Skip to main content

Experimentelle Hilfsmittel des Spektroskopikers

  • Chapter
Laserspektroskopie
  • 111 Accesses

Zusammenfassung

In diesem Kapitel soll die wichtigste Ausrüstung eines spektroskopischen Labors sowie einige neuere Techniken zur Messung von Wellenlängen und zum Nachweis geringer Strahlungsintensitäten erläutert werden. Da der Erfolg eines Experimentes oft von der Wahl geeigneter Meß- und Nachweisgeräte abhängt, ist die genaue Kenntnis moderner Techniken für den Spektroskopiker von besonderer Bedeutung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenzen

  1. R. Kingslake, B.J. Thompson (eds): Applied Optics and Optical Engineering, Vols.I-X (Academic, New York 1969–1985)

    Google Scholar 

  2. E. Wolf (ed.): Progress in Optics, Vols.I-XXI (North-Holland, Amsterdam 1961–1990)

    Google Scholar 

  3. K.I. Tarasov: The Spectroscope (Adam Hilger, London 1974)

    Google Scholar 

  4. A.P. Thorne: Spectrophyics (Chapman and Hall, London 1974)

    Google Scholar 

  5. G.L. Clark (ed.): The Encyclopedia of Spectroscopy (Reinhold, New York 1960)

    Google Scholar 

  6. L. Levi: Applied Optics (Wiley, London 1980)

    Google Scholar 

  7. A.B. Schafer, L.R. Megil, L. Dropleman: Optimization of the Czerny-Turner Spectrometer. J. Opt. Soc. Am. 54, 879 (1964)

    Article  ADS  Google Scholar 

  8. Bergmann-Schäfer: Lehrbuch der Experimentalphysik, Bd.III: Optik (De Gruyter, Berlin 1974)

    Google Scholar 

  9. S.P. Davis: Diffraction Grating Spectrographs (Holt, Rinehard and Winston, New York 1970)

    Google Scholar 

  10. Handbook of Diffraction Gratings, Ruled and Holographic (Jobin Yvon Optical Systems, Metuchen, NJ 1970); Bausch and Lomb Diffraction Grating Handbook (Bausch and Lomb, Rochester, NY 1970)

    Google Scholar 

  11. G.W. Stroke: Diffraction gratings, in Handbuch der Physik, Bd. 29, Hrsg. S. Flügge (Springer, Berlin, Heidelberg 1967)

    Google Scholar 

  12. G. Schmahl, D. Rudolph: Holographic diffraction gratings. Progress in Optics XIV, 195 (North-Holland, Amsterdam 1977)

    Google Scholar 

  13. E. Loewen: Diffraction gratings: Ruled and holographic. Applied Optics and Optical Engineering IX (Academic, New York 1980)

    Google Scholar 

  14. V. Klein: Optics (Wiley, New York 1970)

    Google Scholar 

  15. R.S. Longhurst: Geometrical and Physical Optics (Longman, London 1973)

    Google Scholar 

  16. S. Tolansky: An Introduction to Interferometry (Longman, London 1973)

    Google Scholar 

  17. J. Dyson: Inter ferometry (Machinery Publ., Brighton 1970)

    Google Scholar 

  18. G. Hernandez: Fabry-Perot Interferometer (Cambridge Univ. Press, Cambridge 1986)

    Google Scholar 

  19. M. Francon: Optical Inter ferometry (Academic, New York 1966)

    Google Scholar 

  20. H. Polster, J. Pastor, R.M. Scott, R. Crane, P.H. Langenbeck, R. Pilston, G. Steingerg: New developments in interferometry. Appl. Opt. 8, 521 (1969)

    Article  ADS  Google Scholar 

  21. K.M. Baird, G.R. Hanes: Interferometers, in [Lit.4.4b, Bd.IV, S.309–362] A.F. Fercher: Neue Interferometer zur Optikprüfung. Laser und Optoelektronik 4, 301 (1983)

    Google Scholar 

  22. R.J. Bell: Introductory Fourier Transform Spectroscopy (Academic, New York 1972)

    Google Scholar 

  23. H.A. Gebbie: Fourier transform versus grating spectroscopy. Appl. Opt. 8, 501 (1969)

    Article  ADS  Google Scholar 

  24. H. Welling, B. Wellegehausen: High resolution Michelson interferometer for spectral investigations of lasers. Appl. Opt. 11, 1986 (1972)

    Article  ADS  Google Scholar 

  25. W. Winkler: Ein Laser-Interferometer als Gravitationswellendetektor. Physik in unserer Zeit 16, 138 (September 1985)

    Article  ADS  Google Scholar 

  26. G. Leuchs: Quantenoptik und Relativitätstheorie. Phys. Blätter 42, 333 (1986)

    Article  Google Scholar 

  27. Siehe z. B. W. Weizel: Lehrbuch der theoretischen Physik, Bd.1: Physik der Vorgänge, 3. Aufl. (Springer, Berlin, Heidelberg 1963)

    Book  Google Scholar 

  28. W.R. Leeb: Losses introduced by tilting intracavity etalons. Appl. Phys. 6, 267 (1975)

    Article  ADS  Google Scholar 

  29. M. Hercher: Tilted etalons in laser resonators. Appl. Opt. 8, 1103 (1969)

    Article  ADS  Google Scholar 

  30. W. Demtröder, M. Stock: Molecular constants and potential curves of Na2 from laser-induced fluourescence. J. Mol. Spectrosc. 55, 476 (1975)

    Article  ADS  Google Scholar 

  31. H. Anders: Dünne Schichten für die Optik (Wissenschaftliche Verlagsgesellschaft, Stuttgart 1965)

    Google Scholar 

  32. J. McDonald: Metal-Dielectric Multilayers (Adam Hilger, London 1971)

    Google Scholar 

  33. A. Thelen: Design of Optical Interference Coatings (McGraw-Hill, New York 1988)

    Google Scholar 

  34. V.R. Costich: Multilayer dielectric coatings, in Handbook of Lasers, ed. by R.J. Pressley (Chemical Rubber Company, Cleveland, Ohio 1972)

    Google Scholar 

  35. F. Abeles: “Optics of Thin Films”, in Advanced Optical Techniques, ed. by A.C.S van Heel (North-Holland, Amsterdam 1967)

    Google Scholar 

  36. S. Penselin, A. Steudel: Fabry-Perot Verspiegelungen aus dielektrischen Vielfachschichten. Z. Physik 142, 21 (1955)

    Article  ADS  Google Scholar 

  37. Siehe z. B. Konferenzband SPIE 691 (1986)

    Google Scholar 

  38. E. Delano, R.J. Pegis: Methods of synthesis for dielectric multilayer filters. Progress in Optics VII, 69 (North-Holland, Amsterdam 1969)

    Google Scholar 

  39. A. Musset, A. Thelen: Multilayer antireflection coatings. Progress in Optics III, 203 (North-Holland, Amsterdam 1970)

    Google Scholar 

  40. H.A. McLeod: Thin Film Optical Filters (Adam Hilger, London 1969); siehe ferner Informationsschriften optischer Filter-Hersteller

    Google Scholar 

  41. P. Connes: L’etalon de Fabry-Perot spherique. Phys. Radium 19, 262 (1958) und in Quantum Electronics and Coherent Light, ed. by P.H. Miles (Academic, New York 1964) p. 198 ff

    Article  Google Scholar 

  42. M. Hercher: The spherical mirror Fabry-Perot interferometer. Appl. Opt 7, 951 (1968)

    Article  ADS  Google Scholar 

  43. H. K. V. Lotsch: The scalar theory for optical resonators and beam waveguides. Optik 26, 112–130(1967) R.C. Smith, Y.A. Abdul-Rahman, G.W. Bresley, F.T. Bell, P.E. Ongley: A prototype confocal Fabry-Perot spherical interferometer. Opt. Laser Technol. 13 (February 1972)

    Google Scholar 

  44. I.S. Chelidev: Elektrische Kristalle (Akademie-Verlag, Berlin 1975)

    Google Scholar 

  45. Ch. Weißmantel, C. Hamann: Grundlagen der Festkörperphysik (Springer, Berlin, Heidelberg 1979) S.672f und 623ff

    Book  Google Scholar 

  46. J.R. Johnson: A high resolution scanning confocal interferometer. Appl. Opt. 7, 1061 (1968)

    Article  ADS  Google Scholar 

  47. L.R. Fork, D.R. Herriot, H. Kogelnik: A scanning sperical mirror interferometer for spectral analysis of laser radiation. Appl. Opt. 3, 1471 (1964)

    Article  ADS  Google Scholar 

  48. J.W. Evans: The birefringent filter. J. Opt. Soc. Am. 39, 229 (1949)

    Article  ADS  Google Scholar 

  49. M. Francon, S. Mullik: Polarization Interferometers (Wiley, Chichester 1971)

    Google Scholar 

  50. A.L. Bloom: Modes of a laser resonator containing tilted birefringent plates. J. Opt. Soc. Am. 64, 447 (1974)

    Article  ADS  Google Scholar 

  51. B.H. Billings: The electro-optic effect in uniaxial crystals of the type XH2 PO4. J. Opt. Soc. Am. 39, 797 (1949)

    Article  ADS  Google Scholar 

  52. B. Zwicker, P. Scherrer: Elektrooptische Eigenschaften der Seignette-elektri-schen Kristalle KH2PO4 und KD2PO4. Helv. Phys. Acta 17, 346 (1944)

    Google Scholar 

  53. H. Walther, J.L. Hall: Tunable Dye Laser with Narrow Spectral Output. Appl. Phys. Lett. 17, 239 (1970)

    Article  ADS  Google Scholar 

  54. J.J. Snyder: Laser Wavelength meters. Laser Focus 18, 55 (May 1982)

    Google Scholar 

  55. J.L. Hall, S.A. Lee: Appl. Phys. Lett. 29 367 (1976)

    Article  ADS  Google Scholar 

  56. F. Kowalski. R. E. Teets, W. Demtröder, A.L. Schawlow: An improved wave-meter for cw lasers. J. Opt. Soc. Am. 68, 1611 (1978)

    Article  ADS  Google Scholar 

  57. H.P. Layer, R.D. Deslattes, W.G. Schweitzer, Jr.: Laser wavelength comparison with high resolution interferometry. Appl. Opt. 15, 734 (1976)

    Article  ADS  Google Scholar 

  58. R. Best: Theorie und Anwendungen des Phase-Locked Loops (AT-Verlag, Stuttgart 1976)

    Google Scholar 

  59. K.M. Baird: Frequency measurement of optical radiation. Phys. Today 36, 1 (January 1983)

    Article  Google Scholar 

  60. F. Bayer-Helms: Neudefinition der Basiseinheit Meter im Jahre 1983. Phys. Bl. 39, 307 (1983)

    Article  Google Scholar 

  61. W.G. Schweizer, Jr., E.G. Kessler, Jr., R. D. Deslattes, H.P. Layer, J.R. Whetstone: Description, performance and wavelengths of iodine stabilized lasers. Appl. Opt. 12, 2927 (1973)

    Article  ADS  Google Scholar 

  62. B. Edlen: Dispersion of Standard Air. J. Opt. Soc. Am. 43, 339 (1953)

    Article  ADS  Google Scholar 

  63. J.C. Owens: Optical Refractive Index of Air: Dependence on pressure, temperature and composition. Appl. Opt. 6, 51 (1967)

    Article  ADS  Google Scholar 

  64. R. Castell, W. Demtröder, A. Fischer, R. Kullmer, K. Wickert: The accuracy of laser wavelength meters. Appl. Phys. B 38, 1–10 (1985)

    Article  ADS  Google Scholar 

  65. J. Cachenaut, C. Man, P. Cerez, A. Brillet, F. Stoeckel, A. Jourdan, F. Hartmann: Description and accuracy tests of an improved lambdameter. Rev. Phys. Appl. 14, 685 (1979)

    Article  Google Scholar 

  66. J. Viqué, B. Girard: A systematic error of Michelson’s type lambdameter. Rev.Phys. Appl. 21, 463 (1986)

    Article  Google Scholar 

  67. J.J. Snyder: An ultrahigh resolution frequency meter. Proc. 35th Ann. Freq. Control USAERADCOM (May 1981); Appl. Opt. 19, 1223 (1980)

    Google Scholar 

  68. P. Juncar, J. Pinard: Instrument to measure wavenumbers of cw and pulsed laser lines: The sigma meter. Rev. Sci. Instrum. 53, 939 (1982);

    Article  ADS  Google Scholar 

  69. P. Juncar, J. Pinard: and Opt. Commun. 14, 438 (1975)

    Article  ADS  Google Scholar 

  70. R.L. Byer, J. Paul, M.D. Duncan: A wavelength meter, in [Lit. 1.1 III, S.414]

    Google Scholar 

  71. A. Fischer, R. Kullmer, W. Demtröder: Computer-controlled Fabry-Perot wavemeter. Opt. Commun. 39, 277 (1981)

    Article  ADS  Google Scholar 

  72. N Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya: High precision wavelength meter with Fabry-Perot optics. Appl. Phys. 25, 311 (1981)

    Article  ADS  Google Scholar 

  73. J.J. Snyder: Fizeau wavemeter. SPIE 288, 258 (1981)

    Article  Google Scholar 

  74. M.B. Morris, T.J. McIllrath, J. Snyder: Fizeau wavemeter for pulsed laser wavelength measurement. Appl. Opt. 23, 3862 (1984)

    Article  ADS  Google Scholar 

  75. J.L. Gardner: Compact Fizeau wavemeter. Appl. Opt. 24, 3570 (1985)

    Article  ADS  Google Scholar 

  76. J.L. Gardner: Wavefront curvature in a Fizeau wavemeter. Opt. Lett. 8, 91 (1983)

    Article  ADS  Google Scholar 

  77. J.J. Keyes (ed): Optical and Infrared Detectors, 2nd. edn., Topics Appl. Phys., Vol.19 (Springer, Berlin, Heidelberg 1977)

    Google Scholar 

  78. P.N. Dennis: Photodetectors (Plenum, New York 1986)

    Book  Google Scholar 

  79. M. Bleicher: Halbleiter-Optoelektronik (Hüthig, Heidelberg 1976)

    Google Scholar 

  80. R.D. Hudson, J.W. Hudson: Infrared Detectors (Halsted, Stroudsburg, PA 1975)

    Google Scholar 

  81. W. Schmidt, O. Feustel: Optoelektronik (Vogel, Würzburg 1975)

    Google Scholar 

  82. J. Wilson, J.F.B. Hawkes: Optoelectronics (Prentice Hall, London 1983)

    Google Scholar 

  83. T.E. Gough, R.E. Miller, G. Scoles: Infrared laser spectroscopy of molecular beams. Appl. Phys. Lett. 30, 338 (1977)

    Article  ADS  Google Scholar 

  84. D. Bassi, A. Boschetti, M. Scotoni, M. Zen: Molecular beam diagnostics by means of fast superconducting bolometer. Appl. Phys. B26, 99 (1981)

    ADS  Google Scholar 

  85. J. Clarke, P.L. Richards, N.H. Yeh: Composite superconducting transition edge bolometer. Appl. Phys. Lett. B30, 664 (1977)

    Article  ADS  Google Scholar 

  86. H. Ibach, H. Lüth: Festkörperphysik, 3. Aufl. (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  87. E.H. Putly: Thermal detectors, in [Lit.4.68, S.71ff]

    Google Scholar 

  88. B. Tiffany: Introduction and review of pyroelectric detectors. SPIE 62, 153 (1975)

    Article  ADS  Google Scholar 

  89. E.H. Putly: Pyroelectric detectors, in Submillimeter Waves, ed. by J. Fox (Polytechnic Press, New York 1971) p.267

    Google Scholar 

  90. C.B. Roundy, R.L. Byer: Subnanosecond pyroelectric detector. Appl. Phys. Lett. 21, 10(1972)

    Article  Google Scholar 

  91. L.E. Ravich: Pyroelectric detectors and imaging. Laser Focus 22, 104 (1986)

    Google Scholar 

  92. R. Paul: Optoelektronische Halbleiterbauelemente (Teubner, Stuttgart 1985)

    Google Scholar 

  93. T.S. Moss, G.J. Burell, B. Ellis: Semiconductor Opto-Electronics (Butterworth, London 1973)

    Google Scholar 

  94. F. Capasso: Band-gap engineering via graded-gap structures: Applications to novel photodetectors. J. Vac. Sci. Tech. B12, 457 (1983);

    Google Scholar 

  95. F. Capasso: and Multilayer avalanche photodiodes and solid state photomultipiers. Laser Focus 20, 84 (July 1984)

    Google Scholar 

  96. Ch.H. Lee (ed): Picosecond Optoelectronic Devices (Academic, New York 1984) Ebeling: Integrierte Optoelektronik (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  97. E. Sakuma, K.M. Evenson: Characteristics of tungsten nickel point contact diodes used as a laser harmonic generation mixers. IEEE J. QE-10. 599 (1974)

    Article  Google Scholar 

  98. H.U. Daniel, B. Maurer, M. Steiner: A broadband Schottky point contact mixer for visible light and microwave harmonics. Appl. Phys. B30, 189 (1983)

    ADS  Google Scholar 

  99. R.B. Billborn, J.V. Sweedler, P.M. Epperson, M.B. Denton: Charge transfer device detectors for optical spectroscopy. Appl. Spectrosc. 41, 1114 (1987)

    Article  ADS  Google Scholar 

  100. J.D. Rees, M.P. Givens: Variation of time of flight of electrons through a pho-tomultiplier. J. Opt. Soc. Am. 56, 93 (1966)

    Article  ADS  Google Scholar 

  101. C. Gosh: Photoemissive materials. Proc. SPIE 346, 62 (1982)

    Article  Google Scholar 

  102. R.L. Bell: Negative Electron Affinity Devices (Clarendon, Oxford 1973)

    Google Scholar 

  103. A. van der Ziel: Noise in Measurements (Wiley, New York 1976)

    Google Scholar 

  104. H. Bittel, L. Storm: Rauschen (Springer, Berlin, Heidelberg 1971)

    Google Scholar 

  105. A.T. Young: Undesirable effects of cooling photomultipliers. Rev. Sci. Instrum. 38, 1336 (1967)

    Article  ADS  Google Scholar 

  106. Siehe z.B. Informationsblätter über Photomultiplier von RCA, EMI oder Hama-matsu

    Google Scholar 

  107. Photon Counting: Informationsbroschüre, Princeton Applied Research R.G. Tull: A comparison of photon counting and current measuring techniques in spectrometry of faint sources. Appl. Opt. 7, 2023 (1968)

    Article  Google Scholar 

  108. B. Saleh: Photoelectron Statistics, Springer Ser. Opt. Sci., Vol.6 (Springer, Berlin, Heidelberg 1978)

    Book  Google Scholar 

  109. P.W. Kruse: The photon detection process, in [Lit.4.68, S.5ff]

    Google Scholar 

  110. T.P. McLean, P. Schagen (eds): Electronic Imaging (Academic, London 1979) H.K. Pollehn: Image intensities, in [Lit.4.1a, Bd.VI, S.393–438 (1980)]

    Google Scholar 

  111. A. Tebo: IR detector technology: Arrays. Laser Focus 20, 68 (July 1984)

    Google Scholar 

  112. Informationsblätter über OMA-Systeme, Princeton Appl. Res. Corp.

    Google Scholar 

  113. Informationsblätter über OSA-Systeme, B & B Spektronik, Puchheim Informationsblätter über PIAS-Systeme, Hamamatsu Photonics, Seefeld

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (1993). Experimentelle Hilfsmittel des Spektroskopikers. In: Laserspektroskopie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08268-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08268-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08269-0

  • Online ISBN: 978-3-662-08268-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics