Skip to main content
Log in

Manganese in cell metabolism of higher plants

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Manganese, a group VII element of the periodic table, plays an important role in biological systems and exists in a variety of oxidation states. The normal level of Mn in air surrounding major industrial sites is 0.03 μg/m3, in drinking water 0.05 mg/liter and in soil between 560 and 850 ppm.

Manganese is an essential trace element for higher plant systems. It is absorbed mainly as divalent Mn2+, which competes effectively with Mg2+ and strongly depresses its rate of uptake. The accumulation of Mn particularly takes place in peripheral cells of the leaf petiole, petiolule and palisade and spongy parenchyma cells.

Mn is involved in photosynthesis and activation of different enzyme systems. Mn deficiency may be expressed as inhibition of cell elongation and yield decrease.

Mn toxicity is one of the important growth limiting factors in acid soils. Plant tops are affected to a greater extent than root systems. The toxicity symptoms are, in general, similar to the deficiency symptoms.

Toxic effects of Mn on plant growth have been attributed to several physiological and biochemical pathways, although the detailed mechanism is still not very clear. Higher O2 uptake and loss of control in Mn activated enzyme systems have been associated with Mn toxicity.

Mn interferes with the uptake, transport and use of several essential elements including Ca, Fe, Cu, Al, Si, Mg, K, P and N. Excess of Mn reduces the uptake of certain elements and increases that of others.

pH plays an important role in Mn uptake. Acidic pH causes a lack of substantial amount of nitrate as an alternative electron acceptor and leads to a high amount of Mn in leaves. High microbial activity, water logging and poorly structured soils cause severe Mn toxicity even in neutral soils.

The molecular mechanism of Mn-tolerance is not yet clear. The level of tolerance is different in different species and seems to be controlled by more than one gene.

Further information is required on the factors affecting the distribution, accumulation and membrane permeability of the metal in different plant parts and different species. Understanding of the genetic basis of Mn-tolerance is necessary to improve adaptation of crops against acid soils, water logging and other adverse soil conditions.

Résumé

Le manganèse, un élément du groupe VII du tableau périodique, joue un rôle important au niveau des systèmes biologiques et existe sous différents états d’oxydation. Le niveau normal du manganèse dans l’air au voisinage de parcs industriels est de 0.03 μg/m3, de 0.05 mg/litre dans l’eau potable et entre 560 et 850 ppm dans le sol.

Le manganèse est un oligoélément essentiel pour les plantes supérieures. Il est surtout absorbé sous la forme bivalente Mn2+ qui entre efficacement en compétition avec l’ion Mn2+ et réduit substantiellement son taux d’absorption. L’accumulation du Mn a particulièrement lieu dans les cellules périphériques du pétiole, dans le pétiolule et les cellules du parenchyme palissadique et aérifère.

Le Mn est impliqué dans la photosynthèse et active aussi différents systèmes enzymatiques. Une déficience en Mn peut inhiber l’élongation des cellules et diminuer la croissance.

La toxicité du Mn est un des principaux facteurs réduisant la croissance en sol acide. Les parties aériennes des plantes sont beaucoup plus affectées que le système racinaire. Les symptômes de toxicité sont habituellement similaires à ceux d’une déficience.

Les effets toxiques du Mn sur la croissance des plantes interviennent dans plusieurs sentiers physiologiques et biochimiques, quoique les mécanismes ne soient pas encore connus de façon détaillée. Une assimilation plus élevée de l’oxygène ainsi qu’un dérèglement des systèmes enzymatiques dépendant du Mn ont été associés à la toxicité due à ce métal.

Le Mn perturbe l’absorption, le transport et l’utilisation de divers éléments essentiels, notamment le Ca, Fe, Cu, Al, Si, Mg, K, P et N. Un excès de Mn réduit l’apport de certains éléments et augmente celui d’autres éléments.

Le pH joue un rôle important dans l’absorption du Mn. Dans le cas d’un pH acide, il n’y a pas assez de nitrate agissant comme accepteur alternatif d’électrons, de sorte qu’une grande quantité de Mn se retrouve dans les feuilles. Une grande activité microbienne, la présence d’eau stagnante et un sol insuffisamment développé augmentent considérablement la toxicité, même en sol neutre.

Les mécanismes moléculaires de la tolérance au Mn demeurent obscurs. Le seuil de tolérance varie d’une espèce à l’autre et semble être sous le contrôle de plus d’un gène.

Des données additionnelles sont requises concernant les facteurs influençant la distribution, l’accumulation de ce métal et la perméabilité membranaire dans diverses parties des plantes chez différentes espèces. Une meilleure connaissance des bases génétiques de la tolérance au Mn est nécessaire pour améliorer l’adaptation des plantes à l’acidité des sols, à la présence d’eau stagnante ainsi qu’à des conditions adverses des sols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abbott, A. J. 1967. Physiological effects of micronutrient deficiencies in isolated roots ofLycopersicon esculentum New Phytol.66: 419–437.

    Google Scholar 

  • Abd-Elgawad, M. &B. D. Knezek. 1983. Studies on manganese toxicity in two soybean cultivars. Ann. Agric. Sci. Moshtohor19: 603–616.

    Google Scholar 

  • Ahmed, S. 1985. Influence of sulfur, zinc, manganese and molybdenum application on the growth and yield and their concentration in rice plant in gray flood plain soil. Thai. J. Agric. Sci.18(2): 137–244.

    CAS  Google Scholar 

  • Alam, S. M. 1981. Influence of aluminum on plant growth and mineral nutrition of barley. Commun. Soil Sci. Pl. Anal.12: 121–138.

    CAS  Google Scholar 

  • —. 1983. Effects of flooded and unflooded soil conditions, Fe and Mn application on growth and nutrient content by rice plants. J. Sci. and Tech.7(1–2): 1–2.

    Google Scholar 

  • Alcubilla, M., M. P. Diaz-Palcio, K. Kreutzer, W. Laatsch, K. E. Rehfuess &G. Wenzel. 1971. Beziehungen zwischen dem Ernährungszustand der Fichte (Picea abies Karst.) ihrem Kernfäulbefall und der Pilzhemmwirkung ihres Basts. Eur. J. For. Pathol.1: 100–114.

    Google Scholar 

  • Alexander, M. 1961. Introduction to soil microbiology. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Allakhverdiev, S. I., M. A. Shafiev &V. V. Klimov. 1986. Effect of extraction and subsequent addition of manganese ions on photooxidation of chlorophyll p680 in the photosystem II preparations. Biofizica31(2): 223–226.

    CAS  Google Scholar 

  • Anderson, P. L. &J. L. Dean. 1986. Relationship of rust severity and plant nutrients in sugarcane,Saccharum spp. Phytopathology76: 581–585.

    CAS  Google Scholar 

  • Andrew, C. S. &W. H. J. Pieters. 1976. Foliar symptoms of mineral disorders inGlycine wightii. CSIRO Australian Div. Trop. Agron. Tech. Paper no.18: 1–12.

    Google Scholar 

  • Aoba, K. K. Sekiya &R. Aime. 1977. Studies on metallic trace elements in orchards: III. Physiological studies on excess absorption of manganese by Satsumas. Kaju Shikenjo Hokuku44: 1–16.

    Google Scholar 

  • Baker, D. A. 1983. Uptake of cations and their transport within the plant. Pages 3–20,in D. A. Robb & W. S. Pierpoint (eds.), Metals and micronutrients: Uptake and utilization by plants. Academic Press, New York.

    Google Scholar 

  • Bar-Akiva, A. &R. Lavon. 1967. Visible symptoms and metabolic patterns in micro-nutrient deficient Eureka lemon leaves. Israel J. Agric. Res.17: 7–16

    CAS  Google Scholar 

  • Barber, D. A. 1978. Nutrient uptake. Pages 131–162in Y. R. Dommergues & S. V. Krupa (eds.), Interactions between non-pathogenic soil micro-organisms and plants. Elsevier, Amsterdam.

    Google Scholar 

  • —. 1974. The effect of micro-organisms on the absorption of manganese by plants. New Phytol.76: 69–80.

    Google Scholar 

  • Bergman, W. 1983. Ernährungsstörungen bei Kulturpflanzen, Entstehung und Diagnose. Fischer, Jena.

    Google Scholar 

  • Blatt, C. R. &A. Van Diest. 1981. Evaluation of a screening technique for manganese toxicity in relation to leaf manganese distribution and interaction with silicon. Netherlands J. Agric. Sci.29: 297–304.

    CAS  Google Scholar 

  • Boichenko, E. A. 1985. Importance of lipophilic metal compounds in the evolution of photosynthesis. Izv. Akad. Nauk. SSSR. Ser. Biol.4: 500–507.

    Google Scholar 

  • Borris, J. 1988. Stimulation by manganese (II) sulfate of a cAMP dependent protein kinase fromZea mays seedlings. Phytochemistry27(9): 2735–2736.

    Google Scholar 

  • Bouquiaux, J. 1974. Non-organic micro-pollutants of the environment. 2. Detailed list of levels present in the environment. Luxembourg, Commission of the European Communities (Document V/F/1966/74e): 194–221.

  • Bremner, I. 1974. Heavy metal toxicities. Quart. Rev. Biophys.7: 75–124.

    CAS  Google Scholar 

  • —. 1970. The complexes of zinc, copper and manganese present in rye grass. Brit. J. Nutr.21: 279–289.

    Google Scholar 

  • Bridges, S. M. &M. L. Salin. 1981. Distribution of iron-containing superoxide dismutase in vascular plants. Pl. Physiol.68: 275–278.

    CAS  Google Scholar 

  • Bromfield, S. M. 1978. The effect of manganese oxidizing bacteria and pH on the availability of manganous ions and manganese oxide to oats in nutrient solutions. Pl. & Soil49: 23–39.

    CAS  Google Scholar 

  • Brown, J. C. &T. E. Devine. 1980. Inheritance of tolerance or resistance to manganese toxicity in soybeans. Agron. J.72: 898–904.

    CAS  Google Scholar 

  • Bryan, D. E. 1970. Development of nuclear analytical techniques for oil slick identification (Phase I). Work done under AEC Contract No. AT (904-3) 167 by Gulf General Atomic.

  • Bukovac, M. J. &S. H. Wittwer. 1957. Absorption and mobility of foliar applied nutrients. Pl. Physiol.32: 428–435.

    CAS  Google Scholar 

  • Burca, S., C. Dorina, C. Constantin &T. Mihai. 1984. Modifications caused by the trace elements manganese and cobalt in the ultrastructure of the roots of tomato seedlings. Stud. Univ. Babes-Bolyai Biol.29: 27–34.

    CAS  Google Scholar 

  • Burnell, J. N. 1988. The biochemistry of manganese in plants. Pages 125–137in R. D. Graham, R. J. Hannam & N. C. Uren (eds.), Manganese in soils and plants. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Camargo, C. E.De O. 1983. Wheat breeding III. Evidence of genetic control over tolerance of toxic manganese and aluminium in wheat. Bragantia42: 91–103.

    CAS  Google Scholar 

  • —. 1984. Wheat breeding X. Heritability estimates and correlations between both tolerance to Al toxicity and yield and other agronomic characters in wheat. Bragantia43: 615–628.

    Google Scholar 

  • Campbell, L. C. &R. O. Nable. 1988. Physiological functions of manganese in plants. Pages 139–154in R. D. Graham, R. J. Hannam & N. C. Uren (eds.), Manganese in soils and plants. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Carmell, C, V. H. Juang, M. Dennis, T. J. Andre &A. Lewis. 1986. Extended X-ray absorption fine structure of Mn2+ and Mn2+ ATP complex bound to coupling factor of the H+-ATPase from chloroplasts. J. Biol. Chem.261: 16969–16975.

    Google Scholar 

  • Chase, A. R. &R. T. Poole. 1984. Influence of foliar applications of micronutrients and fungicides on foliar necrosis and leaf spot disease ofChrysalidocarpus lutescens. Pl. Dis.68(3): 195–197.

    CAS  Google Scholar 

  • Chen, Y., N. Dutta &S. J. Roux. 1987. Purification and partial characterization of a calmodulin-stimulated nucleoside triphosphatase from pea nuclei. J. Biol. Chem.226:10689–10694.

    Google Scholar 

  • Cheng, B. T. &A. Pesant. 1977. Manganese and copper nutrients in oats as affected by natural color and texture of soil associated with temperature and aeration. Agrochimica21: 170–179.

    CAS  Google Scholar 

  • Cheniae, G. M. &I. F. Martin. 1968. Sites of manganese function in photosynthesis. Biochim. Biophys. Acta153: 819–837.

    CAS  Google Scholar 

  • —. 1969. Photoreactivation of manganese catalyst in photosynthetic oxygen evolution. Pl. Physiol.44: 351–360.

    CAS  Google Scholar 

  • Clarkson, D. T. 1988. The uptake and translocation of manganese by plant roots. Pages 101–111in R. D. Graham, R. J. Hannam & N. C. Uren (eds.), Manganese in soils and plants. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • —. 1980. The mineral nutrition of higher plants. Annual Rev. Pl. Physiol.61: 731–736.

    Google Scholar 

  • Constantopoulus, G. 1970. Lipid metabolism of manganese-deficient algae. I. Effect of manganese deficiency on the greening and the lipid composition ofEuglena gracilis Z. Pl. Physiol.45: 76–80.

    Google Scholar 

  • Devine, T. E. 1976. Aluminum and manganese toxicities in legumes. Pages 65–72 in M. J. Right & S. J. Ferrari (eds.), Plant adaptation to mineral stress in problem soils. Cornell University Agr. Est. Sta. Special Pub. Ithaca, N.Y.

    Google Scholar 

  • —1982. Genetic fitting of crops to problem soils. Pages 149–173in M. N. Christiansen & C. F. Lewis (eds.), Breeding plants for less favorable environments. John Wiley and Sons, N.Y.

    Google Scholar 

  • Dieckert, J. W. &E. Rozacky. 1969. Isolation and partial characterization of manganin, a new manganoprotein from peanut seeds. Arch. Biochem. Biophys.134:473–477.

    PubMed  CAS  Google Scholar 

  • Dionne, J. L. &A. R. Pesant. 1985. Effect of applications of manganese and aluminium: Soil pH and moisture regimes on alfalfa yields and the availability of manganese and aluminium. Canad. J. Soil Sci.65: 269–282.

    CAS  Google Scholar 

  • Dobereiner, J. 1966. Manganese toxicity effects on nodulation and nitrogen fixation of beans (Phaseolus vulgaris L.) in acid soils. Pl. & Soil24: 153–166.

    CAS  Google Scholar 

  • Durum, W. H. & J. Hafety. 1961. Occurrence of minor elements in water. Washington. U.S. Geol. Surv. (Circular 445) 11.

  • Ebeid, M. M. &M. Kutáček. 1979. Effects of EDTA on transport forms of manganese in maize xylem exudate. Biol. Pl.21: 178–182.

    CAS  Google Scholar 

  • Ecnink, A. H. &G. A. Garretsen. 1977. Inheritance of insensitivity of lettuce to a surplus of exchangeable manganese in steam sterilized soils. Euphytica26: 47–53.

    Google Scholar 

  • Edwards, D. G. &C. J. Asher. 1982. Tolerance of crop and pasture species to manganese toxicity. Pages 145–150in A. Scaife (ed.), Proc. Ninth Intl. Plant Nutrition Colloq.1: 22–27 August. Commonwealth Agricultural Bureaux, England, Slough, U.K.

    Google Scholar 

  • —. 1983. C3, C4: Mechanisms and cellular and environmental regulation of photosynthesis. Blackwell, Oxford.

    Google Scholar 

  • Elamin, O. M. &G. E. Wilcox. 1986. Manganese toxicity development in muskmelons as influenced by nitrogen form. J. Amer. Soc. Hort. Sci.111: 323–327.

    CAS  Google Scholar 

  • Elstner, E. F. 1982. Oxygen activation and oxygen toxicity. Annual Rev. Pl. Physiol.33: 73–96.

    CAS  Google Scholar 

  • Epstein, E. 1972. Mineral nutrition of plants: Principles and perspectives. Wiley, New York.

    Google Scholar 

  • Eyster, C., T. E. Brown, H. A. Tanner &S. L. Hood. 1958. Manganese requirement with respect to growth, Hill reaction and photosynthesis. Pl. Physiol.33: 235–241.

    CAS  Google Scholar 

  • Finn, B. J., S. J. Bourget, K. F. Nielson &B. K. Dow. 1961. Effects of different soil moisture tension on grass and legume species. Canad. J. Soil Sci.41: 16–23.

    Google Scholar 

  • Firgany, A. H., M. H. El-Hindi &S. A. El-Moursy. 1980. Effect of seed soaking in manganese and copper solutions on onion crop. Egypt. J. Agron.5(2): 119–125.

    CAS  Google Scholar 

  • Fisher, J. A. & B. J. Scott. 1983. Breeding wheats for tolerance to acid soils. Proc. Austral. Plant Breeding Conf. Adelaide. Feb. 1983, p. 335.

  • Fiskesjo, G. 1988. The Allium test—An alternative in environmental studies: The relative toxicity of metal ions. Mutation Res.197: 243–260.

    PubMed  CAS  Google Scholar 

  • Flessel, C. P. 1981. Metals as mutagens. In G. N. Schrauzer (ed.), Inorganic and nutritional aspects of cancer. Plenum Press, New York.

    Google Scholar 

  • Foy, C. D. 1973. Manganese and plants. Pages 51–76in Manganese. Natl. Acad. of Sci. Natl. Res. Counc. Washington.

    Google Scholar 

  • —. 1983. Plant adaptation to mineral stress in problem soils. Invitational lecture in a series of seminars on “Plant breeeding solutions for soil stress problems.” Iowa J. Res.57: 339–354.

    CAS  Google Scholar 

  • —. 1984. Physiological effects of hydrogen, aluminum and manganese toxicities in acid soil. Pages 57–97in F. Adams (ed.), Soil acidity and liming—Agronomy monograph No. 12, 2nd ed., Amer. Soc. Agron., Madison, Wisconsin.

    Google Scholar 

  • —. 1978. The physiology of plant tolerance to excess available and manganese in acid soils. Pages 301–328in G. A. Jung (ed.), Crop tolerance to suboptimal land conditions. Pub. No. 32. Amer. Soc. of Agron. Madison, Wisconsin.

    Google Scholar 

  • —. 1973. Opposite aluminum and manganese tolerances of two wheat varieties. Agron. J.65: 123–126.

    CAS  Google Scholar 

  • —. 1988. Genetic differences in plant tolerance to manganese toxicity. Pages 293–307in R. D. Graham, R. J. Hannam & N. C. Uren (eds.), Manganese in soils and plants. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • —. 1981. Adaptation of cotton genotypes to an acid manganese toxic soil. Agron. J.73: 107–111.

    CAS  Google Scholar 

  • Fridovich, I. 1983. Superoxide radical: An endogenous toxicant. Annual Rev. Pharmacol. Toxicol.23: 239–257.

    CAS  Google Scholar 

  • Gammon, N., Jr. &S. E. McFadden. 1979. Effect of root stocks on green house rose flower yield and leaf nutrient levels. Commun. Soil Sci. Pl. Anal.10: 1171–1184.

    CAS  Google Scholar 

  • Ghosh, A. K., R. K. Rai, Y. R. Saxena &A. K. Shrivastava. 1990. Effect of sulfur application on the nutritional status, yield and quality of sugar cane. J. Indian Soc. Soil Sci.38(1): 73–76.

    CAS  Google Scholar 

  • Gilbert, R. D. 1957. Mineral nutrition and the balance of life. Pages 111–124: University of Oklahoma Press, Norman, Oklahoma.

    Google Scholar 

  • Godo, G. H. &H. M. Reisenauer. 1980. Plant effects on soil manganese availability. Soil Sci. Soc. Amer. J.44: 993–995.

    CAS  Google Scholar 

  • Graham, R. D. 1979. Transport of copper and manganese to the xylem exudate of sun flower. Pl. Cell Environ.2: 1391–1443.

    Google Scholar 

  • —. 1984. A role for manganese in the resistance of wheat plants to take-all. Pl. & Soil78: 441–444.

    CAS  Google Scholar 

  • Graven, E. H., O. J. Attoe &D. Smith. 1965. Effect of liming and flooding on manganese toxicity in alfalfa. Soil Sci. Soc. Amer. Proc.29: 702–706.

    CAS  Google Scholar 

  • Gupta, U. C., J. A. Macleod &L. B. Macleod. 1973. Effects of aluminium, manganese and lime on toxicity symptoms, nutrient composition and yield of barley grown on a podzol soil. Pl. Soil.39: 413–421.

    CAS  Google Scholar 

  • Gupta, V. K. &R. Singh. 1988. Partial purification and characterization of NADP-isocitrate dehydrogenase from immature pod walls of chick pea (Cicer arietinum L.). Pl. Physiol. (Bethesda)87(3): 741–744.

    CAS  Google Scholar 

  • Halliwell, B. 1978. Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: The key role of superoxide dismutase. Cell Biol. Int. Rep.2: 113–128.

    PubMed  CAS  Google Scholar 

  • Harrison, S. J., N. W. Lepp &D. A. Phipps. 1983. Copper uptake by excised roots: 3. Effect of manganese on copper uptake. Z. Pflanzenphysiol.109: 285–290.

    CAS  Google Scholar 

  • Hati, N., I. R. Fisher &W. J. Upchurch. 1979. Liming of soil: 1. Effect on plant available aluminium. J. Indian Soc. Soil Sci.27: 277–281.

    CAS  Google Scholar 

  • Heenan, D. P. &L. C. Campbell. 1980. Growth, yield components and seed composition of two soybean cultivars as affected by manganese supply. Austral. J. Agric. Res.31: 471–476.

    CAS  Google Scholar 

  • —. 1981. Soybean (Glycine max) nitrate reductase activity influenced by manganese nutrition. Pl. Cell Physiol.21: 731–736.

    Google Scholar 

  • —. 1981. Inheritance of tolerance to high manganese supply in soybean. Crop Sci.21: 625–627.

    Google Scholar 

  • —. 1977. Influence of temperature on the expression of manganese toxicity by two soybean varieties. Pl. & Soil47: 210–297.

    Google Scholar 

  • Hewitt, E. J. 1963. The essential nutrient elements: Requirements and interactions in plants. Pages 137–329in F. C. Steward (ed.), Plant physiology. Vol. III. Academic Press, New York.

    Google Scholar 

  • Hipkins, M. F. 1983. Metals and photosynthesis. Pages 147–168in D. A. Robb & W. S. Pierpoint (eds.), Metals and micronutrients: Uptake and utilization by plants. Academic Press, New York.

    Google Scholar 

  • Hofner, W. 1970. Eisen- und Manganhaltig Verbindungen in Blutungssaft vonHelianthus annum. Physiol. Pl.23: 673–677.

    Google Scholar 

  • Hoganson, C. W. &G. T. Babcock. 1988. Electron transfer events near the reaction centre in oxygen evolving photosystem II preparations. Biochemistry27(16): 5848–5855.

    CAS  Google Scholar 

  • Holmes, R. I. &G. D. Coorts. 1980. Effects of excess manganese nutrition on the growth of Easter lily. Hort. Sci.15: 497–498.

    CAS  Google Scholar 

  • Horiguchi, T. 1988. Mechanism of manganese toxicity and tolerance of plants. IV. Effects of silicon on alleviation of manganese toxicity of rice plants. Soil Sci. Pl. Nutr. (Tokyo)34(1): 65–73.

    CAS  Google Scholar 

  • Horst, W. J. 1982. Quick screening of cowpea genotypes for manganese tolerance during vegetative and reproductive growth. Z. Pflanzenernähr. Düngung Bodenk.145: 423–435.

    CAS  Google Scholar 

  • —. 1988. The physiology of manganese toxicity. Pages 175–188in R. D. Graham, R. J. Hannam & N. C. Uren (eds.), Manganese in soils and plants. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • —. 1978a. Effect of excessive manganese supply on uptake and translocation of calcium in bean plants (Phaseolus vulgaris L.). Z. Pflanzenphysiol.87: 137–148.

    CAS  Google Scholar 

  • — 1978b. Symptome von mangan Überschu bei BohnenPhaseolus vulgaris L. Z. Pflanzenernähr. Düngung Bodenk.141: 129–142.

    CAS  Google Scholar 

  • —. 1978c. Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Pl. & Soil50: 287–303.

    CAS  Google Scholar 

  • — 1978d. Effect of silicon on the chemical state of manganese in bean leaf tissue (Phaseolus vulgaris L.). Z. Pflanzenernähr. Düngung Bodenk.141: 487–497.

    CAS  Google Scholar 

  • Hoyt, P. B. 1988. The relationship of internal bark necrosis in Delicious apples to tree characteristics and soil properties. Commun. Soil Sci. Pl. Anal.19(7–2): 1041–1048.

    CAS  Google Scholar 

  • Huber, D. M. &N. S. Wilhelm. 1988. The role of manganese in resistance to plant diseases. Pages 155–173in R. D. Graham, R. J. Hannam & N. C. Uren (eds.), Manganese in soils and plants. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Irwin, P. L., M. D. Sevilla &W. Chamulitrat. 1988. Homopolygalacturonan molecular size in plant cell wall matrices via paramagnetic ion and nitroxyl amide dipolar spin-spin interactions. Biophys. J.54(2): 337–344.

    CAS  Google Scholar 

  • Jauregui, M. A. &H. M. Reisenauer. 1982. Dissolution of oxides of manganese and iron by root exudate components. Soil Sci. Soc. Amer. J.46: 314–317.

    CAS  Google Scholar 

  • Joardar, M. 1988. Cytotoxicity of certain environmental agents on plant systems. J. Indian Bot. Soc.67: 183–185.

    CAS  Google Scholar 

  • —. 1989. Toxicological screening of a trace element, manganesein vivo. Cytologia55: 135–139.

    Google Scholar 

  • —. 1988. Cytotoxic effects of inorganic manganese. Nucleus31(3): 146–176.

    Google Scholar 

  • Jones, R. K. &H. J. Clay. 1976. Foliar symptoms of nutrient disorders in Townsville stylo (Stylosanthes humilis). CSIRO Austral. Div. Trop. Agron. Tech. Paper No.19: 1–11.

    Google Scholar 

  • Kak, S. N. &B. L. Kaul. 1973. Role of Mn ions on the modification of the mutagenic activity of some alkylating agents. Cytologia38: 577–585.

    CAS  Google Scholar 

  • Kang, B. T. &R. L. Fox. 1980. A methodology for evaluating the manganese tolerance of cowpea (Vigna unguiculata) and some preliminary results of field trials. Field Crops Res.3: 199–210.

    Google Scholar 

  • Karamanos, R. E., J. G. Fradette &P. D. Gerwing. 1985. Evaluation of copper and manganese nutrition of spring wheat grown on organic soils. Canad. J. Soil Sci.65: 133–148.

    CAS  Google Scholar 

  • Khalid, B. Y. &N. S. A. Malik. 1982. Presowing soaking of wheat seeds in copper and manganese solutions. Commun. Soil Sci. Pl. Annal.13(11): 981–986.

    CAS  Google Scholar 

  • Khatiashvili, R. M., J. G. Abulashvili, M. B. Burdzhanadze &N. T. Gogoladze. 1985. The effect of trace elements on the uptake of anions by the grapevine leaves. Soobshch Akad. Nauk. Gruz. Ssr.120: 161–164.

    CAS  Google Scholar 

  • Kliewer, W. M. 1961. The effects of varying combinations of molybdenum, aluminum, manganese, phosphorus, nitrogen, calcium and hydrogen concentrations, lime andRhizobium strain on growth composition and nodulation of several legumes. Ph.D. Dissertation. Cornell University Ithaca, New York.

    Google Scholar 

  • Kohno, Y. &C. D. Foy. 1983a. Manganese toxicity in bush bean as affected by concentration of manganese and iron in the nutrient solution. J. Pl. Nutr.6: 363–386.

    CAS  Google Scholar 

  • —. 1983b. Differential tolerance of bush bean cultivars to excess manganese in solution and sand culture. J. Pl. Nutr.6: 877–893.

    CAS  Google Scholar 

  • Kolesnikova, V. G., L. A. Kasetkina, O. P. Malahova, V. I. Musycenko &D. M. Babov. 1973. Concentrations of the tracce elements copper and manganese in river water, soils and plants in the southern Ukraine. Gig. i. Sanit.38: 110–111.

    CAS  Google Scholar 

  • Kroner, R. C. &J. F. Kopp. 1965. Trace elements in six water systems of the United States. Amer. Water Works Assoc. J.57: 150–156.

    CAS  Google Scholar 

  • Kuo, S. &D. S. Mikkelsen. 1981. Effect of phosphorus and manganese on growth response and uptake of iron, manganese and phosphorus by sorghum (S. vulgare). Pl. & Soil62: 15–22.

    CAS  Google Scholar 

  • Kvyatkovskii, D. F. 1988. The effect of trace element on nitrate reductase activity and chlorophyll content in maize leaves under irrigatioin. Fiziol. Biokhim. Kult. Rast.20(1): 39–42.

    CAS  Google Scholar 

  • Landi, S. &K. Fagioli. 1983. Efficiency of manganese and copper uptake by excised roots of maize genotypes. J. Pl. Nutr.6(11): 957–970.

    CAS  Google Scholar 

  • Lawton, J. R. 1980. Silica in grasses. Electron Microsc. Soc. South Afr. Proc.10: 67–68.

    CAS  Google Scholar 

  • Lee, C. R. &M. I. McDonald. 1978. Influence of soil amendments on potato growth, mineral nutrition and tuber yield and quality in very strongly acid soils. Soil Sci. Soc. Amer. J.41: 573–577.

    Google Scholar 

  • Lerer, M. &A. Bar-Akiva. 1976. Nitrogen constituents in manganese deficient lemon leaves. Physiol. Pl.38: 13–18.

    CAS  Google Scholar 

  • Levitt, J. 1980. Responses of plants to environmental stresses, ed. 2. Vol. 2. Academic Press, New York.

    Google Scholar 

  • Lewis, D. C. &J. D. McFarlane. 1986. Effect of foliar applied manganese on the growth of safflower (Carthamus tinctorius L.) and the diagnosis of Mn deficiency by plant tissue and seed analysis. J. Agric. Res.37(6): 562–572.

    Google Scholar 

  • Linehan, D. J., A. H. Sinclair &M. C. Mitchell. 1985. Mobilization of Cu, Mn and Zn in the soil solutions of barley rhizospheres. Pl. Soil86: 147–149.

    CAS  Google Scholar 

  • Löhnis, M. P. 1960. Effect of magnesium and calcium supply on the uptake of manganese by various crop plants. Pl. & Soil12: 339–376.

    Google Scholar 

  • Loneragan, J. F. 1988. Distribution and movement of manganese in plants. Pages 113–124in R. D. Graham, R. J. Hannam & N. C. Uren (eds.), Manganese in soils and plants. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Mahler, H. R. 1961. Interrelationships with enzymes. Pages 743–879in C. L. Comar & F. Bronner (eds.), Mineral metabolism. 1. Academic Press, New York.

    Google Scholar 

  • Marcar, N. E. &R. D. Graham. 1986. Effect of seed manganese content on the growth of wheat (Triticum aestivum) under manganese deficiency. Pl. & Soil96: 165–174.

    CAS  Google Scholar 

  • Markert, B. 1987. Interelement correlations in plants. Fresenius Z. Anal. Chem.329: 462–465, Springer Verlag.

    CAS  Google Scholar 

  • Marschner, H. 1986. Mineral nutrition of higher plants. Academic Press, New York.

    Google Scholar 

  • Martin-Prevel, P., J. Gagnard &P. Gautier. 1987. Plant analysis: As a guide to the nutrient requirements of temperate and tropical crops. S.B.A. Calcutta.

    Google Scholar 

  • Masui, M., A. Nakaya &A. Ishida. 1976. Studies on the manganese excess muskmelon: V. The manganese, calcium and iron concentrations in nutrient solutions. Engei Gakkai Zasshi45: 267–274.

    Google Scholar 

  • ———. 1980. The manganese excess of muskmelons: 6. Manganese distribution in the plant parts. Engei Gakkai Zasshi49: 79–84.

    CAS  Google Scholar 

  • McCool, M. M. 1935. Effect of light intensity on the manganese content of plants. Contr. Boyce Thompson Inst. Pl. Res.7: 427–437.

    CAS  Google Scholar 

  • McDermott, A. E., K. Vittal, Y. R. D. Guiles, J. L. Cole, S. L. Dexaheimer, R. D. Britt, K. Sauer &M. P. Klein. 1988. Characterization of the manganese oxygen evolving complex and the iron-quinone acceptor complex in photosystem II from a thermophilic cyanobacterium by EPR and X-ray absorption spectroscopy. Biochemistry27(11): 4021–4031.

    PubMed  CAS  Google Scholar 

  • McGrath, S. P. &I. H. Rorison. 1982. The influence of nitrogen source on the tolerance ofHolcus lanatus andBromus erectus to manganese. New Phytol.9: 443–452.

    Google Scholar 

  • McGregor, A. J. &G. C. S. Wilson. 1964. The effect of applications of manganese sulphate to a neutral soil upon the yield of tubers and the incidence of common scab in potatoes. Pl. & Soil20: 59–64.

    Google Scholar 

  • McHargue, J. S. 1922. The role of manganese in plants. J. Amer. Chem. Soc.44: 1592–1598.

    CAS  Google Scholar 

  • Memon, A. R., M. Chino, Y. Takeoka, K. Hora &M. Yatazawa. 1980. Distribution of manganese in leaf tissues of a manganese accumulator:Acanthopanax sciadophylloides as revealed by electron probe X-ray microanalyzer. J. Pl. Nutr.2: 457–476.

    CAS  Google Scholar 

  • ——. 1981a. Manganese toxicity in field grown tea plants and the microdistribution of manganese in the leaf tissue as revealed by electron probe X-ray micrography. Soil Sci. Pl. Nutr.27: 317–328.

    CAS  Google Scholar 

  • ——. 1981b. Microdistribution of aluminium and manganese in the tea leaf tissues as revealed by X-ray analysis. Commun. Soil Sci. Pl. Anal.12: 441–452.

    CAS  Google Scholar 

  • —. 1984. Nature of manganese complexes in manganese accumulator plantAcanthopanax sciadophylloides. J. Pl. Nutr.7: 961–964.

    CAS  Google Scholar 

  • Mena, I. 1980. Manganese. Pages 199–220in H. A. Waldron (ed.), Metals in the environment. Academic Press, London.

    Google Scholar 

  • Menten, J., E. Malavolta, J. C. Sabino, A. A. Veiga &N. A. Tulmann. 1981. Virus like abnormality in the bean plant (Phaseolus vulgaris L.) induced by manganese toxicity. Fitopatol. Bras.6(2): 179–185.

    CAS  Google Scholar 

  • Miller, S. S. &D. E. Schubert. 1977. Plant manganese and soil pH associated with internal bark necrosis in apple. Proc. W.Va. Acad. Sci.49: 97–102.

    CAS  Google Scholar 

  • Miner, G. S., A. Z. Galindez &M. R. Tucker. 1987. Response of fluecured tobacco to foliar and soil applications of manganese. Tobacco Sci.31: 28–31.

    Google Scholar 

  • Morgan, P. W., D. M. Taylor &H. E. Joham. 1976. Manipulations of IAA oxidase activity and auxin deficiency symptoms in intact cotton plants with manganese nutrition. Physiol. Pl.37: 149–156.

    CAS  Google Scholar 

  • Morris, A. W. 1974. Seasonal variation of dissolved metals on inshore waters of the Menai straits. Marine Pollut. Bull.5: 54–59.

    CAS  Google Scholar 

  • Mortvedt, J. J., K. C. Berger &H. M. Darling. 1963. Effect of manganese and copper on the growth ofStreptomyces scabies and the incidence of potato scab. Amer. Potato J.40: 96–102.

    CAS  Google Scholar 

  • —. 1961. The relation of some soluble manganese to the incidence of common scab in potatoes. Amer. Potato J.38: 95–100.

    CAS  Google Scholar 

  • Mukhopadhyay Joardar, M. &A. Sharma. 1990. Comparison of different plants in screening for Mn clastogenicity. Mutation Res.242: 157–161.

    Google Scholar 

  • Nable, R. O. 1983. Translocation of manganese in subterranean clover and its relation to deficiency diagnosis. Ph.D. Thesis. Murdoch University, West Australia.

    Google Scholar 

  • —. 1984a. Translocation of manganese in subterranean clover (Trifolium subterraneum L. cv Seaton Park). I. Redistribution during vegetative growth. Austral. J. Pl. Physiol.11: 101–111.

    CAS  Google Scholar 

  • —. 1984b. Translocation of manganese in subterranean clover (Trifolium subterraneum L. cv Seaton Park). II. Effect of leaf senescence and of restricting supply of manganese to part of a split root system. Austral. J. Pl. Physiol.11: 113–118.

    CAS  Google Scholar 

  • —. 1988. Early inhibition of photosynthesis during development of manganese toxicity in tobacco. Pl. Physiol.86: 1136–1142.

    CAS  Google Scholar 

  • Nambiar, E. K. S. 1976. Genetic differences in the copper nutrition of cereals. I. Differential responses of genotypes to copper. Austral. J. Agric. Res.27: 453–463.

    Google Scholar 

  • N.A.S. 1973. Medical and biological effect of environmental pollutants manganese. A report of the committee on biologic effects of atmospheric pollutants. NRC-NAS, Washington.

    Google Scholar 

  • Nelson, L. E. 1983. Tolerance of 20 rice cultivars to excess Al and Mn. Agron. J.75: 134–138.

    CAS  Google Scholar 

  • Ness, P.J. &H. W. Woolhouse. 1980. RNA synthesis inPhaseolus chloroplasts. 1. Ribonucleic acid synthesis and senescing leaves. J. Exp. Bot.31: 223–233.

    CAS  Google Scholar 

  • Neumann, K. H. &F. C. Steward. 1968. Investigations on the growth and metabolism of cultured explants ofDaucus carota. I. Effects of iron, molybdenum and manganese on growth. Planta81: 333–350.

    CAS  Google Scholar 

  • Notton, B. A. 1983. Micronutrients and nitrate reductase. Pages 219–239in D. A. Robb & W. S. Pierpoint (eds.), Metals and micronutrients: Uptake and utilization by plants. Academic Press, New York.

    Google Scholar 

  • O’Dell, B. L. &B. J. Campbell. 1971. Trace elements: Metabolism and metabolic function. Pages 179–266in B. M. Florkin & E. H. Stolz (eds.), Comprehensive biochemistry 21. Elsevier, Amsterdam.

    Google Scholar 

  • Ohki, K. 1984. Manganese deficiency and toxicity effects on growth, development and nutrient composition in wheat. Agron. J.76: 213–218.

    CAS  Google Scholar 

  • —. 1979. Critical manganese deficiency level of soybean related to leaf position. Agron. J.71: 233–234.

    CAS  Google Scholar 

  • —. 1981. Manganese deficiency and toxicity sensitivities of soybean cultivar. Agron. J.72: 713–716.

    Google Scholar 

  • Orgel, L. E. 1958. Metals and enzyme activity. Biochemical Society Symposium, 15. Cambridge University Press.

  • — 1963. An introduction to transitional metal chemistry: Ligand-field theory. Methuen, London.

    Google Scholar 

  • Oswa, T. &H. Ikeda. 1980. Heavy metal toxicities in vegetable crops. VIII. The effect of form of nitrogen supplied and pH level of the nutrient solution on manganese toxicities in vegetable crops. Engei Gakkai Zasshi49: 197–202.

    Google Scholar 

  • Page, E. R. 1961. Location of manganese taken up in short term absorption by oat roots. Nature189: 597.

    CAS  Google Scholar 

  • Parker, M. B., H. B. Harries, H. D. Morris &H. F. Perkins. 1969. Manganese toxicity of soybeans as related to soil and fertility treatments. Agron. J.61: 515–518.

    CAS  Google Scholar 

  • Patrick, W. H., Jr. &R. E. Henderson. 1981. Reduction and reoxidation cycles of manganese and iron in flooded soil and in water solution. Soil Sci. Soc. Amer. J.45: 855–859.

    CAS  Google Scholar 

  • Petolino, J. F. &G. B. Collins. 1985. Manganese toxicity in tobacco (Nicotiana tabacum L.) callus and seedlings. J. Pl. Physiol.118: 139–144.

    CAS  Google Scholar 

  • Phillip, R. &S. Devadath. 1984. Effect of micronutrients on the development of bacterial blight of rice. Phytopathol. Z.111(1): 91–105.

    Google Scholar 

  • Pirson, A. 1937. Ernaehrungs-und-stoffwechselphysiologische Untersuchungen anFrontalis undChlorella. Z. Bot.31: 193–267.

    CAS  Google Scholar 

  • Ponnamperuma, F. N. 1978. Electrochemical changes in submerged soils and the growth of rice.In Soils and Rice, International Rice Research Institute. Los Baños, Manila, Philippines, p. 434.

    Google Scholar 

  • Raja, V. &K. R. Reddy. 1987. Grain and straw yield and uptake of nitrogen, phosphorus and potassium in sorghum (CSH-5) as affected by micronutrients under varying levels of nitrogen. Indian J. Trop. Agric.5(2): 102–109.

    CAS  Google Scholar 

  • Ram, H. &P. B. N. Murthy. 1983. Nodulation, yield and quality response of green gram to manganese and zinc. J. Indian Soc. Soil Sci.31(1): 164–166.

    CAS  Google Scholar 

  • Rao, G. S. C. &A. P. Gupta. 1979. Influence of manganese on the accumulation of the amino acids in cane leaves. Intl. Sugar J.81: 99–102.

    CAS  Google Scholar 

  • Rao, N. R., S. C. Naithani, R. T. Jasdanwala &Y. D. Singh. 1982. Changes in indole acetic acid oxidase and peroxidase activities during cotton fibre development. Z. Pflanzenphysiol.106: 157–166.

    CAS  Google Scholar 

  • Robillard, J. M. C. de & C. W. Kennedy. 1986. A factorial analysis of Al and Mn toxicities in cotton. Agron. Abst. p. 197.

  • Roby, C., R. Bligny, R. Douc, S. I. Tu &P. E. Pfeffer. 1988. Facilitated transport of manganese in sycamore (Acer pseudoplatanus) cells and excised maize root tips: A comparative phosphorus 31 NMR study in vivo. Biochem. J.252(2): 401–408.

    PubMed  CAS  Google Scholar 

  • Rodier, J. 1955. Manganese poisoning in Moroccan miners. Brit. J. Industrial Med.12: 21–35.

    CAS  Google Scholar 

  • Ruch, R. R., H. J. Glujkoter &N. F. Shimp. 1973. Occurrence and distribution of potentially volatile trace elements in coal: An interim report. Illinois State Geol. Surv. Environm. Geol. Notes61: 1–43.

    Google Scholar 

  • Rufty, T. W., G. S. Miner &C. D. Raper. 1979. Temperature effect on growth and manganese tolerance in tobacco. Agron. J.71: 638–644.

    CAS  Google Scholar 

  • Sandmann, G. &P. Boger. 1983. The enzymatologiccal function of heavy metals and their role in electron transfer processes of plants. Pages 556–596in A. Läuchli & R. L. Bieliski (eds.), Encyclopedia of plant physiology, New Series 15A. Springer-Verlag, New York.

    Google Scholar 

  • Sarkunan, V. &C. C. Biddappa. 1982. Effect of aluminium on the growth, yield and chemical composition of rice. Oryza19(3–4): 188–190.

    CAS  Google Scholar 

  • Schier, G. A. 1990. Response of yellow poplar (Liriodendron tulipifera L.) seedlings to simulated acid rain and ozone: 2. Effect on throughfall chemistry and nutrients in the leaves. Environ. Exp. Bot.30(3): 325–332.

    CAS  Google Scholar 

  • Schroeder, H. A., D. D. Balassa &I. H. Tipton. 1966. Essential trace elements in man; manganese, a study on homeostasis. J. Chron. Dis.19: 545–571.

    PubMed  CAS  Google Scholar 

  • Scibisz, K. &A. Sadowski. 1979. Internal bark necrosis in Stark Crimson Delicious apple trees in relation to mineral nutrition. Gartenbauwissenschaft44: 177–181.

    CAS  Google Scholar 

  • Sevilla, F., J. Lopez-George, M. Gomez &L. A. Del Rio. 1980. Manganese superoxide dismutase from higher plant. Purification of a new Mn-containing enzyme. Planta150: 153–157.

    CAS  Google Scholar 

  • Sharma, U. C. &J. S. Grewal. 1988. Relative effectiveness of methods of micronutrient application to potato. J. Indian Soc. Soil Sci.36(1): 128–132.

    CAS  Google Scholar 

  • Simon, J. E., G. E. Wilcox, M. Simini, O. M. Elamin &D. R. Decoteau. 1986. Identification of manganese toxicity and magnesium deficiency on melons grown in low pH soils. Hort. Sci.21: 1383–1386.

    CAS  Google Scholar 

  • Singh, D. K. &S. Bharti. 1985. Seed manganese content and its relationship with the growth characteristics of wheat cultivars. New Phytol.101: 387–391.

    CAS  Google Scholar 

  • Singh, O. P. &A. Sharma. 1981. Radiomimetic effects of certain metallic salts. Pers. Cytol. Genet.3: 489–492.

    Google Scholar 

  • Sirkar, S. &J. V. Amin. 1979. Influence of auxins on respiration of manganese toxic cotton plants. Indian J. Exp. Biol.17: 618–619.

    CAS  Google Scholar 

  • Smith, F. W. 1979. Tolerance of seven tropical pasture grasses to excess manganese. Commun. Soil Sci. Pl. Anal.10: 853–867.

    CAS  Google Scholar 

  • Souto, S. M. &J. Dobereiner. 1971. Manganese toxicity in tropical forage legumes. Pesq. Agropecu. Bras.4: 128–138.

    Google Scholar 

  • Sparrow, L. A. &N. C. Uren. 1987. The role of manganese toxicity in crop yellowing on seasonally water-logged and strongly acidic soils in northeastern Victoria, Australia. Austral. J. Exp. Agric.27: 303–308.

    CAS  Google Scholar 

  • Stiles, W. 1961. Trace elements in plants. Cambridge University Press, Cambridge.

    Google Scholar 

  • Suresh, R., C. D. Foy &J. R. Weidner. 1987. Effects of excess soil manganese on stomatal function in two soybean cultivars. J. Pl. Nutr.10: 749–760.

    CAS  Google Scholar 

  • —. 1989a. Effects of water deficit and manganese toxicity on two cultivars of soybeans (Glycine max (L.) Merr.): Possible applications in remote sensing. J. Pl. Nutr.12(9): 995–1003.

    CAS  Google Scholar 

  • ———. 1989b. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment: Possible utility in remote sensing. International J. Remote Sensing10(3): 557–563.

    Google Scholar 

  • Sutcliffe, J. F. 1962. Mineral salts absorption in plants. Pergamon Press, Elmsford, New York.

    Google Scholar 

  • Temple-Smith, M. G. &T. B. Koen. 1982. Comparative response of poppy (Papaver somniferum L.) and eight crop and vegetable species to manganese excess in solution culture. J. Pl. Nutr.5: 1153–1169.

    CAS  Google Scholar 

  • Thung, M., J. Ortega &O. Erazo. 1987. Breeding methodology for phosphorus efficiency and tolerance to aluminum and manganese toxicities for beans (Phaseolus vulgaris L.). Pages 197–221in L. M. Gourley & J. G. Salinas (eds.), Sorghum for acid soils, Proc. Workshop on evaluating sorghum for tolerance to Al-toxic tropical soils in Latin America, Colombia, 1984, CIAT, Apartado Aereo, Colombia.

    Google Scholar 

  • Tiffin, L. O. 1967. Translocation of manganese, iron, cobalt and zinc in tomato. Pl. Physiol.42: 1427–1432.

    CAS  Google Scholar 

  • Tu, S. I. &J. N. Brouillette. 1987. Metal ion inhibition of corn root plasma membrane ATPase. Phytochemistry26(1): 65–70.

    Google Scholar 

  • Turekian, N. K. 1969. The oceans, streams and atmosphere. Pages 297–323in K. H. Wedephol (ed.), Handbook of geochemistry 1. Springer-Verlag, New York.

    Google Scholar 

  • Uehara, K., S. Fujimoto &T. Taniguchi. 1974a. Studies on violet coloured acid phosphatase of sweet potato. I. Purification and some physical properties. J. Biochem. (Tokyo)75: 627–638.

    CAS  Google Scholar 

  • —. 1974b. Studies on violet coloured acid phosphatase of sweet potato. II. Enzymatic properties and amino acid composition. J. Biochem. (Tokyo)75: 639–649.

    CAS  Google Scholar 

  • Uren, N. C. 1982. Chemical reduction at the root surface. J. Pl. Nutr.5: 515–520.

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency. 1974. Methods for chemical analysis of water and wastes. Washington U.S.E.P.A. 298.

    Google Scholar 

  • —. 1975. Scientific and technical assessment report on manganese. U.S.E.P.A. Office of Research and Development 48. Washington.

    Google Scholar 

  • Vangoor, B. J. &D. Wiersma. 1974. Redistribution of potassium, calcium, magnesium and manganese in the plant. Physiol. Pl.24: 163–168.

    Google Scholar 

  • Verma, T. S. &H. U. Neue. 1988. Influence of soil pH and manganese dioxide application on the chemical kinetics, yield and mineral nutrition of rice in a flooded acid sulfate soil. J. Indian Soc. Soil Sci.36(1): 90–100.

    CAS  Google Scholar 

  • Vielemeyer, H. P., F. Fisher &W. Bergmann. 1969. Untersuchungen uber den Einfluss der Mikronahrstoffe Eisen und Mangan auf den stickstoff stoffwechsel landwirtschaftlicher Kulturpflanzen 2. Mitt: Untersuchungen uber die Wirkung des Mangans auf die Nitratre-duktion und den Gehalt an freien Aminosauren in fungen Buschbohnenpflanzen. Albrecht-Thaer-Arch.13: 398–404.

    Google Scholar 

  • Vlamis, J. &D. E. Williams. 1973. Manganese toxicity and marginal chlorosis of lettuce. Pl. & Soil39: 245–261.

    CAS  Google Scholar 

  • —. 1964. Iron and manganese relation in rice and barley. Pl. & Soil20: 221–231.

    Google Scholar 

  • Vorm, Van der, P. D. J. &A. Van Diest. 1979. Aspects of the iron and manganese nutrition of rice plants. 1. Iron and manganese uptake by rice plants grown under aerobic and anaerobic conditions. Pl. & Soil51: 233–246.

    Google Scholar 

  • Walker, G. D. 1979. Occurrence of manganese with inclusions in the root cortex of white clover (Trifolium). New Zealand J. Bot.17: 1–4.

    CAS  Google Scholar 

  • Wallace, A. 1982. Additive, protective and synergistic effects on plants with excess trace elements. Soil Sci.133(5): 319–323.

    CAS  Google Scholar 

  • Welch, R. M. 1986. Effects of nutrient deficiencies on seed production and qualities. Advances Pl. Nutr.2: 205–248.

    CAS  Google Scholar 

  • Wellburn, A. 1988. Air pollution and acid rain. The biological impact. Longman Scientific and Technical Publ., New York.

    Google Scholar 

  • Wenzel, G. &K. Kreutzer. 1971. Der Einfluss des Manganmangels auf die Resistenz der Fichten (Picea abies Karst.) gegenForties annosus (Fr.) Cooke. Z. Pflanzenernähr. Düngung Bodenk.128: 123–129.

    CAS  Google Scholar 

  • Whipps, J. M. &J. M. Lynch. 1986. The influence of the rhizosphere on crop productivity. Advances Microbial Ecol.6: 187–244.

    Google Scholar 

  • White, M. C., F. D. Baker, R. L. Chaney &A. M. Decker. 1981. Metal complexation in xylem fluid: II. Theoretical equilibrium model and computational computer program. Pl. Physiol.67: 301–310.

    CAS  Google Scholar 

  • Wilson, D. O., F. C. Boswell, K. Ohki, M. B. Parker, L. M. Shuman &M. D. Jellum. 1982. Changes in soybean seed oil and protein as influenced by manganese nutrition. Crop Sci.22: 948–952.

    CAS  Google Scholar 

  • World Health Organization. 1981. Manganese in environmental health criteria 17. World Health Organization, Geneva.

    Google Scholar 

  • Wright, R. J., V. C. Baligar &S. F. Wright. 1988. Estimation of plant available manganese in acidic subsoil horizons. Commun. Soil Sci. Pl. Anal.19(6): 643–662.

    CAS  Google Scholar 

  • Zaher, N. A. M. 1986. Response of tomato yellow leaf curl virus diseased plants to spraying with some micro-elements. Egypt. J. Phytopathol.17(1): 73–82.

    Google Scholar 

  • Zajich, J. E. 1969. Microbial biogeochemistry. Academic Press, New York.

    Google Scholar 

  • Zazonic, I., B. Werner &W. Z. Wilhelm. 1986. Effects of excess manganese on spring barley yields. Naturwiss. Reihe.35(8): 46–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joardar Mukhopadhyay, M., Sharma, A. Manganese in cell metabolism of higher plants. Bot. Rev 57, 117–149 (1991). https://doi.org/10.1007/BF02858767

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858767

Keywords

Navigation