Skip to main content

Biogeochemical Processes in the Rhizosphere: Role in Phytoremediation of Metal-Polluted Soils

  • Chapter
Heavy Metal Stress in Plants

Abstract

According to most legislative schemes, a soil may require remediation if certain concentrations of one or more heavy metals is exceeded in a designated part (topsoil, subsoil) of the soil profile. A multitude of remediation technologies has been developed for clean-up of heavy-metal-polluted soils (Iskandar and Adriano 1997; Pierzynski 1997). Classic methods, such as excavation, thermal treatment and chemical soil washing are typically expensive and destructive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer-Verlag, New York.

    Book  Google Scholar 

  • Alloway BJ (1990) Soil processes and the behaviour of metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie, London. pp. 7–28

    Google Scholar 

  • Anderson TA, Coats JR (eds) (1994) Bioremediation through rhizosphere technology. American Chemical Society, Washington DC

    Google Scholar 

  • Awad F, Römheld V, Marschner H (1994) Effect of root exudates on mobilization in the rhizosphere and uptake of iron by wheat plants. Plant Soil 165: 213–218

    Article  CAS  Google Scholar 

  • Azaizeh HA, Gowthaman S, Terry N (1997) Microbial selenium volatilization in rhizosphere and bulk soils from a constructed wetland. J Environ Qual 26: 666–672

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conser Recycling 11: 41–49

    Google Scholar 

  • Barber DA, Martin JK (1976) The release of organic substances by cereal roots into the soil. New Phytol 76: 69–80

    Article  CAS  Google Scholar 

  • Baylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in indian mustard by soil-applied chelating agents. Environ Sci Techn 31: 860–865

    Article  Google Scholar 

  • Bernal MP, McGrath SP, Miller AJ, Baker AJM (1994) Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus. Plant Soil 164: 251–259

    Article  CAS  Google Scholar 

  • Bernal MP, McGrath SP (1994) Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L. Plant Soil 166: 83–92

    Article  CAS  Google Scholar 

  • Beveridge TJ., Schultze-Lam S, Thompson JB (1995) Detection of anionic sites on bacterial walls, their ability to bind toxic heavy metals and form sedimentable flocs and their contribution to mineralization in natural freshwater environments. In H.E. Allen, C.P. Huang, G.W. Bailey, and A.R. Bowers, Metal speciation and contamination of soil. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Bienfait F (1988) Prevention of stress in iron metabolism of plants. Acta Bot. Neer!. 38: 105–129

    Google Scholar 

  • Blanchar RW, Lipton DS (1986) The pe and pH in alfalfa seedlings rhizosphere. Agron J 78: 216–218

    Article  Google Scholar 

  • Böhn W (1979) Method of studying root systems. Springer-Verlag, New York. pp 188

    Book  Google Scholar 

  • Bowen GD, Rover AD (1991) The rhizosphere, the hidden half of the hidden half. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: The hidden half. Marcel Dekker. New York. 641–669

    Google Scholar 

  • Breteler H (1973) A comparison between ammonium and nitrate nutrition of young sugar-beet plants grown in nutrient solutions at constant acidity. I. Production of dry matter, ionic balance and chemical composition. Neth J Agric Sci 21: 227–244

    CAS  Google Scholar 

  • Brown DA, Ul-Haq A (1984) A porous membrane-root culture technique for growing plants under controlled soil condition. Soil Sci Soc Am J 48: 692–695

    Google Scholar 

  • Brown JC, Von Jolley D, Lytle M (1991) Comparative evaluation of iron solubilizing substances (phytosiderophores) released by oats and corn: iron efficient and inefficient plants. Plant Soil 130: 157–163

    Article  CAS  Google Scholar 

  • Burns RG, Davis JA (1986) The microbiology of soil structure. Biol Agric Hortic 3: 95–113

    Article  Google Scholar 

  • Cakmak I, Gülüt KY, Marschner H, Graham RD (1994) Effect of zinc and iron deficiency on phytosiderophores release in wheat genotypes different in zinc efficiency. J. Plant Nutr 17: 1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Sari N, Marschner H, Ekiz H, Kalayei M, Yilmaz A, Braun HJ (1996) Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 180: 183–189

    Article  CAS  Google Scholar 

  • Cappy JJ, Brown DA (1980) A method for obtaining soil-free soil-solution grown plant root systems. Soil Sci Soc Am J 44: 1321–1323

    Article  Google Scholar 

  • Chaney RL, Bell PF (1987) Complexity of iron nutrition: lessons for plant-soil interaction research. J Plant Nutr 10: 963–994

    Article  CAS  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corp. Park Ridge, NJ. pp. 50–76

    Google Scholar 

  • Cheng W, Coleman DC, Caroll CR, Hoffman CA (1994) Investigating short-term carbon flows in the rhizospheres of different plant species, using isotopic trapping. Agron. J. 86: 782–788

    Google Scholar 

  • Clemensson-Lindell A, Persson H (1992) Effects of freezing on rhizosphere and root nutrient content using two soil sampling methods. Plant Soil 139: 39–45

    Article  CAS  Google Scholar 

  • Conkling BL, Blanchar RW (1989) Glass microelectrode techniques for in situ pH measurements. Soil Sci Soc Am J 53: 58–62

    Article  CAS  Google Scholar 

  • Conkling BL, Blanchard RW, Niblack TL (1991) Effects of foliar and soil acidity on the rhi zosphere pH of alfalfa, corn, and soybean, J, Environ. Qual. 20: 381–386

    Google Scholar 

  • Cotter-Howells JD, Champ ness JM, Charnock, Pattrick RAD (1994) Identification of pyromorphite in mine-waste contaminated soils by ATEM and EXAFS. Europ J Soil Sci 45: 393–402

    Article  CAS  Google Scholar 

  • Cotter-Howells JD, Champness PE, Charnock JM (1999) Mineralogy of lead-phophorus grains in the roots of Agrostis capillaris L. by ATEM and EXAFS. Min Mag. (in press)

    Google Scholar 

  • Crowley DE, Reid CPP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130: 179–198

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: An overview. In Vitro Cell Dev Biol 29P: 207–212

    Google Scholar 

  • Cunningham SD, Lee CR (1995) Phytoremediation: Plant-based remediation of contaminated soils and sediments. Bioremediation: Science and Applications. SSSA Special Publication 43

    Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56: 55–114.

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996). Promises and prospects of phytoremediation. Plant. Physiol. 110: 715–719

    Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer Verlag. Berlin.

    Book  Google Scholar 

  • Dalai RC (1997) Soil organic phosphorus. Adv Agron 29: 83–117

    Article  Google Scholar 

  • Darrah PR (1991a) Models of the rhizosphere: I. Microbial population dynamics around a root relasing soluble and insoluble carbon. Plant Soil 133: 187–199

    Article  CAS  Google Scholar 

  • Darrah PR (199 lb) Models of the rhizosphere: II. a quasi three-dimensional simulation of the microbial population dynamics around a growing root releasing soluble exudates. Plant Soil 138: 147–158

    Google Scholar 

  • Davey BG, Conyers MK (1988) Determining the pH of acid soils. Soil Sci. 146: 141–150

    Article  CAS  Google Scholar 

  • Delhaize E, Ryan PR Randall PJ (1993) Aluminium tolerance in wheat. II. Aluminium stimulated excretion of malic acid from root apices. Plant Physiol 103: 695–702

    Google Scholar 

  • Dillard JG, Schenck CV (1986) Interaction of Co(II) and Co(III) complexes on synthetic birnessite: surface characterization. In: Davis JD, Hayes KF (eds) Geochemical processes at mineral surfaces. ACS Symposium Series no. 323. ACS, Washington DC. 503–552

    Chapter  Google Scholar 

  • Dinkelaker B, Marschner H (1992) In vivo demonstration of acid phosphatase activity in the rhizosphere of soil grown plants. Plant Soil 144: 199–205

    Article  CAS  Google Scholar 

  • Dinklaker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.) Plant Cell Environ 12: 2802

    Google Scholar 

  • Dommergues YR, Krupta SV (1978) Interaction between non-pathogenic soil microorganisms and plants. Elsevier Amsterdam

    Google Scholar 

  • Dormaar JF (1988) Effect of plant roots on chemical and biochemical properties of surrounding discrete soil zones. Can J Soil Sci 68: 233–242

    Article  CAS  Google Scholar 

  • Doyle MO, Otte ML (1997) Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environ Poll 96: 1–11

    Article  CAS  Google Scholar 

  • Elkatib EA, Bennet OL, Wright RJ (1984a) Arsenite sorption and desorption in soils. Soil Sci Soc Am J 48: 1025–1030

    Article  Google Scholar 

  • Elkatib EA, Bennet OL, Wright RJ (1984b) Kinetics of arsenite sorption in soils. Soil Sci Soc Am J 48: 758–762

    Article  Google Scholar 

  • Entry JA, Vance NC, Hamilton MA, Zabowski D, Watrud LS, Adriano DC (1996) Phytorem ediation of soil contaminated with low concentrations of radionuclides. Water Air Soil Pollut 88: 167–176

    CAS  Google Scholar 

  • Entry JA, Rygiewicz PT, Emmingham WH (1994) ‘Sr uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi. Environ Pollut 86: 201–206

    Google Scholar 

  • Fuller CC, Davis JA, Wachunas GA, Rea BA (1993) Geochim Cosmochim Acta 57: 2271

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (1991) A method to study rhizosphere processes in thin soil layers of different proximity to roots. Plant Soil 135: 143–146

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE (1992) Control of pH at the soil-root interface. Plant Soil 140: 49–54

    Article  CAS  Google Scholar 

  • Ganmore Neumann R, Bar Yosef B, Shanzer A, Libman J (1992) Enhanced iron uptake by synthetic siderophores in corn roots. J Plant Nutr 15: 1027–1037

    Article  Google Scholar 

  • Gardener WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70: 107–124

    Google Scholar 

  • Gasser UG, Juchler SJ, Sticher H (1994) Chemistry and speciation of soil water from serpen tinitic soils: Importance of colloids in the transport of Cr, Fe, Mg, and Ni. Soil Sci 158: 314–322

    Google Scholar 

  • Gerke J (1992) Phosphate, aluminium and iron in the soil solution of three different acid soils in relation to varying concentrations of citric acid. Z Pflanzenrnähr Bodenkd 155: 339–343

    Article  CAS  Google Scholar 

  • Gijsman M (1990) Rhizosphere pH along different root zones of Douglas-fir (Pseudotsuga menziesii) as affected by sources of nitrogen. In: Van Beusichem (ed) Plant nutrition physiology and application. Kluwer, Dordrecht. pp 45–51

    Chapter  Google Scholar 

  • Gobran GR, Clegg S (1996) A conceptual model for nutrient availability in the mineral soil-root system. Can J Soil Sci 76: 125–131

    Article  Google Scholar 

  • Gobran GR, Clegg S, Courchesne F (1997) Rhizospheric effects on nutrient availability in forest soils: processes and feedbacks. In Proceedings of the 4th International Conference on the Biogeochemistry of Trace Elements: 355–356, Univ. California, Berkley, CA

    Google Scholar 

  • Gollany HT, Schumacher TE (1993) Combined use of colorimetric and microelectrode methods for evaluating rhizosphere pH. Plant Soil 154: 151–159

    Article  CAS  Google Scholar 

  • Gregory PJ, Atwell BJ (1991) The fate of carbon in pulse-labeled crops of barley and wheat. Plant Soil 136: 205–213

    Article  CAS  Google Scholar 

  • Hamon RE, Lorenz SE, Holm PE, Christen TH, McGrath SP (1995) Changes in trace metal species and other components of the rhizosphere during growth of radish. Plant Cell Environ 18: 749–756

    Article  CAS  Google Scholar 

  • Hantschel R, Kaupenjohann M, Horn R, Zech W (1986) Cation concentrations of the equilibrium soil solution (ESS) and percolating water (PW) - a method comparison. Z. Pflanzenernähr Bodenkd 149: 136–139

    Google Scholar 

  • Haselwandter K (1997) Soil microorganisms, mycorrhiza, and restoration ecology. In: Urbanska KM, Webb NR and Edward (eds). Restoration ecology and sustainable development. Cambridge University Press.

    Google Scholar 

  • Haselwandter K, Bowen GD (1996) Mycorrhizal relations in trees for agroforestry and land rehabilitation. For Ecol Manage 81: 1–17

    Article  Google Scholar 

  • Häussling M, Marschner H (1989) Organic and inorganic soil phosphate and acid phosphatase activity in the rhizosphere of 80 year old Norway spruce (Picea abies) trees. Biol Fertil Soil 8: 128–133

    Article  Google Scholar 

  • Häussling M, Leisen E, Marschner H, Römheld V (1985) An improved method for nondestructive measurements of the pH at the root-soil interface (rhizosphere) J Plant Physiol 117: 371–375

    Google Scholar 

  • Hedley MJ, Nye PH, White RH (1982) Plant induced changes in the rhizosphere of rape (Brassica napus. var. Emerald) seedlings. I. pH changes and the increase P concentration in the soil solution. New Phytol 91: 19–29

    Google Scholar 

  • Hedley MJ, Nye PH, White RH (1983) Plant-induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. IV. The effect of rhizosphere phosphorus status on the pH, phosphatase activity and depletion of soil phosphorus fractions in the rhizosphere and on the cation-anion balance in the plants. New Phytol 95: 69–82

    Google Scholar 

  • Helal HM, Sauerbeck D (1986) Effects of plant roots on carbon metabolism of soil microbial biomass. Z Pflanzenernaehr Bodenkd 149: 181–188

    Article  CAS  Google Scholar 

  • Helmke PA, Koons RD, Schonberg PJ, Iskandar IK (1977) Determination of trace contamination of sediments by multi-element analysis of clay-size fraction. Environ Sci Tech 11: 984–989

    Article  CAS  Google Scholar 

  • Hendrick RL, Junk A 1981 ). Erfassung der Mineralstoffverteilung in Wurzeln durch getrennte Analyse von Rhizo-und Restboden. Z Pflanzenernähr Bodenkd 144: 195–202

    Google Scholar 

  • Heuwinkel H, Kirkby EA, LeBot J, Marschner H (1992) Phosphate deficiency enhances molybdenum uptake by tomato plants. J Plant Nutr 15: 549–568

    Article  CAS  Google Scholar 

  • Hildebrand EE (1996) A procedure for obtaining the equilibrium soil pore solution, Z Pflanzenernähr Bodenkd 149: 340–346

    Article  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriolgie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landwirt Ges 98: 59–78

    Google Scholar 

  • Hinsinger P, Jaillard B (1993) Root-induced release of interlayer potassium and the vermiculization of phlogopite as related to potassium depletion in the rhizosphere of rye grass. J Soil Sci 44: 525–534

    Article  CAS  Google Scholar 

  • Hinsinger P, Elsass F, Jaillard B, Robert M (1993) Root-induced irreversible transformation of a trioctahedral mica in the rhizosphere of rape. J Soil Sci 44: 535–545

    Article  CAS  Google Scholar 

  • Hinsinger P, Jaillard B, Dufey J (1992) Rapid weathering of a trioctaedral mica by the roots of rye grass. Soil Sci Soc Am J 56: 997–982

    Article  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. I. Evaluation of the role of uptake pattern. Plant Soil 113: 155–169

    Google Scholar 

  • Hoffland E, van den Boogard R, Nelemans JA, Findenegg GR (1992) Biosynthesis and root exudation of citric and malic acids in phosphate starved rape plants. New Phytol. 122: 675–680

    Article  CAS  Google Scholar 

  • Hoffmann WF and Barber SA (1971) Phosphorus uptake by wheat (Triticum aestivum) as influenced by ion accumulation in the rhizocylinder. Soil Sci 112: 256–262

    Article  CAS  Google Scholar 

  • Huang JW, Chen J, Berti WB, Cunningham SD 1997. Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ Sci Tech 31: 800–805

    Google Scholar 

  • Imas P, Bar-Yosef B, Kafkafi U and Ganmore-Neumann R (1997) Phosphate induced carboxilate and proton release by tomato roots. Plant Soil 191: 35–39

    Article  CAS  Google Scholar 

  • Iskandar IK, Adriano DC (1997) Remediation of soils contaminated with metals - a review of current practices in the USA. In: Iskandar IK, Adriano DC (eds), Remediation of soils contaminated with metals. Science Reviews, Northwood, UK.

    Google Scholar 

  • Jaillard B, Ruitz L, Arvieu JC (1996) pH mapping in trasparent gel using color indicator video densitometry. Plant Soil 183: 85–95

    Google Scholar 

  • Jensen LS and Sorensen J (1994) Microscale fumigation extraction and substrat induced respiration methods for measuring microbial biomass in barley rhizosphere 162: 151–161

    CAS  Google Scholar 

  • Jolley VD and Brown JC (1989) Iron efficient and inefficient oats. I. Differences in phytosiderophores release. J Plant Nutr 12: 423–435

    Article  CAS  Google Scholar 

  • Jones DL and Darrah PR (1995) Influx and efflux of organic acids across the soil root interface of Zea mays L. and its applications in rhizosphere C flow. Plant Soil 173: 103–109

    Article  CAS  Google Scholar 

  • Jones DL and Darrah PR (1996a) Resorption of organic compounds by roots of Zea mays L. and its consequence in the rhizosphere. III: Characteristics of sugar influx and efflux. Plant Soil 178: 153–160

    Article  CAS  Google Scholar 

  • Jones DL, Kochian LV (1996b) Aluminium-organic acid interactions in acid soils: I. effect of root-derived organic acid on the kinetics of Al dissolution. Plant Soil 182: 221–228

    Google Scholar 

  • Jones DL, Edwards AC, Donachie K, Darrah PR (1994) Role of protinaceous amino acids released in root exudates in nutrient acquisition from the rhizosphere. Plant Soil 158: 183–192

    Article  CAS  Google Scholar 

  • Kawai S, Takagi S, Sato Y (1988) Mugineic acid-family phytosiderophores in rootsecretions of barley, corn and sorghum varieties. J Plant Nutr 11: 633–642

    Article  CAS  Google Scholar 

  • Keith H, Oades JM and Martin JK (1986) Input of carbon to soil from wheat plants. Soil Biol Biochem 18: 445–449

    Article  CAS  Google Scholar 

  • Kirlew PW, Bouldin DR (1987) Chemical properties of the rhizosphere in acid sub-soil. Soil Sci Soc Am J 51: 128–132

    Article  CAS  Google Scholar 

  • Knight B, Zhao FJ, McGrath SP and Shen ZG (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the ncentration and chemical speciation of metals in soil solution. Plant Soil 197: 71–78

    Article  CAS  Google Scholar 

  • Krämer U, Cotter-Howells, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635–638

    Article  Google Scholar 

  • Kuchenbuch R, Jungk A (1982) A method for determining concentration profiles at the soil-root interface by thin slicing rhizosphere soil. Plant Soil 68: 391–394

    Article  CAS  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species Thlaspi. Plant Physiol 112: 1515–1722

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7: 139–153

    Article  CAS  Google Scholar 

  • Li, YM, RL Chaney, JS Angle, KY Chen, BA. Kerschner, AJM Baker (1996) Genotypical differences in zinc and cadmium hyperaccumulation in Thlaspi caerulescens. Agron Abstr 1996: 27

    Google Scholar 

  • Liao ZW, Wang JL, Liu ZY (1993) Si, Fe and Mn distributions in rice (Oryza sativa L.) rhizosphere of red earths and paddy soils. Pedosphere 3: 1–6

    CAS  Google Scholar 

  • Liljeroth JA, Van Veen JA and Miller HJ (1990) Assimilate transolcation to the rhizosphere of two wheat lines and subsequent utilization by rhizosphere microorganisms at two nitrogen concentrations. Soil Biol Biochem 22: 1015–1021

    Article  CAS  Google Scholar 

  • Lipton DS, Blanchard RW, Blevins DG (1987) Citrate, malate and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85: 315–317

    Article  PubMed  CAS  Google Scholar 

  • Logan ABL, Thomas RJ (1997) Method for the quantification of acid production by plants in gel. Comm Soil Sci Plant Anal 28: 1633–1641

    Article  CAS  Google Scholar 

  • Lorenz SE, Hamon RE, McGrath SP (1994a) Differences between soil solutions obtained from rhizosphere and non-rhizosphere soils by water displacement and soil centrifugation. Europ J Soil Sci 45: 431–438

    Article  CAS  Google Scholar 

  • Lorenz SE, Hamon RE, McGrath SP, Holm PE, Christensen TH (1994b) Applications of fertilizer cations affect cadmium and zinc concentrations in soil solutions uptake by plants. Europ Soil Sci 45: 159–165

    Article  CAS  Google Scholar 

  • Klepper B, Kaspar TC (1994) Rhizotrons: their development and use in agricultural research. Agron J 86: 745–753

    Article  Google Scholar 

  • Lundström US (1994) Significance of organic acids for weathering and the podzolization process. Environ Int 20: 21–30

    Article  Google Scholar 

  • Ma, JF, Nomoto K (1996) Effective regulation of iron acquisition in graminaceous plants–The role of mugineic acids as phytosiderophores. Physiol Plant 97: 609–617

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic press. London

    Google Scholar 

  • Marschner H, Römheld V (1983) In vivo measurement of root-induced pH changes at the soilroot interface: effect of plant species and nitrogen source. Z Pflanzenrnähr Bodenkd 111: 241–251

    CAS  Google Scholar 

  • Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165: 261–274

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9: 695–713

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1987) Localization of phytosiderophores release and iron uptake along intact barley roots. Physiol Plant 71: 157–162

    Article  CAS  Google Scholar 

  • Martin JK, Merckx R (1992) The partitioning of photosynthetically fixed carbon within the rhizosphere of mature wheat. Soil Biol Biochem 24: 1147–1156

    Article  Google Scholar 

  • McBride MB (1989) Reactions controlling heavy metal solubility in soils. Adv Soil Sci 10: 1–56

    Article  CAS  Google Scholar 

  • McCully ME, Canny MJ (1985) Localization of translocated 14C in roots and root exudates of field grown maize. Physiol Plant 65: 380–392

    Article  CAS  Google Scholar 

  • McDougall BM, Rovira AD (1970) Site of exudation of 14C-labelled compounds from wheat roots. New Phytol 69: 999–1003

    Article  Google Scholar 

  • McGrath SP, Shen ZG, Zhao El (1997) Heavy metals uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. lant Soil 188: 153–159

    CAS  Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB Internatioanl, Wallingford, pp 261–287

    Google Scholar 

  • McLachlan KD (1980) Acid phosphatase activity of intact roots and phosphorus nutrition in plants. I. Assay conditions and phosphatase activity. Aust J Agric Res 31: 429–440

    Article  CAS  Google Scholar 

  • McMichael BL, Taylor HM (1987) Applications and limitations of rhizotrons and minirhizotrons. In: Taylor HM (ed) Minirhizotron observation tubes: methods and applications for measuring rhizosphere dynamics. ASA Special publication 50, Madison, WI. 1–14

    Google Scholar 

  • Mench M, Martin E (1991) Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L, Nicotiana tabacum L, and Nicotiana rustica L. Plant Soil 132: 187196

    Google Scholar 

  • Mench MJ, Fargues S (1994) Metal uptake by iron-efficient and inefficient oats. Plant Soil 165: 227–233

    Article  CAS  Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and myccorhizal fungal interactions with soil aggregation. Soil Biol. Biochem. 22: 579–584.

    Google Scholar 

  • Neng-Chang C, Huai-Man C (1992) Chemical behavior of cadmium in wheat rhizosphere. Pedosphere 2: 363–371

    Google Scholar 

  • Nye PH (1981) pH changes across the rhizosphere induced by roots. Plant Soil 61:7–26

    Google Scholar 

  • Ohwaki Y, Sugahara K (1997) Active extrusion of protons and exudation of carboxilic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L.) Plant Soil 189: 49–55

    CAS  Google Scholar 

  • Olsthoorn AFM, Keltjens WG, Van Baren B, Hopman MCG (1991) Influence of ammonium on fine root development and rhizosphere pH of Douglas-fir seedlings in sand. Plant Soil 133: 75–81

    Article  CAS  Google Scholar 

  • Oscarson Dw, Huang PM, Defosse c and Herbillon A (1981) Oxidative power of Mn (IV) and Fe (III) oxides with respect to As ( III) in terrestrial and aquatic environments. Nature (London) 191: 50–51

    Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acids exudation as an aluminium-tolerance mechanism in maize (Zea mays) Planta 196: 788–795

    CAS  Google Scholar 

  • Pellet DM, Papernik LA, Jones DL, Darrah PR, Grunes DL, Kochian LV (1997) Involvement of multiple aluminium exclusion mechanisms in aluminium tolerance in wheat. Plant Soil 192: 63–68

    Article  CAS  Google Scholar 

  • Pierzynski, GM (1997) Strategies for remediating trace-element contaminated sites. In: Iskandar IK, Adriano DC, Remediation of soils contaminated with metals. Science Reviews, Northwood, UK

    Google Scholar 

  • Pijnenborg JWM, Lie TA, Zehender AJB (1990) Nodulation of lucerne (Medicago sativa L.) in an acid soil: pH dynamics in the rhizosphere of seedlings growing in rhizotrons. Plant Soil 126: 161–168

    Article  CAS  Google Scholar 

  • Pilet P.E, Versef J.M. and Mayor G (1983) Growth distribution and surface pH patterns along maize roots. Planta 164: 96–100

    Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkow S, Salt DE (1994). Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology 5: 285–290

    Article  CAS  Google Scholar 

  • Ridge EH, Rovira AD (1971) Phosphatase activity of intact young wheat roots under sterile and non-sterile conditions. New Phytol 70: 1017–1026

    Article  CAS  Google Scholar 

  • Riley D and Barber SA (1969) Bicarbonate accumulation and pH changes at the soybean (Glycine max) root-soil interface. Soil Sci Soc Am Proc 33: 905–908

    Article  CAS  Google Scholar 

  • Riley D, Barber SA (1971) Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci Soc Am Proc 35: 301–306

    Article  CAS  Google Scholar 

  • Römheld V, Marschner H (1984) Plant induced pH changes in the rhizosphere of “Fe-efficient” soybean and corn cultivars J Plant Nutr 7: 623–630

    Google Scholar 

  • Römheld V, Marschner H (1990) Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores. Plant Soil 123: 147–153

    Article  Google Scholar 

  • Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130: 127–134

    Article  Google Scholar 

  • Ross SM (1994) Retention, transformation and mobility of toxic metals in soils. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, Chirchester, pp 63–151

    Google Scholar 

  • Rovira AD (1969). Plant root exudates. Bot Rev 35: 35–57

    Article  CAS  Google Scholar 

  • Rovira AD, Bowen GD (1966) The effects of microorganisms upon plant grown. II. Detoxification of hat sterilized soils by fungi and bacteria. Plant Soil 14: 199–214

    Google Scholar 

  • Rovira AD, Bowen GD, Foster RC (1983) The significance of rhizosphere microflora and mycorrhizas in plant nutrition. In: Lauchli A and Bieleski S (eds) Inorganic plant nutrition. Encyclopedia of plant physiology, new series. Vol 15A. Springer, Berlin Heidelberg New York 61–93

    Chapter  Google Scholar 

  • Rugh CL, Dayton-Wilde H, Stack Nm, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reducatse resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natnl Acad Sci USA 93: 3182–3187

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Aust J Plant Physiol. 22: 531–536

    Article  CAS  Google Scholar 

  • Rygiewicz PT, Bledsoe CS, Zasoski R.J (1984) Effects of ectomycorrhizae and solution pH on [“N] nitrate uptake by coniferous seedlings. Can J For Res 14: 885–892

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley ED, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13: 468–474

    Article  PubMed  CAS  Google Scholar 

  • Schaller G, Fisher WR (1985) pH-Änderungen in der Rhizosphäre von Mays and Erdnußwurzeln. Z Pflanzenernähr Bodenkd 148: 306–320

    Google Scholar 

  • Schnoor, JL, LA. Licht, SC. McCutcheon, NL. Wolfe, LH. Carreira (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29: 318–323

    Google Scholar 

  • Schönwitz R, Ziegler H (1986) Quantitative and qualitative aspects of a developing rhizosphere micoflora and hydroponically grown maize seedlings. Z Pflanzenernähr Bodenkd 149: 623–634

    Article  Google Scholar 

  • Schreiner RP, Mihara KL, McDaniel H, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188: 199–209

    Article  CAS  Google Scholar 

  • Schwab SM, Menge JA, Leonard RT (1983) Quantitative and qualitative effects of phosphorus on extracts and exudates of Sudan grass roots in relation to vesicular-arbuscolar mycorrhiza formation. Plant Physiol 7: 761–765

    Article  Google Scholar 

  • Senesi N (1992). Metal-humic substance complexes in the environment. Molecular and mechanistic aspects by multiple spectroscopic approach. In: Adriano DC (ed) Biogeochemistry of trace elements. Lewis Publishers, Boca Raton, FL. pp. 429–496

    Google Scholar 

  • Smiley RW (1974) Rhizosphere pH as influenced by plants, soils, nitrogen fertilizers. Soil Sci Soc Am Proc 38: 795–799

    Article  CAS  Google Scholar 

  • Smith JL, Paul EA (1990) The significance of soil microbial biomass estimation. In: Bollag JN and Stotzsky AL (eds). Soil Biochemistry, Marcel Dekker, New york. pp. 357–396

    Google Scholar 

  • Sposito G (1989) The environmental chemistry of aluminium. CRC Boca Raton FL. USA.

    Google Scholar 

  • Schaller G, Fisher WR (1985) pH-Änderungen in der Rhizosphärevon Masiund Erdnusswurzeln. Z Pflanzenernähr Bodenkd 148: 306–320

    Google Scholar 

  • Stomp AM, Han KH, Wilbert S, Gordon MP, Cunningham SD (1994) Genetic strategies for enhancing phytoremediation. Ann NY Acad Sci 721: 481–492

    Article  PubMed  CAS  Google Scholar 

  • Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophores of graminaceous plants. J Plant Nutr 7: 469–477

    Article  CAS  Google Scholar 

  • Tarafdar JC, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soil 3: 199–204

    Article  CAS  Google Scholar 

  • Tepfer D, Metzger L, Prost R (1989) Use of roots transformed by Agrobacterium rhizogenes in rhizosphere research: applications in studies of cadmium assimilation from sewage sludges. P1 Mol Biol 13: 295–302

    Article  CAS  Google Scholar 

  • Terry N (1995). Can plants solve the Se problem. In: Abstract book of the fourteenth annual symposium on current topics in plant biochemistry, Physiology and molecular biology, University of Missouri. pp. 63–64

    Google Scholar 

  • Terry N, Zayed AM (1994) Selenium volatilization in plants In Frankenberger WT Jr, and Benson S (eds) New York:343–367

    Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed AM (1992). Rates of selenium volatilization among crop species. J Environ Qual 21: 341–344

    Article  CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water stable aggregation in soils. J Soil Sci 33: 141–163

    Article  CAS  Google Scholar 

  • Treeby M, Marschner H, Römheld V (1989) Mobilization of iron and other micronutrients from a calcareous soil by plant-borne microbial and synthetic metal chelators. Plant Soil 114: 217–226

    Article  CAS  Google Scholar 

  • Trofymov JA, Coleman DC, Cambardella C (1987) Rate of rhizodeposition and ammonium depletion in the rhizosphere of axenic oat roots. Plant Soil 97: 333–344

    Article  Google Scholar 

  • Uren NC, Reisenauer HM (1988) The role of root exudates in nutrient acquisition. Adv Plant Nutr 3: 79–114

    Google Scholar 

  • Walter A, Römheld V, Marschner H, Mori S (1994) Is the release of phytosiderophores in zinc-deficient plants a response to impaired iron utilization ? Physiol Plant 92: 493–500

    Article  CAS  Google Scholar 

  • Walton B and Anderson TA (1990) Microbial degradation of trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites. Appl Environ Microb 56: 1012–1016

    CAS  Google Scholar 

  • Waychunas GA, Rea BA, Fuller CC, Davis JA (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta 57: 2251–2269.

    Google Scholar 

  • Weisenseel MH, Dorn A, Jaffe LF (1979) Natural H+ current traverses growing roots and root hairs of barley (Hordeum vulgare L). Plant Physiol 64: 512–518

    Article  PubMed  CAS  Google Scholar 

  • Wenzel WW, Salt D, Smith R, Adriano DC (1999) Phytoremediation: a plant-microbe based remediation system. In: Adriano Dc, Bollag JM, Frankenberger W, Sims R (eds.) Bioremediation of contaminated soils. SSSA Special Monograph (in press)

    Google Scholar 

  • Whipps Al (1984) Environmental factors affecting the loss of carbon from the roots of wheat and barley seedlings. J Exp Bot 35: 767–733

    Article  Google Scholar 

  • Whipps JM, Lynch JM (1983) Substrate flow and utilization in the rhizosphere of cereals. New Phytol 95: 605–623

    Article  CAS  Google Scholar 

  • Wild A (1981) Mass flow. In: Greenland DJ and Hayes HMB (eds).The chemistry of soil processes. Wiley, Chirchester. pp 37–80

    Google Scholar 

  • Wiren N, Marshner H, Römheld V (1996) Roots of iron-efficient maize also absorb phytosiderophore chelated Zn. Plant Physiol 111: 1119–1125

    Google Scholar 

  • Youssef RA and Chino M (1988) Development of a new rhizobox system to study the nutrient status in the rhizosphere. Soil Sci Plant Nutr34: 461–465

    Google Scholar 

  • Youssef RA, Chino M (1989a) Root induced changes in the rhizosphere of plants I. Changes in relation to the bulk soil. Plant Nutr 35: 461–468

    Google Scholar 

  • Youssef RA and Chino M (1989b) Root-induced changes in the rhizosphere of plants. II. Distribution of heavy metals across the rhizosphere in soils. Soil Sci Plant Nutr 35: 609–621

    Article  CAS  Google Scholar 

  • Zayed AM, Terry N (1994) Selenium volatilization in roots and shoots:effects of shoot removal and sulfate level. J Plant Physiol 143: 8–14

    Article  CAS  Google Scholar 

  • Zhang F, Römheld V, Marschner H (1989) Effect of zinc deficiency on the release of zinc and iron mobilizing root exudates. Z Pflanzenrmaehr Bodenkd 152: 205–210

    Article  CAS  Google Scholar 

  • Zhao H, Eide D (1996) The yeast ZRT1 gene encodes the zinc transporter protein of a high affinity system induced by zinc limitation. Proc Natl Acad Sci USA 93: 2455–2458

    Google Scholar 

  • Zhiyu L, Weiming S, Xiaoshui F (1990) The rhizosphere effects of phosphorus and iron in soils. Transaction of the 14th International Congress of Soil Science. Kyoto, Japan. I I, 147–152

    Google Scholar 

  • Zoyas AKN, Loganathan P and Hedley NU (1997) A technique for studying rhizosphere processes in tree crops: soil phosphorus depletion around camelia (Camelia japonica L.) roots. 190: 253–269

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wenzel, W.W., Lombi, E., Adriano, D.C. (1999). Biogeochemical Processes in the Rhizosphere: Role in Phytoremediation of Metal-Polluted Soils. In: Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07745-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07745-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07747-4

  • Online ISBN: 978-3-662-07745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics