Skip to main content

Plant Respiration under the Influence of Heavy Metals

  • Chapter
Heavy Metal Stress in Plants

Abstract

The effect of transition metals and Al on plant catabolism has received less attention than their effect on other metabolic traits. Applied and ecological studies concentrate on the role of metal exclusion from the symplast or metal sequestration in the vacuole for plant survival on substrates with toxic metal concentrations (Ernst 1969, 1976; Denny and Wilkins 1987). Physiological studies about metabolic effects of excess levels of heavy metals focus on effects on photosynthesis (Vallee and Ulmer 1972; Clijsters and Van Assche 1985) and, more recently, on specific gene expression (Tomsett and Thurman 1988). The lack of detailed insight into heavy metal interactions with metabolic processes and with other ions hinders causal understanding of toxicity and tolerance mechanisms (Foy et al. 1978; Jackson et al. 1990; Mukhopadhyay and Sharma 1991; Barceló and Poschenrieder 1992). This statement is particularly true in the case of heavy metal effects on plant respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson I, Evans HJ (1956) Effect of manganese and certain other metal cations on isocitric dehydrogenase and malic enzyme activities in Phaseolus vulgaris. Plant Physiol 31: 22–28

    Article  PubMed  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (1992) Respuestas de las plantas a la contaminación por metales pesados. Suelo y Planta 2: 345–361

    Google Scholar 

  • Bittell JE, Koeppe DE, Miller RJ (1974) Sorption of heavy metal cations by corn mitochondria and the effects on electron and energy transfer reactions. Physiol Plant 30: 226–230

    Article  CAS  Google Scholar 

  • Bopp LH, Chakrabarty AM, Ehrlich HL (1983) Chromate resistance plasmids in Pseudomonas fluorescens. J Bacteriol 155: 1105–1109

    PubMed  CAS  Google Scholar 

  • Brierley GP (1976) The uptake and extrusion of monovalent cations by isolated heart mitochondria. Mol Cell Biochem 10: 41–62

    Article  PubMed  CAS  Google Scholar 

  • Brierley GP (1977) Effects of heavy metals on isolated mitochondria. In: Lee SD (ed) Biochemical effects of environmental pollutants. Ann Arbor Sci, Ann Arbor, 397–411

    Google Scholar 

  • Brierley GP, Knight VA (1967) Ion transport by heart mitochondria. X. The uptake and release of Zn2+ and its relation to the energy-linked accumulation of Mg. Biochemistry 6: 3892–3902

    Article  PubMed  CAS  Google Scholar 

  • Brooks RR, Shaw S, Marfil AA (1981) The chemical form and physiological function of nickel in some Iberian Alyssum species. Physiol Plant 51: 167–170

    Article  CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73: 844–848

    Article  PubMed  CAS  Google Scholar 

  • Chappell JB, Cohn M, Greville GD (1963) The accumulation of divalent ions by isolated mitochondria. In: Chance B (ed) Energy-linked functions of mitochondria. Acad. Press, New York, pp. 219–231

    Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31: 239–298

    Article  CAS  Google Scholar 

  • Clarkson DT, Lunge U (1989) Mineral nutrition: Divalent cations, transport and compartmentation. Prog Bot 51: 93–112

    Article  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7: 31–40

    Article  CAS  Google Scholar 

  • Cumming JR, Taylor GJ (1990) Mechanisms of metal tolerance in plants: physiological adaptation for exclusion of metal ions from the cytoplasm. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss. New York Cichester, pp. 329–356

    Google Scholar 

  • Cutler JM, Rains DW (1974) Characterization of cadmium uptake by plant tissue. Plant Physiol 54: 67–71

    Article  PubMed  CAS  Google Scholar 

  • Davies KL, Davies MS, Francis D (1995) The effects of zinc on cell viability and on mitochondrial structure in contrasting cultivars of Festuca rubra L. — A rapid test for zinc tolerance. Environ Pollut 88: 109–113

    Article  PubMed  CAS  Google Scholar 

  • De Filippis LF, Hampp R, Ziegler H (1981) The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. II. Respiration, photosynthesis and photochemical activities. Arch Microbiol 128: 407–411

    Article  Google Scholar 

  • Denny HJ, Wilkins DA (1987) Zinc tolerance in Betula spp. II. Microanalytical studies of zinc uptake into root tissues. New Phytol. 106: 525–534

    CAS  Google Scholar 

  • Earnshaw MJ, Cooke A (1984) The role of cations in the regulation of electron transport. In: Palmer JM (ed) The physiology and biochemistry of plant respiration. Cambridge University Press. London New York pp. 177–182

    Google Scholar 

  • Edjlali M, Calvayrac R (1991) Effects des ions métalliques sur l’intensité respiratoire et sur les capacités cataltiques chez Euglena gracilis Z. C R Acad Sci Paris 312: 177–182

    CAS  Google Scholar 

  • Efstathiou JD, McKay LL (1977) Inorganic salts resistance associated with a lactose-fermenting plasmid in Streptococcus lactis. J Bacteriol 130: 257–265

    PubMed  CAS  Google Scholar 

  • Eide E, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93: 5624–5628.

    Article  PubMed  CAS  Google Scholar 

  • Ernst WHO (1969) Zur Physiologie der Schwermetallpflanzen–subzelluläre Speicherungsorte des Zinks. Ber Deutsch Bot Ges 82: 161–164

    CAS  Google Scholar 

  • Ernst WHO (1976) Physiological and biochemical aspects of metal tolerance. In: Mansfield TA (ed) Effects of air pollutants on plants, Cambridge Univ. Press, Cambridge, pp. 115–133

    Google Scholar 

  • Ernst WHO (1982) Schwermetallpflanzen. In: Kinzel H (ed) Pflanzenökologie und Mineralstoffwechsel, Ulmer Stuttgart, pp 472–506

    Google Scholar 

  • Ernst W, Mathys W, Janiesch P (1975) Physiologische Grundlagen der Schwermetallresistenz — Enzymaktivitäten und organische Säuren. Forschungsberichte des Landes Nordrhein-Westfalen 2496, 1–50, Westdeutscher Verlag Opladen

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41: 229–248

    CAS  Google Scholar 

  • Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57: 246–273

    Article  Google Scholar 

  • Fonyo A, Palmieri F, Ritvay J, Quagliariello E (1974) Kinetics and inhibitor sensitivity of the mitochondrial phosphate carrier. In: Azzone GF (ed) Membrane proteins in transport and phosphorylation. North Holland Publ., Amsterdam, pp. 283–286

    Google Scholar 

  • Foy CD, Chaney RL, White MC (1978a) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29: 511–566

    Article  CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978b) The physiology of plant tolerance to excess available aluminum and manganese in acid soils. In: Jung GA (ed) Crop tolerance to suboptimal land conditions. Publ. 32 Amer Soc Agron, Madison, pp. 301–328

    Google Scholar 

  • Godbold DL, Horst WJ, Collins JC, Thurman DA, Marschner H (1984) Accumulation of zinc and organic acids in roots of zinc tolerant and non-tolerant ecotypes of Deschampsia caespitosa. J Plant Physiol 116: 59–69

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676

    Article  PubMed  CAS  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Nat Acad Scienc USA 95: 7220–7224.

    Article  CAS  Google Scholar 

  • Gupta UC (1979) Copper in agricultural crops. In: Nriagu JO (ed) Copper in the environment. Part I: Ecological cycling. Wiley & Sons, New York-Chicester, pp. 255–288

    Google Scholar 

  • Hanson JB, Malhotra SS, Stoner CD (1965) Action of calcium on corn mitochondria. Plant Physiol 40: 1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Harmens H, Koevoets PLM, Verkleij JAC, Ernst WHO (1994) The role of low molecular weight organic acids in the mechanism of increased zinc tolerance in Silene vulgaris (Moench) Garcke. New Phytol 126: 615–621.

    Article  CAS  Google Scholar 

  • Harper FA, Smith SE, Macnair MR (1997) Where is the cost in copper tolerance in Mimulus guttatus? Testing the trade-off hypothesis. Funct Ecol 11: 764–774

    Article  Google Scholar 

  • Harrington CF, Roberts DJ, Nickless G (1996) The effect of cadmium, zinc, and copper on the growth, tolerance index, metal uptake, and production of malic acid in two strains of the grass Festuca rubra. Can J Bot 74: 1742–1752

    Article  CAS  Google Scholar 

  • Horio T, Higashi T, Okunuki K (1955) Copper resistance of Mycobacterium tuberculosis avium. II. The influence of copper ion on the respiration of the parent cells and copper-resistant cells. J Biochem, Tokyo 42: 491–498

    CAS  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, CobbettCS (1995) Cadmium-sensitive, cadi mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107: 1059–1066.

    Article  CAS  Google Scholar 

  • Huett DO, Menary RC (1979) Aluminium uptake by excised roots of cabbage, lettuce and Kikuyu grass. Aust J Plant Physiol 6: 643–653

    Article  CAS  Google Scholar 

  • Jackson PJ, Unkefer PJ, Delhaize E, Robinson NJ (1990) Mechanisms of trace metal tolerance in plants. In: Katterman F (ed) Environmental injury to plants. Acad Pr, San Diego, New York, Boston, pp. 231–255

    Google Scholar 

  • Jana S, Choudhuri MA (1982) Senescence in submerged aquatic angiosperms: effects of heavy metals. New Phytol 90: 477–484

    Article  CAS  Google Scholar 

  • Kampfenkel K, Kushnir S, Babiychuk E, Inze D, Vanmontagu M (1995) Molecular charac terization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J Biol Chem 270: 28479–28486

    Article  PubMed  CAS  Google Scholar 

  • Kesseler A, Brand MD (1995) The mechanism of the stimulation of state 4 respiration by cadmium in potato tuber (Solanum tuberosum) mitochondria. Plant Physiol Biochem 33: 519–528

    CAS  Google Scholar 

  • Kinraide TB (1988) Proton extrusion by wheat roots exhibiting severe aluminum toxicity symptoms. Plant Physiol 88: 418–423

    Article  PubMed  CAS  Google Scholar 

  • Kleiner D (1974) The effect of Zn2+ on mitochondrial electron transport. Arch Biochem Biophys 165: 121–125

    Article  PubMed  CAS  Google Scholar 

  • Köhl KI (1995) Ökophysiologische Grundlagen der Sippendifferenzierung bei Anneria maritima (Mill.) Willd.: Evolution von Dürre-Kochsalz und Schwermetall-Resistenz. Dissertation, H. Heine-Universität. Düsseldorf

    Google Scholar 

  • Koeppe DE, Miller RJ (1970) Lead effects on corn mitochondrial respiration. Science 167: 1376–1377

    Article  PubMed  CAS  Google Scholar 

  • Krotz RM, Evangelou BP, Wagner GJ (1989) Relationships between cadmium, zinc Cd-peptide and organic acid in tobacco suspension cells. Plant Physiol 91: 780–787

    Article  PubMed  CAS  Google Scholar 

  • Lamoreaux RJ, Chaney WR (1978) The effect of cadmium on net photosynthesis, transpiration, and dark respiration of excised silver maple leaves. Physiol Plant 43: 231–236

    Article  CAS  Google Scholar 

  • Lee KC, Cunningham BA, Paulson GM, Liang GH, Moore RB (1976) Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings. Physiol Plant 36: 4–6

    Article  CAS  Google Scholar 

  • Lee J, Reeves RD, Brooks RR, Jaffré T (1977) Isolation and identification of a citrate-complex of nickel from nickel-accumulating plants. Phytochemistry 16: 1503–1505

    Article  CAS  Google Scholar 

  • Lee J, Reeves RD, Brooks RR, Jaffré T (1978) The relation between nickel and citric acid in some nickel-accumulating plants. Phytochemistry 17: 1033–1035

    Article  CAS  Google Scholar 

  • Lorimer GH, Miller RJ (1969) The osmotic behavior of corn mitochondria. Plant Physiol 44: 839–844

    Article  PubMed  CAS  Google Scholar 

  • Macklon AES, Sim A (1976) Cortical cell fluxes and transport to the stele in excised root segments of Allium cepa L. III. Magnesium. Planta 128: 5–9

    Article  CAS  Google Scholar 

  • Macklon AES, Sim A (1987) Cellular cobalt fluxes in roots and transport to the shoots of wheat seedlings. J Exp Bot 38: 1663–1677

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. 2nd ed. Acad Press. London-San Diego New York

    Google Scholar 

  • Mathys W (1975) Enzymes of heavy-metal-resistant and non-resistant populations of Silene cucubalus and their interaction with some heavy metals in vitro and in vivo. Physiol Plant 33: 161–165

    Article  CAS  Google Scholar 

  • Mathys W (1977) The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol Plant 40: 130–136

    Article  CAS  Google Scholar 

  • Mattioni C, Gabbrielli R, Vangronsfeld J, Clijsters H (1997) Nickel and cadmium toxicity and enzymatic activity in Ni-tolerant and non-tolerant populations of Silene italica Pers. J Plant Physiol 150: 173–177

    Article  CAS  Google Scholar 

  • Meharg AA (1993) The role of the plasmalemma in metal tolerance in angiosperms. Physiol Planta 88: 191–198

    Article  CAS  Google Scholar 

  • Millard DL, Wiskirch JT, Robertson RN (1964) Ion uptake by plant mitochondria. Proc Natl Acad Sci USA 52: 996–1004

    Article  PubMed  CAS  Google Scholar 

  • Miller RI, Bittell JE, Koeppe DE (1973) The effect of cadmium on electron and energy transfer reactions in corn mitochondria. Physiol Plant 28: 166–171

    Article  CAS  Google Scholar 

  • Mocquot B, Vangronsveld J, Clijsters H, Mench M (1996) Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant Soil 182: 287–300

    CAS  Google Scholar 

  • Mukhopadhyay MJ, Sharma A (1991) Manganese in cell metabolism of higher plants. Bot Rev 57: 117–149

    Article  Google Scholar 

  • Murayama T (1961) Studies on the metabolic pattern of yeast with reference to its copper resistance. Memoirs Ehime Univ Sect II, B4: 43–66

    Google Scholar 

  • Murphy A. Taiz L. (1997) Correlation between potassium efflux and copper sensitivity in 10 Arabidopsis ecotypes. New Phytol 136: 211–222.

    Google Scholar 

  • Nies DH. Siver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol 171: 896–900

    Google Scholar 

  • Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding casette-type vacuolar membrane transporter. EMBO J 11: 3491–3499

    PubMed  CAS  Google Scholar 

  • Peterson PJ (1969) The distribution of zinc-65 in Agrostis tenuis, Sibth. and A. stolonifera, L. tissues. J Exp Bot 20: 863–875

    Article  CAS  Google Scholar 

  • Pfeffer PE, Tu SI, Gerasimowicz WV, Cavanaugh JR (1986) In vivo “P NMR studies of corn root tissue and its uptake of toxic metals. Plant Physiol 80:77–84

    Google Scholar 

  • Pfeffer PE, Tu SI, Gerasimowicz WV, Boswell RT (1987) Role of the vacuole in metal ion trapping as studied by in vivo 31P-NMR spectroscopy. In: Marin B (ed) Plant vacuoles: their importance in solute compartmentation in cells and their applications in plant biotechnology. NATO ASI Series A, Life Sciences 134. Plenum Press. New York, pp. 349–359

    Google Scholar 

  • Poulter A, Collin HA, Thurman DA, Hardwick K (1985) The role of the cell wall in the mechanism of lead and zinc tolerance in Anthoxanthum odoratum L. Plant Sci 42: 61–66

    Article  CAS  Google Scholar 

  • Prebble JN (1981) Mitochondria, chloroplasts, and bacterial membranes. Longman, London New York

    Google Scholar 

  • Reese RN, Roberts LW (1985) Effects of cadmium on whole cell and mitochondrial respiration in tobacco cell suspension cultures (Nicotiana tabacum L. var. xanthi). J Plant Physiol 120: 123–130

    Article  CAS  Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107: 1293–1301

    PubMed  CAS  Google Scholar 

  • Santa Maria GE, Cogliatti DH (1988) Bidirectional Zn-fluxes and compartmentation in wheat seedling roots. J Plant Physiol 132: 312–315

    Article  CAS  Google Scholar 

  • Scarpa A, Azzi A (1968) Cation binding to submitochondrial particles. Biochim Biophys Acta 150: 473–481

    Article  PubMed  CAS  Google Scholar 

  • Scarpa A, Azzone GF (1968) Ion transport in liver mitochondria. J Biol Chem 243: 5132–5138

    PubMed  CAS  Google Scholar 

  • Schat H, Kalff, MMA (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99: 1475–1480.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel H, Godbold DL, Hüttermann A (1987) Whole plant aspects of heavy metal induced changes in CO, uptake and water relations of spruce (Picea abies) seedlings. Physiol Plant 69: 265–270

    Article  CAS  Google Scholar 

  • Scott KM, Hwang KM, Jurkowitz M, Brierley GP (1971) Ion transport by heart mitochondria. XXIII. The effect of lead on mitochondrial reactions. Arch Biochem Biophys 147: 557–567

    Article  PubMed  CAS  Google Scholar 

  • Silver S, Misra TK (1988) Plasmid-mediated heavy metal resistances. Annu Rev Microbiol 42: 717–743

    Article  PubMed  CAS  Google Scholar 

  • Sirkar S, Amin JV (1974) The manganese toxicity of cotton. Plant Physiol 54: 539–543

    Article  PubMed  CAS  Google Scholar 

  • Sirkar S, Amin JV (1979) Influence of auxins on respiration of manganese toxic cotton plants. Indian J Exp Biol 17: 618–619

    CAS  Google Scholar 

  • Suhayda CG, Haug A (1986) Organic acids reduce aluminum toxicity in maize root membranes. Physiol Plant 68: 189–185

    Article  CAS  Google Scholar 

  • Thurman DA, Rankin JL (1982) The role of organic acids in zinc tolerance in Deschampsia caespitosa. New Phytol 91: 629–635

    Article  CAS  Google Scholar 

  • Tomsett AB, Thurman DA (1988) Molecular biology of metal tolerances of plants. Plant Cell Environ 11: 383–394

    Article  CAS  Google Scholar 

  • Twyman ES (1951) The iron and manganese requirements of plants. New Phytol 50: 210–226

    Article  CAS  Google Scholar 

  • Tyler DD (1969) Evidence of a phosphate-transporter system in the inner membrane of isolated mitochondria. Biochem J 111: 665–678

    PubMed  CAS  Google Scholar 

  • Tzagoloff A (1982) Mitochondria. Plenum, New York London

    Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41: 91–128

    Article  PubMed  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13: 195–206

    Article  Google Scholar 

  • Van der Werf A, Raaimakers D, Poot P, Lambers H (1991) Evidence for a significant contribution by peroxidase-mediated O2 uptake to root respiration of Brachypodium pinnatum. Planta 183: 347–352

    Google Scholar 

  • Verkleij JAC, Koevoets PLM, Blakekalff MMA, Chardonnens AN (1998) Evidence for an important role of the tonoplast in the mechanism of naturally selected zinc tolerance in Silene vulgaris. J Plant Physiol 153: 188–191.

    Article  CAS  Google Scholar 

  • Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol 92: 1066–1093

    Article  Google Scholar 

  • Wagatsuma T (1983) Effect of non-metabolic conditions on the uptake of aluminum by plant roots. Soil Sci Plant Nutr 29: 323–333

    Article  CAS  Google Scholar 

  • Wang J, Evangelou BP, Nielsen MT, Wagner GJ (1992) Computer simulated evaluation of possible mechanisms for sequestring metal ion activity in plant vacuoles II. Zinc. Plant Physiol 99: 621–626.

    Article  CAS  Google Scholar 

  • Weigel HJ, Jäger HJ (1980) Der Einfluß von Schwermetallen auf Wachstum and Stoffwechsel von Buschbohnen. Angew Bot 54: 195–205

    CAS  Google Scholar 

  • Weinberg JM, Harding PG, Humes HD (1982) Mitochondrial bioenergetics during the initiation of mercuric chloride induced renal injury. J Biol Chem 257: 60–74

    PubMed  CAS  Google Scholar 

  • Weinstein LH, Robbins WR (1955) The effect of different iron and manganese nutrient levels on the catalase and cytochrome oxidase activities of green and albino sunflower leaf tissues. Plant Physiol 30: 27–32

    Article  PubMed  CAS  Google Scholar 

  • Woolhouse HW (1983) Toxicity and tolerance in the response of plants to metals. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds.) Physiological plant ecology II. Responses to the chemical and biological environment. Encyclopedia of Plant Physiology. New Series 12 C. Springer, Berlin, pp 245–300.

    Google Scholar 

  • Wu L, Antonovics J (1978) Zinc and copper tolerance ofAgrostis stolonifera L. in tissue culture. Amer J Bot 65: 268–271

    Article  CAS  Google Scholar 

  • Wu L, Thurman DA, Bradshaw AD (1975) The uptake of copper and its effect upon respiratory processes of roots of copper-tolerant and non-tolerant clones of Agrostis stolonifera. New Phytol 75: 225–229

    Article  CAS  Google Scholar 

  • Zaitseva MG (1978) The role of cation transport in regulation of the activity of plant mitochondria. In: Ducet G, Lance C (eds) Plant mitochondria. Elsevier/North-Holland Biomed. Press. Amsterdam-New York-Oxford, pp. 183–189

    Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants — a review. Gene 179: 21–30

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Taylor GJ (1989) Kinetics of aluminum uptake by excised roots of aluminum-tolerant and aluminum-sensitive cultivars of Triticum aestivum L. Plant Physiol. 91: 1094–1099

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lösch, R., Köhl, K.I. (1999). Plant Respiration under the Influence of Heavy Metals. In: Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07745-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07745-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07747-4

  • Online ISBN: 978-3-662-07745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics