Skip to main content

Microbial Community Dynamics During Bioremediation of Hydrocarbons

  • Chapter
Biodegradation and Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 2))

Abstract

Hydrocarbons are introduced into environments through constant, lowlevel releases and large-scale accidental spills. Widespread use of hydrocarbons has resulted in a variety of environments being exposed. Shifts in microbial populations occur when hydrocarbons enter an environment, and during their subsequent degradation (MacNaughton et al. 1999). Biodegradation requires appropriate environmental conditions and an active microbial population. Physical parameters that affect microbial growth can be measured. There is currently no single method to easily assess microbial community dynamics during hydrocarbon degradation. A broad overview of the various methods used for studying community dynamics will be presented here, followed by a discussion of some specific research results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abed RMM, Safi NMD, Köster J, de Beer D, El-Nahhal Y, Rullkötter J, Garcia-Pichel F (2002) Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl Environ Microbiol 68: 1674–1683

    Article  CAS  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56: 1919–1925

    CAS  Google Scholar 

  • Atlas, RM (1984) Diversity of microbial communities. Adv Microb Ecol 7: 1–48

    Article  Google Scholar 

  • Atlas RM (1992) Petroleum microbiology. Encycl Microbiol 3: 363–369

    Google Scholar 

  • Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeterior Biodegrad: 317–327

    Google Scholar 

  • Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in seawater: limitation by nitrogen and phosphorus. Biotech Bioeng 14: 309–317

    Article  CAS  Google Scholar 

  • Atlas RM, Horowitz A, Krichevsky M (1991) Response of microbial populations to environmental disturbance. Microbial Ecol 22: 287–338

    Article  Google Scholar 

  • Bachoon DS, Araujo R, Molina M, Hodson RE (200la) Microbial community dynamics and evaluation of bioremediation strategies in oil-impacted salt marsh sediment microcosms. J Ind Microbiol Biotech 27: 72–79

    Google Scholar 

  • Bachoon DS, Hodson RE, Araujo R (2001b) Microbial community assessment in oil-impacted salt marsh sediment microcosms by traditional and nucleic acid-based indices. J Microbiol Meth 46 (11): 35–47

    Google Scholar 

  • Bagwell CE and Lovell CR (2000) Persistence of selected Spartina alterniflora rhizoplane diazotrophs exposed to natural and manipulated environmental variability. Appl Environ Microbiol 66: 4625–4633

    Article  CAS  Google Scholar 

  • Becker PM (1999) About the order in aerobic heterotrophic microbial communities from hydrocarbon-contaminated sites. Int Biodeterior Biodegrad 43: 135–146

    Article  CAS  Google Scholar 

  • Brockman FJ (1995) Nucleic-acid-based methods for monitoring the performance of in situ bioremediation. Mol Ecol 4: 567–578

    Article  CAS  Google Scholar 

  • Bundy JG, Paton GI, Campbell CD (2002) Microbial communities in different soil types do not converge after diesel contamination. J Appl Microbiol 92: 276–288

    Article  CAS  Google Scholar 

  • Carpenter-Boggs L, Kennedy AC, Reganold JP (1998) Use of phospholipid fatty acids and carbon source utilization patterns to track microbial community succession in developing compost. Appl Environ Microbiol 64: 4062–4064

    CAS  Google Scholar 

  • Chao W-L, Tien C-C, Chao C-C (1997) Investigation of the effect of different kinds of fertilizers on the compositions of a soil microbial community using the molecular biology technique. J Chin Agric Chem Soc 35: 252–262

    CAS  Google Scholar 

  • Cho J-C, Tiedje JM (2001) Bacterial species determination from DNA-DNA hybridization by using genome fragments and DNA microarrays. Appl Environ Microbio! 67: 3677–3682

    Article  CAS  Google Scholar 

  • Cho J-C, Tiedje JM (2002) Quantitative detection of microbial genes by using DNA microarrays. Appl Environ Microbiol 68: 1425–1430

    Article  CAS  Google Scholar 

  • Christensen TH, Kjeldsen P, Albrechtsen H-J, Heron G, Nielsen PH, Bjerg PL, Holm PE (1994) Attenuation of landfill leachate pollutants in aquifers. Crit Rev Environ Sci Technol 24: 119–202

    Article  CAS  Google Scholar 

  • Colores GM, Macur RE, Ward DM, Inskeep WP (2000) Molecular analysis of surfactant-driven microbial population shifts in hydrocarbon-contaminated soil. Appl Environ Microbiol 66 (7): 2959–2964

    Article  CAS  Google Scholar 

  • Doumenq P, Acquaviva M, Asia L, Durbec JP, Dréau YL, Mille G, Bertrand JC (1999) Changes in fatty acids of Pseudomonas nautica, a marine denitrifying bacterium, in response to n-eicosane as a carbon source and various culture conditions. FEMS Microbiol Ecol 28: 151–161

    Article  CAS  Google Scholar 

  • Duncan K, Levetin E, Wells H, Jennings E, Hettenbach S, Bailey S, Lawlor K, Sublette K, Fisher JB (1997) Managed bioremediation of soil contaminated with crude oil: soil chemistry and microbial ecology three years later. Appl Biochem Biotech 63–65: 879–889

    Article  Google Scholar 

  • Fernandez A, Huang S, Seston S, Xing J, Hickey R, Griddle C, Tiedje J (1999) How stable is stable? Function versus community composition. Appl Environ Microbiol 65: 3697–3704

    CAS  Google Scholar 

  • Fleming JT, Sanseverino J, Sayler GS (1993) Quantitative relationship between naphthalene catabolic gene frequency and expression in predicting PAH degradation in soils at town gas manufacturing plants. Environ Sci Technol 27: 1068–1074

    Article  CAS  Google Scholar 

  • Fries MR, Hopkins GD, McCarty PL, Forney LJ, Tiedje JM (1997) Microbial succession during a field evaluation of phenol and toluene as the primary substrates for trichloroethene cometabolism. Appl Environ Microbiol 63 (4): 1515–1522

    CAS  Google Scholar 

  • Garland JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24: 289–300

    Article  CAS  Google Scholar 

  • Gieg LM, Kolhatkar RV, McInerney MJ, Tanner RS, Harris SH Jr, Sublette KL, Suflita JM (1999) Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer. Environ Sci Technol 33: 2550–2560

    Article  CAS  Google Scholar 

  • Greene EA, Voordouw G (2003) Analysis of environmental microbial communities by reverse sample genome probing. J Microbiol Meth 53: 211–219

    Article  CAS  Google Scholar 

  • Greene EA, Kay JG, Jaber K, Stehmeier LG, Voordouw G (2000) Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Appl Environ Microbiol 66: 5282–5289

    Article  CAS  Google Scholar 

  • Greene EA, Kay JG, Stehmeier LG, Voordouw G (2002) Microbial community composition at an ethane pyrolysis plant site at different hydrocarbon inputs. FEMS Microbiol Ecol 40: 233–241

    Article  CAS  Google Scholar 

  • Greer CW, Whyte LG, Lawrence JR, Masson L, Brousseau R (2001) Genomics technologies for environmental science. Environ Sci Technol 35: 360A - 366A

    Article  Google Scholar 

  • Grossman EL (1997) Stable carbon isotopes as indicators of microbial activity in aquifers. In: Hurst LJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of Environmental Microbiology. ASM Press, Washington, pp 565–576

    Google Scholar 

  • Grossman MJ, Prince RC, Garrett RM, Garrett KK, Bare RE, O’Neil KR, Sowlay SM, Hinton KL, Sergy GA, Owens EH, Guenette CC (2000) Microbial diversity in oiled and un-oiled shoreline sediments in the Norwegian Arctic. In: Bell CR, Brylinsky M, Johnson-Green (eds) Microbial biosystems: new frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbiology, Kentville, NS, Canada, pp 775–787

    Google Scholar 

  • Hanson JR, MacAlady JL, Harris D, Scow KM (1999) Linking toluene degradation with specific microbial populations in soil. Appl Environ Microbiol 65: 5403–5408

    CAS  Google Scholar 

  • Hellman B, Zelles L, Palojärvi A, Bai Q (1997) Emission of climate-relevant trace gases and succession of microbial communities during open-windrow composting. Appl Environ Microbiol 63: 1011–1018

    Google Scholar 

  • Hess A, Zarda B, Hahn D, Häner A, Stax D, Höhener P, Zeyer J (1997) In situ analysis of denitrifying toluene-and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol 63: 2136–2141

    CAS  Google Scholar 

  • Holben WE, Schroeter BM, Calabrese VGM, Olsen RH, Kukor JK, Biederbeck VO, Smith AE, Tiedje JM (1992) Gene probe analysis of soil microbial populations selected by amendment with 2,4-dichlorophenoxyacetic acid. Appl Environ Microbiol 58: 3941–3948

    CAS  Google Scholar 

  • Hu H-Y, Lim B-R, Goto N, Fujie K (2001) Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Meth 47: 17–24

    Article  CAS  Google Scholar 

  • Hubert C, Shen Y, Voordouw G (1999) Composition of toluene-degrading microbial communities from soil at different concentrations of toluene. Appl Environ Microbiol 65: 3064–3070

    CAS  Google Scholar 

  • Jones GJ (1977) The effect of environmental factors on estimated viable and total populations of planktonic bacteria in lakes and experimental enclosures. Freshwater Biol 7: 61–97

    Article  Google Scholar 

  • Juck D, Charles T, Whyte LG, Greer CW (2000) Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities. FEMS Microbiol Ecol 33: 241–249

    Article  CAS  Google Scholar 

  • Ka JO, Holben WE, Tiedje JM (1994) Use of gene probes to aid in recovery and identification of functionally dominant 2,4-dichlorophenoxyacetic acid-degrading populations in soil. Appl Environ Microbiol 60: 1116–1120

    CAS  Google Scholar 

  • Kasai Y, Kishira H, Syutsubo K, Harayama S (2001) Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3 (4): 246–255

    Article  CAS  Google Scholar 

  • Koizumi Y, Kelly JJ, Nakagawa T, Urakawa H, El-Fantroussi S, Al-Muzaini S, Fukiu M, Urushigawa Y, Stahl DA (2002) Parallel characterization of anaerobic toluene-and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization and DNA microarray technology. Appl Environ Microbiol 68: 3215–2115

    Google Scholar 

  • Kurisu F, Satoh H, Mino T, Matsuo T (2002) Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method. Wat Res 36: 429–438

    Article  CAS  Google Scholar 

  • Lindstrom JE, Barry RP, Braddock JF (1999) Long-term effects on microbial communities after a subarctic oil spill. Soil Biol Biochem 31: 1677–1689

    Article  CAS  Google Scholar 

  • MacNaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang Y-J, White DC (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65: 3566–3574

    CAS  Google Scholar 

  • Marsh TL, Saxman P, Cole J, Tiedje J (2000) Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl Environ Microbiol 66 (8): 3616–3620

    Article  CAS  Google Scholar 

  • Matheson VG, Munakata-Marr J, Hopkins GD, McCarty PL, Tiedje JM, Forney LJ (1997) A novel means to develop strain-specific DNA probes for detecting bacteria in the environment. Appl Environ Microbiol 63: 2863–2869

    CAS  Google Scholar 

  • Mesarch MB, Nies L (1997) Modification of heterotrophic plate counts for assessing the bioremediation potential of petroleum-contaminated soils. Environ Technol 18: 639–646

    Article  CAS  Google Scholar 

  • Mesarch MB, Nakatsu CH, Nies L (2000) Development of catachol 2,3-dioxygenasespecific primers for monitoring bioremediation by competitive quantitative PCR. Appl Environ Microbiol 66: 678–683

    Article  CAS  Google Scholar 

  • Pan YP, Li Y, Caufield PW (2001) Phenotypic and genotypic diversity of Streptococcus sanguis in infants. Oral Microbiol Immunol 16: 235–242

    Article  CAS  Google Scholar 

  • Roane TM, Pepper IL (2000) Microscopic techniques. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental microbiology. Academic Press, New York, pp 195–211

    Google Scholar 

  • Röling WFM, van Breukelen BM, Braster M, Lin B, van Verseveld HW (2001) Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl Environ Microbiol 67: 4619–4629

    Article  Google Scholar 

  • Röling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68: 5537–5548

    Article  Google Scholar 

  • Schmalenberger A, Schwieger F, Tebbe CC (2001) Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCRbased microbial community analyses and genetic profiling. Appl Environ Microbiol 67: 3557–3563

    Article  CAS  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64: 4870–4876

    CAS  Google Scholar 

  • Shen Y, Stehmeier LG, Voordouw G (1998) Identification of hydrocarbon-degrading bacteria in soil by reverse sample genome probing. Appl Environ Microbiol 64: 637–645

    CAS  Google Scholar 

  • Shi Y, Zwolinski MD, Schreiber ME, Bahr JM, Sewell GW, Hickey WJ (1999) Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments. Appl Environ Microbiol 65: 2143–2150

    CAS  Google Scholar 

  • Small J, Call DR, Brockman FJ, Straub TM, Chandler DP (2001) Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl Environ Microbiol 67: 4708–4716

    Article  CAS  Google Scholar 

  • Stahl DA (1997) Molecular approaches for the measurement of density, diversity and phylogeny. In: Hurst LJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, pp 102–114

    Google Scholar 

  • Stoffels M, Amann R, Ludwig W, Hekmat D, Schleifer K-H (1998) Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds. Appl Environ Microbiol 64: 930–939

    CAS  Google Scholar 

  • Tchelet R, Meckenstock R, Steinle P, Van der Meer JR (1999) Population dynamics of an introduced bacterium degrading chlorinated benzenes in a soil column and in sewage sludge. Biodegradation 10: 113–125

    Article  CAS  Google Scholar 

  • Telang AJ, Ebert S, Foght JM, Westlake DWS, Jenneman GE, Gevertz D, Voordouw G (1997) The effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol 63: 1785–1793

    CAS  Google Scholar 

  • Tresse O, Lorrain M-J, Rho D (2002) Population dynamics of free-floating and attached bacteria in a styrene-degrading biotrickling filter analyzed by denaturing gradient gel electrophoresis. Appl Microbiol Biotechnol 59: 585–590

    Article  CAS  Google Scholar 

  • Voordouw G (1998) Reverse sample genome probing of microbial community dynamics. ASM News 64: 627–633

    Google Scholar 

  • Voordouw G, Voordouw JK, Karkhoff-Schweizer RR, Fedorak PM, Westlake DWS (1991) Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl Environ Microbiol 57: 3070–3078

    CAS  Google Scholar 

  • Watanabe K, Yamamoto S, Hono S, Harayama S (1998) Population dynamics of phenol-degrading bacteria in activated sludge determined by gyrB-targeted quantitative PCR. Appl Environ Microbiol 64: 1203–1209

    CAS  Google Scholar 

  • White DC, Pinkart HC, Ringelberg DC (1997) Biomass measurements: biochemical approaches. In: Hurst LJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, pp 91–101

    Google Scholar 

  • Wilson VL, Tatford BC, Yu X, Rajki SC, Walsh MM, LaRock P (1999) Species-specific detection of hydrocarbon-utilizing bacteria. J Microbiol Meth 39: 59–78 )

    Article  CAS  Google Scholar 

  • Wünsche L, Brüggemann L, Babel W (1995) Determination of substrate utilization patterns of soil microbial communities: an approach to assess population changes after hydrocarbon pollution. FEMS Microbiol Ecol 17: 295–306

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greene, E.A., Voordouw, G. (2004). Microbial Community Dynamics During Bioremediation of Hydrocarbons. In: Singh, A., Ward, O.P. (eds) Biodegradation and Bioremediation. Soil Biology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06066-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06066-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05929-2

  • Online ISBN: 978-3-662-06066-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics