvestris in relation to nutrient supply. In: Wallander H (ed) Regulation of ectomycorrhizal symbiosis in Pinus sylvestris L. seedlings. Influence of mineral nutrition. Swedish University of Agricultural Sciences, Department of Forest Mycology and Pathology, Uppsala 1992, pp 1–14

    Google Scholar 

  • Warcup JH (1980) Ectomycorrhizal associations of Australian indigenous plants. New Phytol 85: 531–535

    Article  Google Scholar 

  • Warcup JH (1988) Mycorrhizal associations and seedling development in Australian Lobelioideae (Campanulaceae). Aust J Bot 36: 461–472

    Article  Google Scholar 

  • Warcup JH, McGee PA (1983) The mycorrhizal associations of some Australian Asteraceae. New Phytol 95: 667–672

    Article  Google Scholar 

  • Wareing PF, Phillips IDJ (1981) Growth and differentiation in plants. Pergamon Press, New York

    Google Scholar 

  • Weaver RJ, Johnson JO (1985) Relation of hormones to nutrient mobilization and the internal environment of the plant: the supply of mineral nutrients and photosynthate. In: Pharis RP, Reid DM (eds) Encyclopedia of plant physiology, vol 11. Hormonal regulation of development, III; role of environmental factors. Springer, Berlin, Heidelberg, New York, pp 3–36

    Google Scholar 

  • Woolhouse HW (1975) Membrane structure and transport problems considered in relation to phosphorus and carbohydrate movements in the regulation of autotrophic mycorrhizal associations. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 209–239

    Google Scholar 

  • Wullschleger SD, Reid CPP (1990) Implication of ectomycorrhizal fungi in the cytokinin relations of loblolly pine Pinus taeda L. New Phytol 116: 681–688

    Article  CAS  Google Scholar 

  • Wyss P, Mellor R B, Wiemken A (1990) Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins), immunologically cross-reactive with nodulins. Planta 182: 22–26

    Article  CAS  Google Scholar 

  • Zupancic A, Gogala N (1980) The influence of root exudate auxins and gibberellins on the growth on Suillus variegatus mycelium. Acta Bot Croat 39: 85–93

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beyrle, H. (1995). The Role of Phytohormones in the Function and Biology of Mycorrhizas. In: Varma, A., Hock, B. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08897-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08897-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08899-9

  • Online ISBN: 978-3-662-08897-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics