Skip to main content

Dopamine and Depression

  • Chapter
Dopamine in the CNS II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 154 / 2))

Abstract

Depression has been described as “the common cold of psychiatry”. Unlike the common cold, the symptoms of depression may vary greatly from patient to patient, so much so that two patients diagnosed as suffering from a major depression may show no overlap in their symptoms (Fibiger 1991). In these circumstances, it is prudent, when attempting to understand this protean disorder, to focus on its cardinal symptoms, which are (1) depressed mood and (2) loss of interest or pleasure in usually pleasurable activities (American Psychiatric Association 1994). These symptoms are associated with characteristic abnormalities in the way in which depressed people process information. On the one hand, their cognitions and perceptions are biased towards the pessimistic: they selectively abstract and remember information consistent with a negative view of themselves, their place in the world, and the future (Beck 1987). On the other hand, they think and act more slowly, and experience particular difficulty in initiating actions (Willner 1985; Bermanzohn and Siris 1992). A simple hypothesis to explain both of these central features of depression is that they reflect an impairment of incentive motivation. Incentives are stimuli associated with rewards, which serve to confirm that behaviour is on track to attain its goal and to increase the vigour of goal-directed behaviour (Bindra 1974).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  PubMed  CAS  Google Scholar 

  • Allard P, Norlen M (1997) Unchanged density of caudate nucleus dopamine uptake sites in depressed suicide victims. J Neural Transms 104:1353–1360

    Article  CAS  Google Scholar 

  • American Psychiatric Association (1994) DSM IV-Diagnostic and Statistical Manual of Psychiatric Disorders, 4th Edition. American Psychiatric Association, Washington D.C.

    Google Scholar 

  • Andersen PH (1989) The dopamine uptake inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur J Pharmacol 166:493–504

    Article  PubMed  CAS  Google Scholar 

  • Ascher JA, Cole JO, Colin JN, Feighner JP, Ferris RM, Fibiger HC, Golden RN, Martin P, Potter WZ, Richelson E et al. (1995) Bupropion: A review of its mechanism of antidepressant activity. J Clin Psychiatr 56:395–401

    CAS  Google Scholar 

  • Ammar S, Martin P (1991) Modelisation des effets des agonistes dopaminergiques en psychopharmacologie: vers une homothetie clinique et experimentale. Psychol Francaise 36:221–232

    Google Scholar 

  • Anderson IM, Cowen PJ (1991) Prolactin response to the dopamine antagonist, metoclopramide, in depression. Biol Psychiatr 30:313–316

    Article  CAS  Google Scholar 

  • Ansseau M, von Frenckell R, Cerfontaine JL, Papart P, Franck G, Timset-Berthier M, Geenen V, Legros J-J (1987) Neuroendocrine evaluation of catecholaminergic neurotransmission in mania. Psychiatr Res 22:193–206

    Article  CAS  Google Scholar 

  • Ansseau M, von Frenckell R, Cerfontaine JL, Papart P, Franck G, Timset-Berthier M, Geenen V, Legros J-J (1988) Blunted response of growth hormone to Clonidine and apomorphine in endogenous depression. Brit J Psychiatr 153:65–71

    Article  CAS  Google Scholar 

  • Ayd FJ Jr, Zohar J (1987) Psychostimulant (amphetamine or methylphenidate) therapy for chronic and treatment-resistant depression. In: Zohar J, Belmaker RH (eds) Treating Resistant Depression. New York: PMA Corp, 343–355

    Google Scholar 

  • Baxter LR, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, Gerner RH, Sumida RM (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatr 46:243–250

    Article  PubMed  CAS  Google Scholar 

  • Beck AR (1987) Cognitive models of depression. J Cog Psychother 1:5–37

    Google Scholar 

  • Belmaker RH, Wald D (1977) Haloperidol in normals. Brit J Psychiatr 131:222–223

    Article  CAS  Google Scholar 

  • Beninger RL, Nakonechny PL (1996) Dopamine D1-like receptors and molecular mechanisms of incentive learning. In: Beninger RJ, Paolomo T, Archer T (eds) Dopamine Disease States, Editorial CYM, Madrid, pp 407–431

    Google Scholar 

  • Benkert O, Brunder G, Wetzel H (1992) Dopamine autoreceptor agonists in the treatment of schizophrenia and major depression. Pharmacopsychiatry 25:254–260

    Article  PubMed  CAS  Google Scholar 

  • Bennett JP, Piercey MF (1999) Pramipexole — A new kind of dopamine agonist for the treatment of Parkinson’s Disease. J Neurosci Res 163:25–31

    CAS  Google Scholar 

  • Bermanzohn PC, Siris G (1992) Akinesia: A syndrome common to Parkinsonism, retarded depression and negative symptoms of schizophrenia. Compr Psychiatr 33:221–232

    Article  CAS  Google Scholar 

  • Bindra D (1974) A motivational view of learning, performance, and behavior modification. Psychol Rev 81:199–213

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Meli A (1990) The forced swimming test: Its contribution to the understanding of the mechanisms of action of antidepressants. In: Gessa GL, Serra G, (eds) Dopamine and Mental Depression. Oxford: Pergamon Press, 63–76

    Google Scholar 

  • Bowden C, Theodorou AE, Cheetham SC, Lowther S, Katona CL, Crompton MR, Horton RW (1997a) Dopamine D1 and D2 receptor binding sites in brain samples from depressed suicides and controls. Brain Res 752:227–233

    Article  PubMed  CAS  Google Scholar 

  • Bowden C, Cheetham SC, Lowther S, Katona CL, Crompton MR, Horton RW (1997b) Reduced dopamine turnover in the basal ganglia of depressed suicides. Brain Res 769:135–140

    Article  PubMed  CAS  Google Scholar 

  • Bowden C, Cheetham SC, Lowther S, Katona CL, Crompton MR, Horton RW (1997c) Dopamine uptake sites, labelled with [3H]GBR12935, in brain samples from depressed suicides and controls. Eur Neuropsychopharmacol 7:247–252

    Article  PubMed  CAS  Google Scholar 

  • Boyer P, Davila M, Schaub C, Nassiet J (1986) Growth hormone response to Clonidine stimulation in depressive states. Part I. Psychiatr Psychobiol 1:189–195

    Google Scholar 

  • Brown AS, Gershon S (1993) Dopamine and depression J Neural Transm [Gen Sect] 91:75–109

    Article  CAS  Google Scholar 

  • Brown RG, MacCarthy B, Gotham A-M, Der GJ, Marsden CD (1988) Depression and disability in Parkinson’s disease: A follow-up of 132 cases. Psychol Med 18:49–55

    Article  PubMed  CAS  Google Scholar 

  • Cantello R, Aguggia M, Gilli M, Delsedime M, Chiardo Cutin I, Riccio A, Mutani R (1989) Major depression in Parkinson’s disease and the mood response to intravenous methylphenidate: possible role of the “hedonic” dopamine synapse. J Neurol Neurosurg Psychiatr 52:724–731

    Article  PubMed  CAS  Google Scholar 

  • Carboni E, Tanda GL, Frau R, Di Chiara G (1990) Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex. Evidence that dopamine is taken up in vivo by noradrenergic terminals. J Neurochem 55:1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Cervo L, Samanin R (1988) Repeated treatment with imipramine and amitriptyline reduces the immobility of rats in the swimming test by enhancing dopamine mechanisms in the nucleus accumbens. J Pharm Pharmacol 1940:155–156

    Article  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: A review and reconceptualization. Am J Psychiatr 148:1474–1486

    PubMed  CAS  Google Scholar 

  • De Montis MG, Devoto P, Gessa GL, Porcella A, Serra G, Tagliamonte A (1990) Possible role of DA receptors in the mechanism of action of antidepressants. In: Gessa GL, Serra G (eds) Dopamine and Mental Depression. Oxford: Pergamon Press, 147–157

    Google Scholar 

  • Del Zompo M, Boccheta A, Bernardi F, Corsini GU (1990) Clinical evidence for a role of dopaminergic system in depressive syndromes. In: Gessa GL, Serra G (eds) Dopamine and Mental Depression. Oxford: Pergamon Press, 177–184

    Google Scholar 

  • Delina-Stula A, Radeke E, van Riezen H (1988) Enhanced functional responsiveness of the dopaminergic system: The mechanism of anti-immobility effects of antidepressants in the behavioural despair test in the rat. Neuropharmacology 27: 943–947

    Article  Google Scholar 

  • Depue RA, Arbisi P, Spoont MR, Krauss S, Leon A, Ainsworth B (1989) Seasonal and mood independence of low basal prolactin secretion in premenopausal women with seasonal affective disorder. Am J Psychiatr 146:989–995

    PubMed  CAS  Google Scholar 

  • Depue RA, Arbisi P, Krauss S, Iacono WG, Leon A, Muir R, Allen J (1990) Seasonal independence of low prolactin concentration and high spontaneous eye blink rates in unipolar and bipolar II seasonal affective disorder. Arch Gen Psychiatr 47:356–364

    Article  PubMed  CAS  Google Scholar 

  • D’haenen H, Bossuyt A (1994) Dopamine D2 receptors in the brain measured with SPECT. Biol Psychiatr 15:128–132

    Article  Google Scholar 

  • D’haenen H, Steensens D, Bossuyt A (1999) Successful antidepressant treatment with SSRIs is associated with an increased D2 binding. Int J Neuropsychopharmacol 2:S14

    Google Scholar 

  • Di Chiara G, Tanda G, Frau R, Carboni E (1993) On the preferential release of dopamine in the nucleus accumbens by amphetamine: further evidence obtained by vertically implanted concentric probes. Psychopharmacology 112:398–402

    Article  PubMed  Google Scholar 

  • Di Chiara G, Loddo P, Tanda G (1999) Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: Implications for the psychobiology of depression. Biol Psychiatr 46:1624–1633

    Article  Google Scholar 

  • Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME (1992) A functional anatomical study of unipolar depression. J Neurosci 12:3628–3636

    PubMed  CAS  Google Scholar 

  • Drevets WC, Price JC, Kupfer DJ, Kinahan PE, Lopresti B, Holt D, Mathis C (1999) PET measures of amphetamine-induced dopamine release in ventral versus dorsal striatum. Neuropsychopharmacology 21:694–709

    Article  PubMed  CAS  Google Scholar 

  • Dziedzicka-Wasylewska M, Willner P, Papp M (1997) Changes in dopamine receptor mRNA expression following chronic mild stress and chronic antidepressant treatment. Behav Pharmacol 8:607–618

    Article  PubMed  CAS  Google Scholar 

  • Ebert D, Albert R, Hammon G, Strasser B, May A, Merz A (1996) Eye-blink rates and depression. Is the antidepressant effect of sleep deprivation mediated by the dopamine system? Neuropsychopharmacology 15:332–339

    Article  PubMed  CAS  Google Scholar 

  • Ebert D, Feistel H, Loew T, Priner A (1996) Dopamine and depression: Striatal dopamine D2 receptor SPECT before and after antidepressant therapy. Pschopharmacology 126:91–94

    Article  CAS  Google Scholar 

  • Ebstein RP, Nemanov L, Klotz I, Gritsenko I, Belmaker RH (1997) Additional evidence for an association between the dopamine D4 receptor (DRD4) exon III repeat polymorphism and the human personality trait of Novelty Seeking. Mol Psychiatr 2:472–477

    Article  CAS  Google Scholar 

  • Egeland JA, Gerhard DS, Pauls DL, Sussex JN, Kidd KK, Allen CR, Hostetter AM, Housman DE (1987) Bipolar affective disorders linked to DNA markers on chromosome 11. Nature 325:783–787

    Article  PubMed  CAS  Google Scholar 

  • Fawcett J, Simonopoulos V (1971) Dextroamphetamine response as a possible predictor of improvement with tricyclic therapy in depression. Arch Gen Psychiatr 25:247–255

    Article  Google Scholar 

  • Fibiger HC (1991) The dopamine hypotheses of schizophrenia and depression: Contradictions and speculations. In: Willner P, Scheel-Kruger J (eds) The Mesolimbic Dopamine System: From Motivation to Action. Chichester: John Wiley and Sons, 1991:615–637

    Google Scholar 

  • Gambarana C, Masi F, Tagliamonte A, Scheggi S, Ghiglieri O, De Montis MG (1999) A chronic stress that impairs reactivity in rats also decreases dopaminergic transmission in the nucleus accumbens: A microdialysis study. J Neurochem 72:2039–46

    Article  PubMed  CAS  Google Scholar 

  • Ghiglieri O, Gambarana C, Scheggi S, Tagliamonte, A, Willner P, De Montis G (1997) Palatable food induces an appetitive behaviour in satiated rats which can be inhibited by chronic stress. Behav Pharmacol 8:619–628

    Article  PubMed  CAS  Google Scholar 

  • Gjerris A, Werdelin L, Rafaelson OJ, Ailing C, Christensen NJ (1987) CSF dopamine increased in depression: CSF dopamine, noradrenaline and their metabolites in depressed patients and in controls. J Affect Disord 13:279–286

    Article  PubMed  CAS  Google Scholar 

  • Goetz CG, Tanner CM, Klawans HL (1984) Bupropion in Parkinson’s disease. Neurology 34:1092–1094

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Casero E, Perez de Castro I, Saiz-Ruiz J, Llinares C, Fernandez-Piqueras J (1996) No association between particular DRD3 and DAT gene polymorphisms and manic-depressive illness in a Spanish sample. Psychiatr Genet 6:209–212

    Article  PubMed  CAS  Google Scholar 

  • Goodwin FK, Ebert MH, Bunney WE (1972) Mental effects of reserpine in man: A review. In: Shader RI (ed) Psychiatric Complications of Medical Drugs. New York: Raven Press, 73–101

    Google Scholar 

  • Goodwin FK, Sack RL (1974) Central dopamine function in affective illness: evidence from precursors, enzyme inhibitors, and studies of central dopamine turnover. In: Usdin E (ed) Neuropsychopharmacology of Monoamines and their Regulatory Enzymes. New York: Raven Press, 261–279

    Google Scholar 

  • Groenewegen HJ, Berendse HW, Meredith GE, Haber SN, Voorn P, Wolters JG, Lohman AHM (1991) Functional anatomy of the ventral, limbic system-innervated striatum. In: Willner P, Scheel-Kruger J (eds) The Mesolimbic Dopamine System: From Motivation to Action. Wiley, Chichester, pp 19–59

    Google Scholar 

  • Guze BH, Barrio JC (1991) The etiology of depression in Parkinson’s disease patients. Psychosomatics 32:390–394

    Article  PubMed  CAS  Google Scholar 

  • Gwirtsman HE, Guze BH (1989) Amphetamine, but not methylphenidate, predicts antidepressant response. J Clin Psychopharmacol 9:453

    Article  PubMed  CAS  Google Scholar 

  • Harrow M, Yonan CA, Sands JR, Marengo J (1994) Depression in schizophrenia: Are neuroleptics, akinesia, or anhedonia involved. Schizophr Bull 120:327–338

    Article  Google Scholar 

  • Healy E, McKeon P (2000) Dopaminergic sensitivity and prediction of antidepressant response. J Psychopharmacol 14:152–156

    Article  PubMed  CAS  Google Scholar 

  • Jacobs D, Silverstone T (1988) Dextroamphetamine-induced arousal in human subjects as a model for mania. Psychol Med 16:323–329

    Article  Google Scholar 

  • Jeste DV, Lohr JB, Goodwin FK (1988) Neuroanatomical studies of major affective disorders: A review and suggestions for future research. Brit J Psychiatr 153:444–459

    Article  CAS  Google Scholar 

  • Jimerson DC (1987) Role of dopamine mechanisms in the affective disorders. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. New York: Raven Press, 515–511

    Google Scholar 

  • Jouvent R, Abensour P, Bonnet AM, Widlocher D, Ajid Y, Lhermitte F (1983) Antiparkinson and antidepressant effects of high doses of bromocriptine. J Affect Disord 5:141–145

    Article  PubMed  CAS  Google Scholar 

  • King RJ, Mefford IN, Wang C, Murchison A, Caligari EJ, Berger PA (1986) CSF dopamine levels correlate with extraversion in depressed patients. Psychiatr Res 19:305–310

    Article  CAS  Google Scholar 

  • Kirkpatrick B, Buchanan RW (1990) Anhedonia and the deficit syndrome of schizophrenia. Psychiatr Res 31:25–30

    Article  CAS  Google Scholar 

  • Lambert G, Johansson M, Agren H, Friberg P (2000) Reduced brain norepinephrine and dopamine turnover in depressive illness: Evidence in support of the catecholamine hypothesis of affective disorders. Arch Gen Psychiatr 57:787–793

    Article  PubMed  CAS  Google Scholar 

  • Larisch R, Klimke A, Vosberg H, Loffler S, Gaebel W, Müller-Gartner H-W (1997) In vivo evidence for the involvement of dopamine-D2 receptors in striatum and anterior cingulate gyrus in major depression. Neuroimage 5:251–260

    Article  PubMed  CAS  Google Scholar 

  • Lecrubier Y, Boyer P, Turjanski S, Rein W (1997) Amisulpride versus imipramine and placebo in dysthymia and major depression. J Affect Disord 43:95–103

    Article  PubMed  CAS  Google Scholar 

  • Little KY (1988) Amphetamine, but not methylphenidate, predicts antidepressant response. J Clin Psychopharmacol 8:177–183

    Article  PubMed  CAS  Google Scholar 

  • Le Moal M (1995) Mesocorticolimbic dopaminergic neurons: Functional and regulatory roles. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: The Fourth Generation of Progress. Raven, New York, pp 283–294

    Google Scholar 

  • Maj J (1990) Behavioral effects of antidepressant drugs given repeatedly on the dopaminergic system. In: Gessa GL, Serra G (eds) Dopamine and Mental Depression. Oxford: Pergamon Press, 139–146

    Google Scholar 

  • Maj J, Papp M, Skuza G, Bigajska K, Zazula M (1989) The influence of repeated treatment with imipramine, (+)- and (-)-oxaprotiline on behavioural effects of dopamine D-1 and D-2 agonists. J Neural Transm 76:29–38

    Article  PubMed  CAS  Google Scholar 

  • Maj J, Dziedzicka-Wasylewska M, Rogoz R, Rogoz Z, Skuza G (1996) Antidepressant drugs given repeatedly change the biding of the dopamine D2 receptor agonist [3H]N-0437, to dopamine D2 receptors in the rat brain. Eur J Pharmacol 23:49–54

    Article  Google Scholar 

  • Maj J, Dziedzicka-Wasylewska M, Rogoz R, Rogoz Z (1998) Effect of antidepressant drugs administered repeatedly on the dopamine D3 receptors in the rat brain. Eur J Pharmacol 351:31–37

    Article  PubMed  CAS  Google Scholar 

  • Manki H, Kanabe S, Muramatsu T, Higuchi S, Suzuki E, Matsushita S, Onon Y, Chiba H, Shintani F, Nakamura M, Yagi G, Asai M (1996) Dopamine D2, D3 and D4 receptor and transporter gene polymorphisms and mood disorders. J Affect Disord 40:7–13

    Article  PubMed  CAS  Google Scholar 

  • McHugh PR (1989) The neuropsychiatry of basal ganglia disorders. Neuropsychiatr. Neuropsychol Behav Neurol 2:239–247

    Google Scholar 

  • Meltzer HY, Kolakowska T, Fang VS, Fogg L, Robertson A, Lewine R, Strahilevitz M, Busch D (1984) Growth hormone and prolactin response to apomorphine in schizophrenia and major affective disorders. Relation to duration of illness and affective symptoms. Arch Gen Psychiatr 41:512–519

    Article  PubMed  CAS  Google Scholar 

  • Mendlewicz J, Linkowski P, Kerkhofs M, Desmedt D, Goldstein J, Copinschi G, Van Cauter E (1985) Diurnal hypersecretion of growth hormone in depression. J Clin Endocrinol Metab 60:505–512

    Article  PubMed  CAS  Google Scholar 

  • Miller HL, Delgado PL, Salomon RM, Berman R, Krystal JH, Heninger GR, Charney DS (1996) Clinical and biochemical effects of catecholamine depletion on antidepressant-induced remission of symptoms. Arch Gen Psychiatr 53:117–128

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Yim CC (1991) Neuromodulatory functions of the mesolimbic dopamine system: Electrophysiological and behavioural studies. In: Willner P, Scheel-Kruger J (eds) The Mesolimbic Dopamine System: From Motivation to Action. Wiley, Chichester, pp 105–130

    Google Scholar 

  • Mouret J, LeMoine P, Minuit M-P (1989) Marqueurs polygraphiques, cliniques et therapeutiques des depressions dopamino-dependantes (DDD). Confront Psychiatr, Special Issue, 430–437

    Google Scholar 

  • Murphy DL (1972) L-dopa, behavioral activation and psychopathology. Res Publ Ass Res Nerv Ment Dis 50:472–493

    PubMed  CAS  Google Scholar 

  • Murray JB (1996) Depression in Parkinson’s disease. J Psychol 130:659–667

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC (1987) The use of antipsychotic drugs in the treatment of depression. In: Zohar J, Belmaker RH (eds) Treating Resistant Depression. New York: PMA Corp, 131–146

    Google Scholar 

  • Nowak G, Skolnick P, Paul IA (1991) Downregulation of dopaminel (D1) receptors is species-specific. Pharmaol Biochem Behav 39:769–771

    Article  CAS  Google Scholar 

  • Nurnberger JJ Jr, Gershon ES, Simmons S, Ebert M, Kessler LR, Dibble ED, Jimerson SS, Brown GM, Gold P, Jimerson DC, Guroff JJ, Storch FI (1982) Behavioral, biochemical and neurochemical responses to amphetamine in normal twins and “well-state” bipolar patients. Psychoneuroendocrinology 7:163–176

    Article  PubMed  CAS  Google Scholar 

  • Nurnberger JJ Jr, Simmons-Ailing S, Kessler L, Jimerson S, Schreiber J, Hollander E, Tamminga CA, Suzan Nadi N, Goldstein DS, Gershon ES (1984) Separate mechanisms for behavioral, cardiovascular and hormonal responses to dextroamphetamine in man. Psychopharmacology 84:200–204

    Article  PubMed  CAS  Google Scholar 

  • Papp M, Klimek V, Willner P (1994) Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology 115:441–446

    Article  PubMed  CAS  Google Scholar 

  • Perry EK (1987) Cortical neurotransmitter chemistry in Alzheimer’s disease. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. New York: Raven Press, 887–895

    Google Scholar 

  • Pitchot W, Ansseau M, Gonzalez Moreno A, Hansenne M, von Frenckell R (1992a) Dopaminergic function in panic disorder: Comparison with major and minor depression. Biol Psychiatr 32:1004–1011

    Article  CAS  Google Scholar 

  • Pitchot W, Hansenne M, Gonzalez Moreno A, Ansseau M (1992b) Suicidal behavior and growth hormone response to apomorphine test. Biol Psychiatr 31:1213–1219

    Article  CAS  Google Scholar 

  • Pitchot W, Hansenne M, Gonzalez Moreno A, von Frenckell R, Ansseau M (1990) Psychopathological correlates of dopaminergic disturbances in major depression. Neuropsychobiology 24:169–172

    Article  PubMed  Google Scholar 

  • Pogue-Geile M, Ferrell R, Deka R, Debski T, Manuck S (1998) Human novelty-seeking personality traits and dopamine D4 receptor polymorphisms: A twin and genetic association study. Am J Med Genet 81:44–48

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Kotin J, Goodwin FK, Gordon E (1973) Psychomotor activity and cerebrospinal fluid metabolites in affective illness. Am J Psychiatr 130:67–72

    PubMed  CAS  Google Scholar 

  • Post RM, Weiss SRB, Pert A (1991) Animal models of mania. In: Willner P, Scheel-Kruger J (eds) The Mesolimbic Dopamine System: From Motivation to Action. Chichester: John Wiley and Sons, 443–472

    Google Scholar 

  • Przegalinski E, Budziszewska B, Blaszcztnska E (1990) Repeated treatment with antidepressant drugs and/or electroconvulsive shock (ECS) does not affect the quinpirole-induced elevation of serum corticosterone concentration in rats. J Psychopharmacol 4:198–203

    Article  PubMed  CAS  Google Scholar 

  • Pulvirenti L, Samanin R (1986) Antagonism by dopamine, but not noradrenaline receptor blockers of the anti-immobility activity of desipramine after different treatment schedules in the rat. Pharmacol Res Comm 18:73–80

    Article  CAS  Google Scholar 

  • Rampello L, Nicoletti G, Raffaele R (1991) Dopaminergic hypothesis for retarded depression: A symptom profile for predicting therapeutical responses. Acta Psychiatr. Scand 84:552–554

    Article  PubMed  CAS  Google Scholar 

  • Randrup A, Munkvad I, Fog R, Gerlach J, Molander L, Kjellberg B, Scheel-Kruger J (1975) Mania, depression and brain dopamine. In: Essman WB, Valzelli L (eds) Current Developments in Psychopharmacology (Vol. 2). New York: Spectrum Press, 206–248

    Google Scholar 

  • Reddy PL, Khanna S, Subhash MN, Channabasavanna SM, Sridhara Rama Rao BS (1992) CSF amine metabolites in depression. Biol Psychiatr 31:112–118

    Article  CAS  Google Scholar 

  • Robertson MM, Trimble MR (1981) Neuroleptics as antidepressants. Neuropharmacology 20:1335–1336

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Karoum F, Pollack S (1992) Marked reduction in indexes of dopamine transmission among patients with depression who attempt suicide. Arch Gen Psychiatr 49:447–450

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Pickar D, Linnoila M, Doran AR, Ninan P, Paul SM (1985) Cerebrospinal fluid monoamine and monoamine metabolite concentrations in melancholia. Psychiatr Res 15:281–290

    Article  CAS  Google Scholar 

  • Ruther E, Degner D, Munzel U, Brunner E, Lenhard G, Biehl J, Vogtle-Junkert U (1999) Antidepressant action of sulpiride. Results of a placebo-controlled double-blind trial. Pharmakopsychiatry 32:127–135

    Article  CAS  Google Scholar 

  • Salomon, RM, Miller HL, Delgado PL, Charney D (1993) The use of tryptophan depletion to evaluate serotonin function in depression and other neuropsychiatric disorders. Int Clin Psychopharmacol 8 [Suppl 2]:41–46

    Article  PubMed  Google Scholar 

  • Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21:341–359

    Article  PubMed  CAS  Google Scholar 

  • Scatton B, Perrault G, Sanger DJ, Shoemaker H, Carter C, Fage D, Gonon F, Chergui K, Cudennec A, Benavides J (1994) Pharmacological profile of amisulpride, an atypical neuroleptic which preferentially blocks presynaptic D2/D3 receptors. Neuropsychopharm 10 [Suppl, Part 1]:242 S

    Google Scholar 

  • Scavone C, Aizenstein ML, De Lucia R, Da Silva Planeta C (1986) Chronic imipramine administration reduces apomorphine inhibitory effects. Eur J Pharmacol 132:263–267

    Article  PubMed  CAS  Google Scholar 

  • Schatzberg AF, Rothschild AJ (1988) The roles of glucocorticoid and dopaminergic systems in delusional (psychotic) depression. Ann NY Acad Sci 537:462–471

    Article  PubMed  CAS  Google Scholar 

  • Serra G, Argiolas A, Fadda F, Melis MR, Gessa GL (1979) Chronic treatment with antidepressants prevents the inhibitory effect of small doses of antidepressants on dopamine synthesis and motor activity. Life Sci 25:415–424

    Article  PubMed  CAS  Google Scholar 

  • Serra G, Collu M, D’Aquila PS, de Montis GM, Gessa GL (1990) Possible role of dopamine D1 receptor in the behavioural supersensitivity to dopamine agonists induced by chronic treatment with antidepressants. Brain Res 527:234–243

    Article  PubMed  CAS  Google Scholar 

  • Serra G, Forgione A, D’Aquila PS, Collu M, Fratta W, Gessa GL (1990) Possible mechanism of antidepressant effect of L-sulpiride. Clin Neuropharmacol 13 [Suppl 1]:S76–S83

    Article  PubMed  Google Scholar 

  • Serretti A, Macciardi F, Verga M, Cusin C, Pedrini S, Smeraldi E (1998) Tyrosine hydroxylase gene associated with depressive symptomatology in mood disorder. Am J Med Genet 81:127–130

    Article  PubMed  CAS  Google Scholar 

  • Shah PJ, Ogilvie AD, Goodwin GM, Ebmeier KP (1997) Clinical and psychometric correlates of dopamine D2 binding in depression. Psychol Med 27:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Shively CA, Grant KA, Ehrenkaufer RL, Mach RH, Nader MA (1997) Stress, depression, and brain dopamine in female cynomolgous monkeys. Ann NY Acad Sci 807:574–577

    Article  PubMed  CAS  Google Scholar 

  • Siever LJ, Uhde TW (1984) New studies and perspectives on the noradrenergic receptor system in depression: Effects of the alpha2-adrenergic agonist Clonidine. Biol Psychiatr 19:131–156

    CAS  Google Scholar 

  • Silverstone T (1984) Response to bromocriptine distinguishes bipolar from unipolar depression. Lancet 1:903–904

    Article  PubMed  CAS  Google Scholar 

  • Siris S (1991) Diagnosis of secondary depression in schizophrenia. Implications for DSM-IV. Schizophr Bull 17:75–98

    Article  PubMed  CAS  Google Scholar 

  • Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 5:776–794

    Google Scholar 

  • Stamford JA, Muscat R, O’Connor JJ, Patel J, Trout SJ, Wieczorek WJ, Zruk ZL, Willner P (1991) Subsensitivity to reward following chronic mild stress is associated with increased release of mesolimbic dopamine. Psychopharmacology 105:275–282

    Article  PubMed  CAS  Google Scholar 

  • Stoll AL, Pillay SS, Diamond L, Workum SB, Cole JO (1996) Methylphenidate augmentation of serotonin selective reuptake inhibitors: a case series. J Clin Psychopharmacol 57:72–76

    CAS  Google Scholar 

  • Suhara T, Nakayama K, Inoue O, Fukuda H, Shimizu M, Mori A, Tateno Y (1992) D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology 106:14–18

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Stockmeier CA, Overholser JC, Thompson PA, Meltzer HY (1995) Dopamine D4 receptors and effects of guanine nucleotides on [3H]raclopride binding in postmortem caudate nucleus of subjects with schizophrenia or major depression. Brain Res 681:109–116

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Koob GF (1987) Dopamine, schizophrenia, mania and depression: toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behav Brain Sci 10:197–245

    Article  Google Scholar 

  • Tanda G, Pontieri FF, Frau R, Di Chiara G (1997) Contribution of blockade of the noradrenaline carrier to the increase of extracellular dopamine in the rat prefrontal cortex by amphetamine and cocaine. Eur J Neurosci 9:2077–2085

    Article  PubMed  CAS  Google Scholar 

  • Taylor AE, Saint-Cyr JA (1990) Depression in Parkinson’s disease: Reconciling physiological and psychological perspectives. Neuropsychiatr Pract Opin 2:92–98

    CAS  Google Scholar 

  • Tiihonen J, Kuoppamaki M, Nagre K, Bergmen JM, Eronen E, Syvalahti E, Hietala J (1996) Serotonergic modulation of striatal D2 dopamine receptor binding in humans measured with positron emission tomography. Psychopharmacology 126: 277–280

    Article  PubMed  CAS  Google Scholar 

  • Towell A, Willner P, Muscat R (1986) Behavioural evidence for autoreceptor subsensitivity in the mesolimbic dopamine system during withdrawal from antidepressant drugs. Psychopharmacology 90:64–71

    Article  PubMed  CAS  Google Scholar 

  • Van Praag HM, Korf J (1975) Central monoamine deficiency in depression: Causative or secondary phenomenon. Pharmacopsychiatry 8:321–326

    Google Scholar 

  • Van Praag HM, Korf J, Lakke JPWF, Schut T (1975) Dopamine metabolism in depression, psychoses, and Parkinson’s disease: The problem of specificity of biological variables in behavior disorders. Psychol Med 5:138–146

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1983) Dopamine and depression: A review of recent evidence. Brain Res Rev 6:211–246

    Article  CAS  Google Scholar 

  • Willner P (1984) Cognitive functioning in depression: A review of theory and research. Psychol Med 14:807–823

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1985) Depression: A Psychobiological Synthesis. Wiley, New York

    Google Scholar 

  • Willner P (1989) Sensitization to antidepressant drugs. In: Emmett-Oglesby MV, Goudie AJ (eds) Psychoactive drugs: Tolerance and Sensitization. Clifton, N.J.: Humana Press, 407–459

    Chapter  Google Scholar 

  • Willner P (1997a) Validity, reliability and utility of the chronic mild stress (CMS) model of depression: A ten-year review and evaluation. Psychopharmacology 134: 319–329

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1997b) The chronic mild stress procedure as an animal model of depression: Valid, reasonably reliable, and useful. Psychopharmacology 134:371–377

    Article  CAS  Google Scholar 

  • Willner P (1999) Dopaminergic mechanisms in depression and mania. In: Watson (ed) Psychopharmacology: The Fourth Generation of Progress, On-Line Edition, http://www.acnp.org/citations/GN401000093. Lippincott Williams & Wilkins, New York

    Google Scholar 

  • Willner P, Papp M (1997) Animal models to detect antidepressants: Are new strategies necessary to detect new antidepressants? In: Skolnick P (ed) Antidepressants: New Pharmacological Strategies, Humana, Totowa NJ, pp 213–234

    Chapter  Google Scholar 

  • Willner P, Scheel-Kruger J (eds) (1991) The Mesolimbic Dopamine System: From Motivation to Action. Chichester: John Wiley and Sons

    Google Scholar 

  • Willner P, Klimek V, Golembiowska K, Muscat R (1991) Changes in mesolimbic dopamine may explain stress-induced anhedonia. Psychobiology 19:79–84

    CAS  Google Scholar 

  • Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neurosci Biobehav Rev 16:525–534

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1982) Neuroleptics and operant behaviour: The anhedonia hypothesis. Behav Brain Sci 5:39–88

    Article  Google Scholar 

  • Wolfe N, Katz DI, Albert ML, Almozlino A, Durso R, Smith MC, Volicer L (1990) Neuropsychological profile linked to low dopamine in Alzheimer’s disease, major depression, and Parkinson’s disease. J Neurol Neurosur Psychiatr 53:915–917

    Article  CAS  Google Scholar 

  • Wong DF, Wagner HN Jr, Pearlson G, Dannals RF, Links JM, Ravert HT, Wilson AA, Suneja S, Bjorvvinssen E, Kuhar MJ, Tune L (1985) Dopamine receptor binding of C-11–3-N-methyl-spiperone in the caudate of schizophrenic and bipolar disorder: A preliminary report. Psychopharmacol Bull 21:595–598

    PubMed  CAS  Google Scholar 

  • Zebrowska-Lupina I, Ossowska G, Klenk-Majewska B (1992) The influence of antidepressants on aggressive behavior in stressed rats: The role of dopamine. Pol J Pharmacol Pharm 44:325–335

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Willner, P. (2002). Dopamine and Depression. In: Di Chiara, G. (eds) Dopamine in the CNS II. Handbook of Experimental Pharmacology, vol 154 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06765-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06765-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07659-6

  • Online ISBN: 978-3-662-06765-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics