Skip to main content

Structure and Activity of Endotoxins

  • Chapter
Bacterial Protein Toxins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 145))

Abstract

Gram-negative bacteria comprise a great number of pathogenic microorganisms causing a variety of diseases in mammals, including man. Many of the clinical symptoms observed following an infection with gram-negative pathogens are specific for the infectious species; however, some symptoms are commonly observed and are thus species independent (Brade et al. 1988). These symptoms, such as fever, were attributed to the action of heat-stable toxins that were recognized to be associated with the bacterial cell and were therefore termed endotoxins (Wolff 1904; Westphal and Lüderitz 1954; Rietschel and Brade 1992) to distinguish this class of toxins from actively secreted exotoxins, which are proteins and are thus heat labile (Bhakdi et al. 1994). The chemical characterization of endotoxins revealed that they are composed of a lipid component and a carbohydrate component; thus, they are lipopolysaccharides (LPSs) because of their chemical nature (Westphal and Lüderitz 1954).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appelmelk BJ, Shiberu B, Trinks C, Tapsi N, Zheng PY, Verboom T, Maaskant J. Hokke CH, Schiphorst WE, Blanchard D, Simoons-Smit IM, van den Eijnden DH, Vandenbroucke-Grauls CM, (1998) Phase variation in Helicobacier pylori lipopolysaccharide. Infect Immun 66: 70–76

    PubMed  CAS  Google Scholar 

  • Arditi M, Zhou J, Dorio R, Rong GW, Goyert SM, Kim KS, (1994) Endotoxin-mediated endothelial cell injury and activation: role of soluble CD14. Infect Immun 61: 3149–3156

    Google Scholar 

  • Bahrami S, Redl H, Yao YM, Schlag G, (1996) Involvement of bacteria/endotoxin translocation in the development of multiple organ failure. Curr Top Microbiol Immunol 216: 239–258

    Article  PubMed  CAS  Google Scholar 

  • Bailat S, Neumann D, Le Roy D, Baumgartner JD, Rietschel ET, Glauser MP, Di Padova FE (1997) Similarities and disparities between core-specific and 0-chainspecific antilipopolysaccharide monoclonal antibodies in models of endotoxemia and bacteremia in mice. Infect Immun 65: 811–814

    PubMed  CAS  Google Scholar 

  • Barber SA, Perera PY, McNally R, Vogel SN, (1995) The serine/threonine phosphatase inhibitor, calyculin A, inhibits and dissociates macrophage responses to lipopolysaccharide. J Immunol 155: 1404–1410

    PubMed  CAS  Google Scholar 

  • Baumgartner J-D, Glauser M-P (1993) Immunotherapy of endotoxemia and septicemia. Immunobiology 187: 464–477

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner JD, Heumann D, Derain J, Weinbreck P, Grau GE, Glauser MP (1990) Association between protective efficacy of anti-lipopolysaccharide (LPS) antibodies and suppression of LPS- induced tumor necrosis factor a and interleukin 6. J Exp Med 171: 889–896

    Article  PubMed  CAS  Google Scholar 

  • Bazil V, Strominger JL (1991) Shedding as a mechanism of down-modulation on stimulated human monocytes. J Immunol 147: 1567–1574

    PubMed  CAS  Google Scholar 

  • Bazil V, Baudys M, Hilgert I, Stefanova I, Low MG, Zbrozek J, Horejsi V (1989) Structural relationship between the soluble and membrane bound forms of human monocyte surface glycoprotein CD14. Mol Immunol 26: 657–662

    Article  PubMed  CAS  Google Scholar 

  • Belunis CJ, Raetz CRH (1992) Biosynthesis of endotoxins. Purification and catalytic properties of 3-deoxy-D-manno-octulosonic acid transferase from Escherichia coli. J Biol Chem 267: 9988–9997

    PubMed  CAS  Google Scholar 

  • Belunis CJ, Mdluli KE, Raetz CRH, Nano FE (1992) A novel 3-deoxy-D-mannooctulosonic acid transferase from Chlamydia trachomatis required for expression of the genus-specific epitope. J Biol Chem 267: 18702–18707

    PubMed  CAS  Google Scholar 

  • Belunis CJ, Clementz T, Carty SM, Raetz CRH (1995) Inhibition of lipopolysaccharide biosynthesis and cell growth following inactivation of the kdtA gene in Escherichia coli. J Biol Chem 270: 27646–27652

    Article  PubMed  CAS  Google Scholar 

  • Bernhagen J, Calandra T, Cerami A, Bucala R (1993) Macrophage migration inhibitory factor is a neuroendocrine mediator of endotoxaemia. Trends Micobiol 2: 198–201

    Article  Google Scholar 

  • Beutler B, Cerami A (1988) Tumor necrosis, cachexia shock, and inflammation: a common mediator. Annu Rev Biochem 57: 505–518

    Article  PubMed  CAS  Google Scholar 

  • Beynon LM, Richards JC, Perry MB (1992) Nuclear-magnetic-resonance analysis of the capsular antigen of Actinobacillus pleuropneumoniae serotype 9: its identity with the capsular antigen of Escherichia coli K62 (K2ab), Neisseria meningitidis serogroup H and Pasteurella haemolytica serotype T15. Eur J Biochem 210: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Bhakdi S, Grimminger F, Suttrop D, Walmrath D, Seeger W (1994) Proteinaceous bacterial toxins and pathogenesis of septic shock syndrome and septic shock: the unknown connection. Med Microbiol Immunol 183: 119–144

    PubMed  CAS  Google Scholar 

  • Bhat R, Forsberg LS, Carlson RW (1994) Structure of the lipid A component of Rhizohium leguminosarum by. phaseoli lipopolysaccharide. J Biol Chem 269: 14402–14410

    PubMed  CAS  Google Scholar 

  • Bigham EC, Gragg CE, Hall WR, Kelsey JE, Mallory WR, Richardson DC, Benedict C, Ray PH (1984) Inhibition of arabinose 5-phosphate isomerase. An approach to the inhibition of bacterial lipopolysaccharide biosynthesis. J Med Chem 27: 717–726

    Google Scholar 

  • Blumer KJ, Johnson GL (1994) Diversity in function and regulation of MAP kinase pathways. TIBS 19: 236–240

    PubMed  CAS  Google Scholar 

  • Bogard WCJ, Dunn DL, Abernethy K, Kilgarriff C, Kung PC (1987) Isolation and characterization of murine monoclonal antibodies specific for gram-negative bacterial lipopolysaccharide: association of cross-genus reactivity with lipid A specificity. Infect Immun 55: 899–908

    PubMed  CAS  Google Scholar 

  • Bolen JB, Rowley RB, Spana C, Tsygankov AY (1992) The Src family of tyrosine protein kinases in hemopoietic signal transduction. FASEB J 6: 3403–3409

    PubMed  CAS  Google Scholar 

  • Bone R.0 (1993) Gram-negative sepsis: a dilemma of modern medicine. Clin Microbiol Rev 6: 57–68

    PubMed  CAS  Google Scholar 

  • Bone RC, Fisher CJJ, Clemmer TP, Slotman GJ, Metz CA, Balk RA, Sepsis TM (1989) Sepsis syndrome: a valid clinical entity. Crit Care Med 17: 389–393

    Article  PubMed  CAS  Google Scholar 

  • Boulet I, Ralph S, Stanley E, Lock P, Dunn AR, Green SP, Phillips WA (1992) Lipopolysaccharide-and interferon-y-induced expression of hck and lyn tyrosine kinases in murine bone marrow-derived macrophages. Oncogene 7: 703–710

    PubMed  CAS  Google Scholar 

  • Boulukos KE, Pognonec P, Sariban E, Bailly M, Lagrou C, Ghysdael J (1990) Rapid and transient expression of Ets2 in mature macrophages following stimulation with cMGF LPS, and PKC activators. Genes Dev 4: 401–409

    Article  PubMed  CAS  Google Scholar 

  • Brach MA, Gruss HJ, Sott C, Herrmann F (1993) The mitogenic response to tumor necrosis factor a requires c-Jun/AP-1. Mol Cell Biol 13: 4284–4290

    PubMed  CAS  Google Scholar 

  • Brade H, Brade L, Rietschel ET (1988) Structure-activity relationships of bacterial lipopolysaccharides (endotoxins). Zentralbl Bakteriol Mikrobiol Hyg [A] 268: 151–179

    CAS  Google Scholar 

  • Brade H, Brabetz W, Brade L, Holst O. Lucakova M, Mamat U, Rozalski A, Zych K, Kosma P (1997) Chlamydial lipopolysaccharide. J Endotoxin Res 4: 67–84

    CAS  Google Scholar 

  • Brade L, Holst O. Brade H (1993) An artificial glycoconjugate containing the bisphosphorylated glucosamine disaccharide backbone of lipid A binds lipid A monoclonal antibodies. Infect Immun 61: 4514–4517

    Google Scholar 

  • Brade L, Engel R, William JC, Rietschel ET (1997) A nonsubstituted primary hydroxyl group in the 6’ position of free lipid A is required for binding of lipid A monoclonal antibodies. Infect Immun 65: 3961–3965

    PubMed  CAS  Google Scholar 

  • Brandenburg K, Mayer H, Koch MHJ, Weckesser J, Rietschel ET, Seydel U (1993) Influence of the supramolecular structure of free lipid A on its biological activity. Eur J Biochem 218: 555–563

    Article  PubMed  CAS  Google Scholar 

  • Brandenburg K, Seydel U, Schromm AB, Loppnow H, Koch MHJ, Rietschel ET (1996) Conformation of lipid A, the endotoxic center of bacterial lipopolysaccharide. Journal of Endotoxin Research 3: 173–178

    CAS  Google Scholar 

  • Braquet P, Touqui L, Shen TY, Vargaftig BB (1987) Perspectives in platelet-activating factor research. Pharmacol Rev 39: 97–112

    PubMed  CAS  Google Scholar 

  • Brearly S, Harris RI, Stone PCW, Keighley MRB (1985) Endotoxin levels in portal and systemic blood. Dig Surg 2: 70–72

    Article  Google Scholar 

  • Buscher D, Hipskind RA, Krautwald S, Reimann T, Baccarini M (1995) Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages. Mol Cell Biol 15: 466–475

    PubMed  CAS  Google Scholar 

  • Center for Disease Control (1990) Increase in national hospital dischange survey cases for septicemia, 39: 31–34

    Google Scholar 

  • Christ WJ, Asano O. Robidoux AL, Perez M, Wang Y, Dubuc GR, Gavin WE, Hawkins LD, McGuinness PD, Mullarkey MA, Lewis MD, Kishi Y, Kawata T. Bristol JR, Rose RR, Rossignol DP, Kobayashi S, Hishinuma I, Kimura A, Asakawa A, Katayama K, Yamatsu I (1995) E5531, a pure endotoxin antagonist of high potency. Science 268: 80–83

    Article  PubMed  CAS  Google Scholar 

  • Claesson A, Luthman K, Gustafsson K, Bondesson G (1987) A 2-deoxy analogue of KDO as the first inhibitor of the enzyme CMP-KDO synthetase. Biochem Biophys Res Commun 143: 1063–1068

    Article  PubMed  CAS  Google Scholar 

  • Coleman DL, Bartiss AH, Sukhatme VP, Liu J, Rupprecht HD (1992) Lipopolysaccharide induces Egr-1 mRNA and protein in murine peritoneal macrophages. J Immunol 149: 3045–3051

    PubMed  CAS  Google Scholar 

  • Collart MA, Belin D, Vassalli JD, Vassalli P (1987) Modulations of functional activity in differentiated macrophages are accompanied by early and transient increase or decrease in c-fos gene transcription. J Immunol 139: 949–955

    PubMed  CAS  Google Scholar 

  • Coutinho A, Meo T (1978) Genetic basis for the unresponsiveness to lipopolysaccharide in C57BL/10 Cr mice. Immunogenetics 7: 17–24

    Article  PubMed  CAS  Google Scholar 

  • Cowley SC, Myltseva SV, Nano FE (1996) Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol Microbiol 20: 867–874

    Article  PubMed  CAS  Google Scholar 

  • Daniel-Issakani S, Spiegel AM, Strulovici B (1989) Lipopolysaccharide response is linked to the GTP binding protein, Gi2, in the promonocytic cell line U937..1 Biol Chem 264: 20240–20247

    CAS  Google Scholar 

  • De Vries FP, van Der E, van Putten JP, Dankert J (1996) Invasion of primary nasopharyngeal epithelial cells by Neisseria meningilidis is controlled by phase variation of multiple surface antigens. Infect Immun 64: 2998–3006

    PubMed  Google Scholar 

  • Dekker LV, Parker PJ (1994) Protein kinase C—a question of specificity. Trends BiochemSci 19: 73–77

    Article  CAS  Google Scholar 

  • Dendorfer U, Oettgen P, Libermann TA (1994) Multiple regulatory elements in the interleukin-6 gene mediate induction by prostaglandins, cyclic AMP, and lipopolysaccharide. Mol Cell Biol 14: 4443–4454

    PubMed  CAS  Google Scholar 

  • Derieux JJ, Vita N, Popescu O. Guette F, Calzadawack J, Munker R, Schmidt RE. Lupker J, Ferrara P, Ziegler-Heitbrock HW, Labeta MO (1994) The two soluble forms of the lipopolysaccharide receptor, CD14: characterization and release by normal human monocytes. Eur J Immunol 24: 2006–2012

    Article  Google Scholar 

  • Di Padova FE, Brade H, Barclay R, Poxton IR, Liehl E, Schuetze E, Kocker HP, Ramsay G, Schreier MH, McClell DB, Rietschel ET (1993a) A broadly cross-protective monoclonal antibody binding to Escherichia coli and Salmonella lipopolysaccharides. Infect Immun 61: 3863–3872

    PubMed  Google Scholar 

  • Di Padova FE, Gram H, Barclay R, Kreuser P, Liehl E, Rietschel ET (1993b) New anti-core LPS monoclonal antibodies with clinical potential, pp 325–335. In: Levin J, Alving CR, Munford RS, Stuetz PL (eds), Bacterial endotoxin: recognition and effector mechanisms. Elsevier, Amsterdam

    Google Scholar 

  • Di Padova FE, Mikol V, Barclay GR, Poxton IR, Rietschel ET (1994) Antilipopolysaccharide core antibodies. Prog Clin Biol Res 388: 85–94

    PubMed  Google Scholar 

  • Ding A, Hwang S, Lander HM, Xie QW (1995) Macrophages derived from C3H/HeJ ( Lpsd) mice respond to bacterial lipopolysaccharide by activating NF- KB. J Leukoc Biol 57: 174–179

    Google Scholar 

  • Doherty DE, Zagarello L, Henson PM, Worthen GS (1989) Lipopolysaccharide stimulates monocyte adherence by effects on both the monocyte and endothelial cell. J Immunol 143: 3673–3679

    PubMed  CAS  Google Scholar 

  • Dong Z, O’Brian CA, Fidler IJ (1993a) Activation of tumoricidal properties in macrophages by lipopolysaccharide requires protein-tyrosine kinase activity. J Leukoc Biol 53: 53–60

    PubMed  CAS  Google Scholar 

  • Dong Z, Qi X, Fidler IJ (1993b) Tyrosine phosphorylation of mitogen-activated protein kinases is necessary for activation of murine macrophages by natural and synthetic bacterial products. J Exp Med 177: 1071–1077

    Article  PubMed  CAS  Google Scholar 

  • Dong ZY, Lu S, Zhang YH (1989) Effects of pretreatment with protein kinase C activators on macrophage activation for tumor cytotoxicity, secretion of tumor necrosis factor, and its mRNA expression. Immunobiology 179: 382–394

    Article  PubMed  CAS  Google Scholar 

  • Drysdale BE, Yapundich RA, Shin ML, Shin HS (1987) Lipopolysaccharide-mediated macrophage activation: the role of calcium in the generation of tumoricidal activity. J Immunol 138: 951–956

    PubMed  CAS  Google Scholar 

  • Du X, Thompson P, Chan EL, Ledesma J, Roe B, Clifton S, Vogel SN, Beutler B (1998) Genetic and physical mapping of the Lps locus: identification of the Toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis 24: 340–355

    Article  PubMed  Google Scholar 

  • Dunn DI, Ewald DC, Chandan N, Cerra FB (1986) Immunotherapy of Gram-negative bacterial sepsis. A single monoclonal antibody provides cross-genera protection. Arch Surg 121: 58–62

    Google Scholar 

  • Echternacher P, Falk W, Männel DN, Krammer PH (1990) Requirement of endogenous tumor necrosis factor cachectin for recovery from experimental peritonitis. J Immunol 145: 3762–3766

    Google Scholar 

  • El-Samalouti V T, Schletter J, Chyla I, Lentschat A, Mamat U, Brade L, Flad H-D, Ulmer AJ, Hamann L (1998) Identification of the 80-kDa LPS-binding protein (LMP80) as decay accelerating factor (DAF, CD55). FEMS Microbiol.Immunol, submitted

    Google Scholar 

  • Faro J, Seoane R, Puentes E, Martinez UF, Regueiro BJ (1985) Immunoresponses to Neisseria meningitidis epitopes: primary versus secondary antiphosphorylcholine responses. Infect Immun 48: 428–432

    PubMed  CAS  Google Scholar 

  • Feist W, Ulmer AJ, Wang MH, Musehold J, Schlter C, Gerdes J, Herzbeck H, Brade H, Kusumoto S, Diamantstein T, Rietschel ET, Flad HD (1992) Modulation of lipopolysaccharide-induced production of tumor necrosis factor, interleukin 1 and interleukin 6 by synthetic precursor la of lipid A. FEMS Micobiol Immunol 89: 73–90

    Article  Google Scholar 

  • Fenton MJ, Golenbock DT (1998) LPS-binding proteins and receptors. J Leukoc Biol 64: 25–32

    PubMed  CAS  Google Scholar 

  • Flad H-D, Loppnow H, Rietschel ET, Ulmer AJ (1993) Agonists and antagonists for lipopolysacharide-induced cytokines. Immunobiology 187: 303–316

    Article  PubMed  CAS  Google Scholar 

  • Flegel WA, Baumstark MA, Weinstock C, Berg A, Northoff H (1993) Prevention of endotoxin-induced monokine release by human low-and high-density lipoproteins and by apolipoprotein A. Infect Immun 61: 5140–5146

    PubMed  CAS  Google Scholar 

  • Freedman HH (1960) Passive transfer of tolerance to pyrogenicity of bacterial endotoxin. J Exp Med 102: 453–463

    Article  Google Scholar 

  • Freudenberg M, Salomao R, Sing A, Mitov A, Galanos C (1998) Reconciling the concepts of endotoxin sensitization and tolerance, pp 261–268. In: Levin J, Pollack M, Yokochi T, Nakano M (eds), Endotoxin and Sepsis, Wiley-Liss, New York

    Google Scholar 

  • Freudenberg MA, Keppler D, Galanos C (1986) Requirement for lipopolysaccharideresponsive macrophages in galactosamin-induced sensitization to endotoxin. Infect Immun 51: 891–895

    PubMed  CAS  Google Scholar 

  • Freudenberg N, Piotraschke J, Galanos C, Sorg C, Askaryar FA, Klosa B, Usener HU, Freudenberg MA (1992) The role of macrophages in the uptake of endotoxin by the mouse liver. Virchows Arch B Cell Pathol 61: 343–349

    Article  CAS  Google Scholar 

  • Frey EA, Miller DS, Jahr TG, Sundan A, Bazil V, Espevik T, Finlay BB, Wright SD (1992) Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 176: 1665–1671

    Article  PubMed  CAS  Google Scholar 

  • Fujihara M, Muroi M, Muroi Y, Ito N, Suzuki T (1993) Mechanism of lipopolysaccharide-triggered junB activation in a mouse macrophage-like cell line (J774). J Biol Chem 268: 14898–14905

    PubMed  CAS  Google Scholar 

  • Fujihara M, Connolly N, Ito N, Suzuki T (1994) Properties of protein kinase C isoforms (ß-II, e, and) in a macrophage cell line (J774) and their roles in LPS-induced nitric oxide production. J Immunol 152: 1898–1906

    PubMed  CAS  Google Scholar 

  • Galanos C, Rietschel ET, Luderitz O, Westphal 0 (1972) Biological activities of lipid A complexed with bovine-serum albumin. Eur J Biochem 31: 230–233

    CAS  Google Scholar 

  • Galanos C, Luderitz O, Rietschel ET, Westphal 0 (1977) Newer aspects of the chemistry and biology of bacterial lipopolysaccharides with special reference to their lipid A component, pp 239–371. In: Goodwin TW (cd), Biochemistry of lipids Il, University Park Press, Baltimore

    Google Scholar 

  • Galanos C, Freudenberg MA, Jay F, Nerkar D, Veleva K, Brade H, Schrittmatter W (1984) Immunogenic properties of lipid A. Rev Infect Dis 6: 546–552

    Article  PubMed  CAS  Google Scholar 

  • Galanos C, Luderitz O, Rietschel ET, Westphal O. Brade H, Brade L, Freudenberg M, Schade U, lmoto M, Yoshimura H, Kusumoto S, Shiba T (1985) Synthetic and natural Escherichia coli lipid A express identical endotoxic activities. Eur J Biochem 148: 1–5

    CAS  Google Scholar 

  • Gegner JA, Ulevitch RJ, Tobias PS (1995) LPS signal transduction and clearance. Dual roles for LBP and mCD14. J Biol Chem 270: 5320–5325

    Article  PubMed  CAS  Google Scholar 

  • Geppert TD, Whitehurst CE, Thompson P, Beutler B (1994) Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/ MAPK pathway Mol Med 1: 93–103

    CAS  Google Scholar 

  • Glaser KB, Asmis R, Dennis EA (1990) Bacterial lipopolysaccharide priming of P388D1 macrophage-like cells for enhanced arachidonic acid metabolism. Platelet-activating factor receptor activation and regulation of phospholipase A2. J Biol Chem 265: 8658–8664

    PubMed  CAS  Google Scholar 

  • Goldblum SF, Brann TW, Ding X, Pugin J, Tobias PS (1994) Lipopolysaccharide (LPS)-binding protein and soluble CD14 function as accessory molecules for LPS-induced changes in endothelial harrier function in vitro. J Clin Invest 93: 692702

    Google Scholar 

  • Goldman R, Kohlbrenner W, Lartey P, Pernet A (1987) Antibacterial agents specifically inhibiting lipopolysaccharide synthesis. Nature 329: 162–164

    Article  PubMed  CAS  Google Scholar 

  • Golenbock DT, Hampton RY, Qureshi N, Takayama K, Raetz CRH (1991) Lipid Alike molecules that antagonize the effects of endotoxins on human monocytes. J Biol Chem 266: 19490–19498

    PubMed  CAS  Google Scholar 

  • Gray PW, Flaggs G, Leong SR, Gumina RJ, Weiss J, Ooi CE, Elsbach P. (1989) Cloning of the cDNA of a human bactericidal protein. Structural and functional correlations. J Biol Chem 264: 9505–9509

    Google Scholar 

  • Greisman SE, DuBuy JB, Woodward CL (1979) Experimental gram-negative bacterial sepsis: prevention of mortality not preventable by antibiotics alone. Infect Immun 25: 538–557

    PubMed  CAS  Google Scholar 

  • Griffin JD, Ritz J, Nadler LM, Rossman SF (1981) Expression of myeloid differentiation antigens on normal and malignant myeloid cells. J Clin Invest 68: 932–941

    Article  PubMed  CAS  Google Scholar 

  • Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, Busse LA, Zukowski MM, Wright SD (1994) Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med 179: 269–277

    Article  PubMed  CAS  Google Scholar 

  • Hambleton J, McMahon M, DeFranco AL (1995) Activation of Raf-1 and mitogen-activated protein kinase in murine macrophages partially mimics lipopolysaccharide-induced signaling events. J Exp Med 182: 147–154

    Article  PubMed  CAS  Google Scholar 

  • Hambleton J, Weinstein SL, Lem L, DeFranco AL (1996) Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci USA 93: 2774–2778

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265: 808–811

    Article  PubMed  CAS  Google Scholar 

  • Hansen-Hagge T, Lehmann V, Seydel U, Lindner B, Zähringer U (1985) Isolation and structural analysis of two lipid A-precursors from a Kdo-deficient mutant of Salmonella typhimurium differing in their hexadecanoic acid content. Arch Microbiol 141: 353–358

    Article  PubMed  CAS  Google Scholar 

  • Hauschildt S, Luckhoff A, Mulsch A, Kohler J, Bessler W, Busse R (1990) Induction and activity of NO synthase in bone-marrow-derived macrophages are independent of Ca’. Biochem J 270: 351–356

    PubMed  CAS  Google Scholar 

  • Haziot A, Chen E, Ferrero E, Low MG, Siver R, Goyert SM (1988) The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidyinositol linkage. J Immunol 141: 547–552

    PubMed  CAS  Google Scholar 

  • Haziot A, Rong G-W, Silver J, Goyert SM (1993a) Recombinant soluble CD14 mediates the activation of endothelial cells by lipopolysaccharide. J Immunol 151: 1500–1507

    PubMed  CAS  Google Scholar 

  • Haziot A, Tsuberi B-Z, Goyert SM (1993b) Neutrophil CD14: biochemical properties and role in the secretion of tumor necrosis factor-a in response to lipopolysaccharide. J Immunol 150: 5556–5565

    PubMed  CAS  Google Scholar 

  • Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM (1996) Resistance of CD14-deficient mice to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 4: 404–414

    Article  Google Scholar 

  • Heine H, Brade H, Kusumoto S, Kusama T, Rietschel ET, Flad HD, Ulmer AJ (1994) Inhibition of LPS binding on human monoctes by phosphonooxyethyl analogs of lipid A. J Endotoxin Res 1: 14–20

    CAS  Google Scholar 

  • Heine H, Ulmer AJ, Flad H-D, Hauschildt S (1995) Lipopolysaccharide-induced change of phosphorylation of two cytosolic proteins in human monocytes is prevented by inhibitors of ADP-ribosylation. J Immunol 155: 4899–4908

    PubMed  CAS  Google Scholar 

  • Helander I, Lindner B, Brade H, Altmann K, Lindberg AA, Rietschel ET, Zähringer U (1988) Chemical structure of the lipopolysaccharide of Haemophilus iufluenzae strain 1–69 RdJb’. Eur J Biochem 177: 483–492

    Article  PubMed  CAS  Google Scholar 

  • Holst O, Brade H. (1992) Chemical structure of the core region of lipopolysaccharides, pp 135–170 ) In: Morrison DC, Ryan JL (eds), Molecular biochemistry and cellular biology, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Horwitz AH, Williams RE, Nowakowski G (1995) Human lipopolysaccharide-binding protein potentiates bactericidal activity of human bactericidal permeability-increasing protein. Infect Immun 63: 522–527

    PubMed  CAS  Google Scholar 

  • Hu Y, Fisette PL, Denlinger LC, Guadarrama AG, Sommer JA, Proctor RA, Bertics PJ (1998) Purinergic receptor modulation of lipopolysaccharide signaling and inducible nitric-oxide synthase expression in RAW 264.7 macrophages. J Biol Chem 273: 27170–27175

    Article  PubMed  CAS  Google Scholar 

  • Hurme M, Viherluoto J, Nordstrom T (1992) The effect of calcium mobilization on LPSinduced IL-1 /3 production depends on the differentiation stage of the monocytes/macrophages. Scand J Immunol 36: 507–511

    Article  PubMed  CAS  Google Scholar 

  • Ingalls RR, Golenbock DT (1995) CD1 lc/CDl8: a transmembrane signaling receptor for lipopolysaccharide. J Exp Med 181: 1473–1479

    Article  PubMed  CAS  Google Scholar 

  • Ingalls RR, Arnaout MA, Golenbock DT (1997) Outside-in signaling by lipopolysaccharide through a tailless integrin. J Immunol 159: 433–438

    PubMed  CAS  Google Scholar 

  • Jack RS, Fan X, Bernheiden M, Rune G, Ehlers M, Weber A, Kirsch G. Mentel R, Furll B, Freudenberg M, Schmitz G, Stelzer F, Schutt C (1997) Lipopolysaccharidebinding protein is required to combat a murine gram-negative bacterial infection. Nature 389: 742–745

    CAS  Google Scholar 

  • Jakway JP, DeFranco AL (1986) Pertussis toxin inhibition of B cell and macrophage responses to bacterial lipopolysaccharide. Science 234: 743–746

    Article  PubMed  CAS  Google Scholar 

  • Jann K, Jann B (1984) Structure and biosynthesis of 0-antigens, pp 138–186. In: Rietschel ET (ed), Chemistry of endotoxin, Elsevier, Amsterdam

    Google Scholar 

  • Jones DM, Borrow R, Fox AJ, Gray S, Cartwright KA, Poolman JT (1992) The lipooligosaccharide immunotype as a virulence determinant in Neisseria meningitidis. Microb Pathogen 13: 219–224

    Article  CAS  Google Scholar 

  • Juan TS, Hailman E, Kelley MJ, Busse LA, Davy E, Empig CJ, Narhi LO, Wright SD, Lichenstein HS (1995) Identification of a lipopolysaccharide binding domain in CD14 between amino acids 57 and 64. J Biol Chem 270: 5219–5224

    Article  PubMed  CAS  Google Scholar 

  • Kasai N, Arata S, Mashimo J-1, Ohmori M, Mizutani T, Egawa K (1990) Structure-activity relationships of endotoxic lipid A containing 2,3-diamino-2,3-dideoxy-oglucose, pp 121–128. In: Nowotny A, Spitzer JJ, Ziegler EJ (eds), Cellular and molecular aspects of endotoxin reactions, Excerpta Media, Amsterdam

    Google Scholar 

  • Kauffmann F. (1978) Das Fundament. Munksgaard, Copenhagen

    Google Scholar 

  • Kawahara K, Brade H, Rietschel ET, Zähringer U (1987) Studies on the chemical structure of the core-lipid A region of the lipopolysaccharide of Acinetohacter calcoaceticus NCTC 10305. Detection of a new 2-octulosonic acid interlinking the core oligosaccharide and lipid A component. Eur J Biochem 163: 489–495

    Article  PubMed  CAS  Google Scholar 

  • Kawahara K, Seydel U, Matsuura M, Danbara H. Rietschel ET, Zähringer U (1991) Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett. 292: 107–110

    Article  PubMed  CAS  Google Scholar 

  • Kawahara K, Isshiki Y, Ezaki T, Moll H, Kosma P, Zähringer U (1994) Chemical charcterization of the inner core-lipid A region of the lipopolysaccharide isolated from Pseudomonas (Burkholderia) cepacia. J Endotoxin Res 1: 53

    Google Scholar 

  • Khan SA, Everest P, Servos S, Foxwell N, Zähringer U, Brade H, Rietschel ET, Dougan G, Charles IG, Maskell DJ (1998) A lethal role for lipid A in Salmonella infections. Mol Microbiol 29: 571–579

    Article  PubMed  CAS  Google Scholar 

  • Kirikae T, Schade FU, Kirikae F, Zähringer U, Brade H, Kusumoto S, Kusama T, Rietschel ET (1993) The significance of the hydrophilic backbone and the hydrophobic fatty acid regions of lipid A on macrophage binding and cytokine induction. FEMS Immunol Med Microbiol 8: 13–26

    Article  Google Scholar 

  • Kirikae T, Schade FU, Kirikae F, Qureshi N, Takayama K, Rietschel ET (1994) Diphosphoryl lipid A derived from the lipopolysaccharide (LPS) of Rhodobacter sphaeroides ATCC 17023 is a potent competitive inhibitor in murine macrophage-like J774.1 cells. FEMS Immunol Med Microbic)] 9: 237–244

    Article  CAS  Google Scholar 

  • Kirkland TN, Viriyakosol S (1998) Structure—function analysis of soluble and membrane-bound CD14, pp 79–87. In: Levin J, Pollack M,Yokochi T. Nakano M (eds), Endotoxin and sepsis, Wiley-Liss, New York

    Google Scholar 

  • Kirkland TN, Ziegler EJ (1984) An immunoprotective monoclonal antibody to lipopolysaccharide. J Immunol 132:2590–2. 592

    Google Scholar 

  • Kitchens RL, Munford RS (1995) Enzymatically deacylated lipopolysaccharide ( LPS) can antagonize LPS at multiple sites in the LPS recognition pathway. J Biol Chem 270: 9904–9910

    Google Scholar 

  • Kitchens RL, Ulevitch RJ, Munford RS (1992) Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in a human macrophage cell line without inhibiting LPS uptake by a CD14-mediated pathway. J Exp Med 176: 485–494

    Article  PubMed  CAS  Google Scholar 

  • Knirel YA, Kochetkov NK (L994) The structure of hpopolysaccharides in Gram-negative bacteria. III. The structure of 0-antigens. Biochem (Moscow) 59: 1325–1383

    Google Scholar 

  • Knirel YA, Rietschel ET, Marre R, Zähringer U (1994) The structure of the 0-specific chain of Legionella pneumophila serotype 1 lipopolysaccharide. Eur J Biochem 221: 239–245

    Article  PubMed  CAS  Google Scholar 

  • Koga M, Yuki N, Kashiwase K,Tadokoro K, Juji T, Hirata K (1998) Guillain-Barré and Fisher’s syndromes subsequent to Campylobacter jejuni enteritis are associated with HLA-B54 and Cwl independent of anti-ganglioside antibodies. J Neuroimmunol 88: 62–66

    CAS  Google Scholar 

  • Kolberg J, Hoiby EA, Jantzen E (1997) Detection of the phosphorylcholine epitope in streptococci, Haemophilus and pathogenic Neisseriae by immunoblotting Microb Pathogen 22: 321–329

    CAS  Google Scholar 

  • Kominato Y, Galson D, Waterman WR, Webb AC, Auron PE (1995) Monocyte expression of the human prointerleukin 1 ß gene (IL1B) is dependent on promoter sequences which bind the hematopoietic transcription factor Spi- 1/PU.1. Mol Cell Biol 15: 59–68

    Google Scholar 

  • Kovach NL, Lee E, Munford RS, Raetz CRH, Harlan JM (1990) Lipid IVa inhibits synthesis and release of tumor necrosis factor induced by lipopolysaccharide in human whole blood ex vivo. J Exp Med 172: 77–84

    Article  PubMed  CAS  Google Scholar 

  • Kuhn HM, Brade L, Appelmelk BJ, Kusumoto S, Rietschel ET, Brade H (1992) Characterization of the epitope specificity of murine monoclonal antibodies directed against lipid A. Infect Immun 60: 2201–2210

    PubMed  CAS  Google Scholar 

  • Lamping N, Dettmer R, Schroeder NW, Pfeil D, Hallatschek W, Burger R, Schuhmann RR (1998) LPS-binding protein ( LBP) protects mice from septic shock caused by LPS or Gram-negative bacteria. J Clin Invest 101: 2065–2071

    Google Scholar 

  • Le Q, Daniel R, Chung SW, Kang AD, Eisenstein TK, Sultzer BM, Simpkins H, Wong PM (1998) Involvement of C-Abl tyrosine kinase in lipopolysaccharide-induced macrophage activation. J Immunol 160: 3330–3336

    PubMed  CAS  Google Scholar 

  • Lee JD, Dato K, Tobias PS, Kirkland TN, Ulevitch RJ (1992) Transfection of CD14 into 70Z/3 cells dramatically enhances the sensitivity to complexes of lipopolysaccharide ( LPS) and LPS binding protein. J Exp Med 175: 1697–1705

    Google Scholar 

  • Levin J, Alving CR, Munford RS, Redl H (eds) (1995) Bacterial endotoxine. Lipopolysaccharides from genes to therapy. Prog.Clin.Biol.Res. ( 392 ), New York, Wiley-Liss

    Google Scholar 

  • Levine M (1987) Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive enterohemorragic, and enteroadherent. J Infect Dis 155: 377–389

    Google Scholar 

  • Libby P, Loppnow H, Fleet JC, Palmer H, Li HM, Warner SJ, Salomon RN, Clinton SK (1991) Production of cytokines by vascular cells — an update and implications for artherogenesis, In: Gottlieb Al, Langille BL, Frederoff (eds), Artheriosclerosiscellular and molecular interactions in the artery wall. 1st Albsclul Symposium, Plenum, New York

    Google Scholar 

  • Lodie TA, Savedra RJ, Golenbock DT, Van Beveren CP, Maki RA, Fenton MJ (1997) Stimulation of macrophages by lipopolysaccharide alters the phosphorylation state, conformation, and function of PU.1 via activation of casein kinase II. J Immunol 158: 1848–1856

    PubMed  CAS  Google Scholar 

  • Loppnow H, Brade H, Dörrbaum I, Dinarello CA, Kusumoto S, Rietschel ET, Flad H-D (I 989a) Interleukin 1 induction capacity of defined lipopolysaccharide partial structures. J Immunol 142: 3229–3238

    Google Scholar 

  • Loppnow FI, Libby P (1989b) Adult human vascular endothelial cells express the IL-6 gene differently in response to LPS and IL-1. Cell Immunol 122: 493–503

    Article  PubMed  CAS  Google Scholar 

  • Loppnow H, Libby P (1990a) Proliferating or IL-1 activated human vascular smooth muscle cells secreate copious IL-6. J Clin Invest 85: 731–738

    Article  PubMed  CAS  Google Scholar 

  • Loppnow H, Libby P, Freudenberg MA, Kraus JH, Weckesser J, Mayer H (1990b) Cytokine induction by lipopolysaccharide (LPS) corresponds to the lethal toxicity and is inhibited by nontoxic Rhodobacter capsulatus LPS. Infect Immun 58: 3743–3750

    PubMed  CAS  Google Scholar 

  • Loppnow H, Rietschel ET, Brade H, Feist W, Wang MH, Heine H, Kirikae T, Schönbeck U, Dörrbaum-Landmann I, Grage-Griebenow E, Brandt E, Schade FU, Ulmer AJ, Campos-Portuguez S, Krauss J, Mayer H, Flad HD (1993) Lipid A precursor la and Rhodobacter capsulatus LPS: potent endotoxin antagonists, pp 337–348. In: Levin E (ed), Endotoxin research series, 2nd edn. Excerpta Medica Elsevier, Amsterdam

    Google Scholar 

  • Luderitz O, Brandenburg K, Seydel U, Roth A, Galanos C, Rietschel ET (1989) Structural and physicochemical requirements of endotoxins for the activation of arachidonic acid metabolism in mouse peritoneal macrophages. Eur J Biochem 179: 11–16

    Article  PubMed  CAS  Google Scholar 

  • Lüneberg E, Zähringer U, Knirel YA, Steinmann D, Hartmann M, Steinmetz I, Rohde M, Köhl J, Frosch M (1998) Phase-variable expression of lipopolysaccharide contributes to the virulence of Legionella pneumophila. J Exp Med 188: 49–60

    Article  PubMed  Google Scholar 

  • Lynn WA, Golenbock DT (1992) Lipopolysaccharide antagonists. Immun Today 13: 271–276

    Article  PubMed  CAS  Google Scholar 

  • Lynn WA, Liu Y, Golenbock DT (1993) Neither CD 14 nor serum is absolutely necessary for activation of mononuclear phagocytes by bacterial lipopolysaccharide. Infect Immun 61: 4452–4461

    PubMed  CAS  Google Scholar 

  • Mäkelä HP, Stocker BAD (1984) Genetics of lipopolysaccharide, pp 59–135. In: Rietschel ET (ed), Handbook of endotoxin, ist edn. Elsevier Science Publishers B.V.

    Google Scholar 

  • Mamat U, Baumann M, Schmidt G, Brade H (1993) The genus-specific lipopolysaccharide epitope of Chlamydia is assembled in C. psittaci and C. trachomatis by glycosyltransferases of low homology. Mol Microbiol 10: 391–399

    Article  Google Scholar 

  • Mamat U, Rietschel ET, Schmidt G (1995) Repression of lipopolysaccharide biosynthesis in Escherichia coli by an antisense RNA of Acetobacter methanolicus phage Acml. Mol Microbiol 15: 1115–1125

    Article  PubMed  CAS  Google Scholar 

  • Mannion B, Kalatzis A, Weiss J, Elsbach P (1989) Preferential binding of the neutrophil cytoplasmic granule-derived bactericidal/permeability-increasing protein to target bacteria. Implications and use as a mean of purification. J Immunol 142: 2807–2812

    Google Scholar 

  • Mantovani A, Bussolino F (1991) Endothelium-derived modulators of leukocyte function, In: Gordon JL (ed), Vascular endothelium: interaction with circulating cells, Elsevier, New York

    Google Scholar 

  • Marchant A, Alegre ML, Hakim A, Pierard G, Marecaux G, Friedman G, De Groote D, Kahn RJ, Vincent JL, Goldman M (199.5) Clinical and biological significance of interleukin-l0 plasma levels in patients with septic shock. J Clin Immunol 15: 266–273

    Google Scholar 

  • Marra MN, Wilde CG, Griffith JE, Snable J, Scott RW (1990) Bactericidal permeability-increasing protein has endotoxin-neutralizing activity. J Immunol 144: 662–666

    PubMed  CAS  Google Scholar 

  • Marra MN, Wilde CG, Collins MS, Snable JL, Thornton MB, Scott RW (1992) “Che role of bactericidal/permeability-increasing protein as a natural inhibitor of bacterial endotoxin. J Immunol 148: 532–537

    Google Scholar 

  • Mastroeni P, Jannello D, Mastroeni PI (1993) TNF a as a modulator of the interaction between macrophages and intracellular parasites. Eur Bull Drug Res 2: 163–174

    Google Scholar 

  • May MJ, Ghosh S (1998) Signal transduction through NF- ic B. Immunol.Today 19: 80–88

    Article  PubMed  CAS  Google Scholar 

  • Mayer H, Bhat R, Masoud H, Radziejewska-Lebrecht C, Wiedemann J, Krauss JH (1989) Bacterial lipopolysaccharides. Pure and Appl Chem 61: 1271–1282

    Article  CAS  Google Scholar 

  • Mayer H, Campos-Portuguez S, Busch M, Urbanik-Sypniewska T, Bhat R (1990) Lipid A variants: or, how constant are the constant regions regions in lipopolysaccharides? pp 111–120. In: Nowotny A, Spitzer JJ, Ziegler EJ (eds), Cellular and molecular aspects of endotoxin reaction, Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  • McCall CE, Grosso-Wilmoth LM, LaRue K, Guzman RN, Cousart SL (1993) Tolerance to endotoxin-induced expression of the interleukin-1 /3 gene in blood neutrophils of humans with the sepsis syndrome. J Clin Invest 91: 853–861

    Article  PubMed  CAS  Google Scholar 

  • Meng F, Lowell CA (1997) Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J Exp Med 185: 1661–1670

    Google Scholar 

  • Meszaros K, Parent JB, Gazzano-Santoro H, Little R, Horwitz A, Parsons T, Weickmann J, Elsbach P, Weiss J, Conlon PJ (1993) A recombinant aminoterminal fragment of bactericidal/permeability-increasing protein inhibits the induction of leucocyte response by LPS. J Leuk Biol 54: 558–563

    CAS  Google Scholar 

  • Moran AP, Aspinall GO (1998) Unique structural and biological features of Helicobacter pylori lipopolysaccharides, pp 37–49. In: Levin J, Pollack M, Yokochi T, Nakano M (eds), Endotoxin and Sepsis, Wiley-Liss, New York

    Google Scholar 

  • Moran AP, Rietschel ET, Kosunen TU, Zähringer U (1991) Chemical characterisation of Campylobacter jejuni lipopolysaccharides containing N-acetylneuraminic acid and 2,3-diamino-2,3-dideoxy-D-glucose. J Bacteriol 173: 618–626

    PubMed  CAS  Google Scholar 

  • Morrison DC (1998) Antibiotic-mediated release of endotoxin and the pathogenesis of Gram-negative sepsis, pp 199–207. In: Levin J, Pollack M, Yokochi T, Nakano M (eds), Endotoxin and sepsis, Wiley-Liss, New York

    Google Scholar 

  • Morrison DC, Danner RL, Dinarello CA, Munford RS, Natanson C, Pollack M, Spitzer JJ, Ulevitch RJ, Vogel SN, McSweegan E (1994) Bacterial endotoxins and pathogenesis of Gram-negative infections: current status and future direction. J Endotoxin Res 1: 71–83

    Google Scholar 

  • Müller JM, Ziegler-Heitbrock HW, Bäuerle PA (1993) Nuclear factor KB, a mediator of lipopolysaccharide effects. Immunobiology 187: 233–256

    Article  PubMed  Google Scholar 

  • Munford RS, Hall CL (1989) Purification of acyloxyacyl hydrolase, a leukocyte enzyme that removes secondary acyl chains from bacterial lipopolysaccharides. J Biol Chem 264: 15613–15619

    PubMed  CAS  Google Scholar 

  • Munoz C, Carlet J, Fitting C, Misset B, Bleriot JP, Cavaillon JM (1991a) Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 88: 1747–1754

    Article  PubMed  CAS  Google Scholar 

  • Munoz C, Misset B, Fitting C, Bleriot JP, Carlet J, Cavaillon JM (1991b) Dissociation between plasma and monocyte-associated cytokines during sepsis. Eur J Immunol 21: 2177–2184

    Article  PubMed  CAS  Google Scholar 

  • Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79: 319–323

    Article  PubMed  CAS  Google Scholar 

  • Newell CL, Deisseroth AB, Lopez-Berestein G (1994) Interaction of nuclear proteins with an AP-1/CRE-like promoter sequence in the human TNF-a gene. J Leukoc Biol 56: 27–35

    PubMed  CAS  Google Scholar 

  • Nichols WA, Raetz CRH, Clementz T, Smith AL, Hanson JA, Ketterer MR, Sunshine M, Apicella MA (1997) htrb Of Haemophilus influenzae. Determination of biochemical activity and effects on virulence and lipopolysaccharide toxicity. J Endotoxin Res 4: 163–172

    Google Scholar 

  • Nishijima M, Raetz CRH (1981) Characterization of two membrane-associated glycolipids from an Escherichia coli mutant deficient in phosphatidylglycerol. J Biol Chem 256: 10690–10696

    PubMed  CAS  Google Scholar 

  • Nogare D (1991) Southwestern internal medicine conference: septic shock. Am J Med Sci 302: 50–65

    Article  Google Scholar 

  • Novotney M, Chang ZL, Uchiyama H, Suzuki T. (1991) Protein kinase C in tumorici- dal activation of mouse macrophage cell lines. Biochemistry 30: 5597–5604

    Article  PubMed  CAS  Google Scholar 

  • Olsthoorn MM, Petersen BO, Schlecht S, Haverkamp J, Bock K, Thomas-Oates JE, Holst O. (1998) Identification of a novel core type in Salmonella lipopolysaccharide. Complete structural analysis of the core region of the lipopolysaccharide from Salmonella enterica sv. Arizonae 062. J Biol Chem 273: 3817–3829

    Article  PubMed  CAS  Google Scholar 

  • Onishi HR, Pelak BA, Gerckens LS, Silver LL, Kahan FM, Chen MH, Patchett AA, Galloway SM, Hyland SA, Anderson MS, Raetz CRH (1996) Antibacterial agents that inhibit lipid A biosynthesis. Science 274: 980–982

    Article  PubMed  CAS  Google Scholar 

  • Parillo JE (1993) Pathogenic mechanism of septic schock. N Engl J Med 328: 14711477

    Google Scholar 

  • Pavliak V, Brisson J-R, Michon F, Uhr’n D, Jennings HJ (1993) Structure of the sialylated L3 lipopolysaccharide of Neisseria meningitidis..1 Biol Chem 268: 14146–14152

    CAS  Google Scholar 

  • Perera PY, Vogel SN, Detore GR, Haziot A, Goyert SM (1997) CD14-dependent and CD14-independent signaling pathways in murine macrophages from natural and CD14 knockout mice stimulated with lipopolysaccharide or taxol. J Immunol 158: 4422–4429

    PubMed  CAS  Google Scholar 

  • Pollack M, Ohl CA, Golenbock DT, Di Padova FE, Wahl LM, Koles NL, Guelde G, Monks BG (1997) Dual effects of LPS antibodies on cellular uptake of LPS and LPS-induced proinflammatory functions. J Immunol 159: 3519–3530

    PubMed  CAS  Google Scholar 

  • Prendergast MM, Lastovica AJ, Moran AP (1998) Lipopolysaccharides from C’ampylobacter jejuni 0:41 strains associated with Guillain-Barre syndrome exhibit mimicry of GM ganglioside. Infect Immun 66: 3649–3655

    PubMed  CAS  Google Scholar 

  • Price NP, Jeyaretnam B, Carlson RW, Kadrmas JL, Raetz CRH, Brozek KA (1995) Lipid A biosynthesis in Rhizobiunt leguminosarum: role of a 2-keto-3-deoxyoctulosonate-activated 4’ phosphatase. Proc Natl Acad Sci LISA 92: 7352–7356

    Article  CAS  Google Scholar 

  • Prins JM, van Agtmael MA, Kuijper EJ, van Deventer SJ, Speelman P (1995) Antibiotic-induced endotoxin release in patients with gram-negative urosepsis: a double-blind study comparing imipenem and ceftazidime. J Infect Dis 172: 886–891

    Article  PubMed  CAS  Google Scholar 

  • Proctor RA, Denlinger LC, Leventhal PS, Daugherty SK, van de Loo JW, Tanke T, Firestein GS, Bertics PJ (1994) Protection of mice from endotoxic death by 2methylthio-ATP Proc Natl Acad Sci USA 91: 6017–6020

    Article  CAS  Google Scholar 

  • Prpic V, Weiel JE, Somers SD, DiGuiseppi J, Gonias SL, Pizzo SV, Hamilton TA, Herman B, Adams DO (1987) Effects of bacterial lipopolysaccharide on the hydrolysis of phosphatidylinositol-4,5-bisphosphate in murine peritoneal macrophages. J Immunol 139: 526–533

    PubMed  CAS  Google Scholar 

  • Pugin J, Schrer-Maly C-C, Leturcq D, Moriarty A, Ulevitch RJ. Tobias PS (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD 14. Proc Natl Acad Sci USA 90:2744–2748

    Google Scholar 

  • Pugin JD, Heumann A, Tomasz VV, Kravchenko Y, Akamatsu M, Nishijima MP, Glauser PS, Tobias RJ, Ulevitch (1994) CD14 is a pattern recognition receptor. Immunity 1: 509–516

    CAS  Google Scholar 

  • Qureshi N, Takayama K, Kurtz R (1991) Diphosphoryl lipid A obtained from the nontoxic lipopolysaccharide of Rhodopseudomonas sphacroides is an endotoxin antagonist in mice. Infect Immun 59: 441–444

    PubMed  CAS  Google Scholar 

  • Qureshi N, Kaltashov I, Walker K, Doroshenko V, Cotter RJ, Takayama K, Sievert TR, Rice PA, Lin JS, Golenbock DT (1997) Structure of the monophosphoryl lipid A moiety obtained from the lipopolysaccharide of Chlamvdiatrachomatis. J Biol Chem 272: 10594–10600

    Article  PubMed  CAS  Google Scholar 

  • Qureshi N, Jarvis B,Takayama K, Sattar N, Hofman J, Stütz PL (1998) Natural and synthetic LPS and lipid A analogs or partial structures that antagonize or induce tolerance to LPS, pp 289–300. In: Levin J, Pollack M, Yokochi T, Nakano M (eds). Endotoxin and sepsis, Wiley-Liss, New York

    Google Scholar 

  • Raetz CRH (1996) Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles, pp 1035–1063. In: Neidhardt EC (ed), Escherichia coli and Salmonella: cellular and molecular biology, ASM Press, Washington, DC

    Google Scholar 

  • Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N. Klena J, Maskell D, Raetz CRH, Rick PD (1 996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4: 495–503

    Google Scholar 

  • Rick PD, Osborn MJ (1977) Lipid A mutants of Salmonella tvhimurium. J Biol Chem 252: 4895–4903

    PubMed  CAS  Google Scholar 

  • Rietschel ETh (1976) Absolute configuration of 3-hydroxy fatty acids present in lipopolysaccharides from various bacterial groups. Eur J Biochem 64: 423–428

    Article  PubMed  CAS  Google Scholar 

  • Rietschel ET, Brade H (1992) Bacterial endotoxins. Sci Am 267: 54–61

    Article  PubMed  CAS  Google Scholar 

  • Rietschel ETh, Kim YB, Watson DW, Galanos C, Luderitz O, Westphal O (1973) Pyrogenicity and immunogenicity of lipid A complexed with bovine serum albumin or human serum albumin. Infect Immun 8: 173–177

    PubMed  CAS  Google Scholar 

  • Rietschel E, Brade H, Brade L, Brandenburg K, Schade U, Seydel U, Zähringer U, Galanos C, Luderitz O, Westphal O, Labischinski H, Kusumoto S, Shiba T (1987) Lipid A, the endotoxic center of hpopolysaccharides: relation of chemical structure to biological activity. Frog Clin Biol Res 231: 25–53

    Google Scholar 

  • Rietschel ETh, Brade L, Holst O, Kulshin VA, Lindner B, Moran AP, Schade U, Zähringer U, Brade H (1990) Molecular structure of bacterial endotoxin in relation to bioactivity, pp 15–32. In: Nowotny A, Spitzer JJ, Ziegler EJ (eds), Cellular and molecular aspects of endotoxin reactions, 1st edn. Elsevier Science Publishers B. V.

    Google Scholar 

  • Rietschel ETh, Seydel U, Zähringer U, Schade UF, Brade L, Loppnow H, Feist W, Wang MH, Ulmer AJ, Flad HD (1991) Bacterial endotoxin: molecular relationships between structure and activity. Infect Dis Clin North Am 5: 753–779

    PubMed  CAS  Google Scholar 

  • Rietschel ETh, Brade H, Holst O, Brade L, Müller-Loennies S, Mamat U, Zähringer U, Beckmann F, Seydel U, Brandenburg K, Ulmer AJ, Mattem T, Heine H, Schietter Loppnow J, H. Schonbeck U, Flad HD, Hauschildt S, Schade UF, Di Padova F, Kusumoto S, Schumann RR (1996a) Bacterial endotoxin: chemical constitution, biological recognition, host response, and immunological detoxification. Curr Top Microbiol Immunol 216: 39–81

    CAS  Google Scholar 

  • Rietschel ETh, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zähringer U, Seydel U, Di Padova F, Schreier M, Brade H (1996b) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 218: 217–225

    Google Scholar 

  • Rosenstreich DL (1985) Genetic control of endotoxin response: C3H/HeJ mice., pp 82–122. In: Proctor RA, Berry LJ (eds), Handbook of endotoxin, Elsevier, Amsterdam

    Google Scholar 

  • Sanghera JS, Weinstein SL, Aluwalia M, Girn J, Pelech SL (1996) Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol. 156: 4457–4465

    PubMed  CAS  Google Scholar 

  • Sarabia-Garcia F, Lopez-Herrera FJ, Pino-Gonzalez MS (1994) A new synthesis for 2deoxy-Kdo a potent inhibitor of CMP-KDO synthetase. Tetrahedron Lett. 35: 6709–6712

    Article  CAS  Google Scholar 

  • Saxen H, Nurminen M, Kuusi N, Svenson SB, Mäkelä HP (1986) Evidence for the importance of 0-antigen specific antibodies in mouse-protective Salmonella outer membrane protein (porin) antisera. Microbiol Pathog 1: 433–441

    Article  CAS  Google Scholar 

  • Schade FU, Burmeister I, Engel R (1987) Increased 13-hydroxyoctadecandienoic acid content in lipopolysaccharide-stimulated macrophages. Biochem Biophys Res Commun 147: 695–700

    Article  PubMed  CAS  Google Scholar 

  • Schade FU, Burmeister I, Elekes E, Engel R, Wolter DT (1989) Mononuclear phagocytes and eicosanoids: aspects of their synthesis and biological activities. Blut 59: 475–485

    Article  PubMed  CAS  Google Scholar 

  • Schletter J, Brade H, Brade L, Krüger C, Loppnow H, Kusumoto S, Rietschel ET, Flad HD, Ulmer AJ (1995) Binding of lipopolysaccharide (LPS) to an 80-kDa membrane protein of human cells is mediated by soluble CD14 and LPS-binding protein. Infect Immun 63: 2576–2580

    PubMed  CAS  Google Scholar 

  • Schnaitman CA, Klena JD (1993) Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57: 655–682

    PubMed  CAS  Google Scholar 

  • Schönbeck U, Brandt E, Flad HD, Rietschel ET, Loppnow H (1994) S-form lipopolysaccharide induces leukocyte adhesion to human vascular endothelial cells as potent as IL-1: lipid A precursor la antagonizes induction of adhesion by LPS. J Endotoxin Res 1: 4–13

    Google Scholar 

  • Schönbeck U, Brandt E, Petersen F, Flad HD, Loppnow H (1995) [nterleukin 8 specifically binds to endothelial but not to smooth muscle cells. J Immunol 154: 2375–2883

    Google Scholar 

  • Schromm AB, Brandenburg K, Rietschel ET, Seydel U (1995) Do endotoxin aggregates intercalate into phospholipid membranes in a nonspecific, hydrophobic manner? J Endotoxin Res 2: 313–323

    CAS  Google Scholar 

  • Schromm AB, Brandenburg K, Rietschel ET, Flad HD, Carroll SF, Seydel U, (1996) Lipopolysaccharide-binding protein mediates CD14-independent intercalation of lipopolysaccharide into phospholipid membranes. FEBS Letters 399: 267–271

    Article  PubMed  CAS  Google Scholar 

  • Schromm AB, Brandenburg K, Loppnow H, Zähringer U, Rietschel ETh, Carroll SF, Koch M, Kusumoto HJ, Seydel SU (1998) The charge of endotoxin molecules influences their conformation and interleukin-6 inducing capacity. J Immunol submitted

    Google Scholar 

  • Schumann RR (1992) Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review. Res Immunol 143: 11–15

    Article  PubMed  CAS  Google Scholar 

  • Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ, (1990) Structure and function of lipopolysaccharide binding protein. Science 249: 1431–1433

    Article  Google Scholar 

  • Seydel U, Labischinski H, Kastowsky M, Brandenburg K (1993) Phase behaviour, supramolecular structure, and molecular conformation of lipopolysaccharide. J Immunol 187: 191–211

    CAS  Google Scholar 

  • Shapira L, Takashiba S, Champagne C, Amar S, Van Dyke TE (1994) Involvement of protein kinase C and protein tyrosine kinase in lipopolysaccharide-induced TNF-a and IL-1 ß production by human monocytes. J Immunol 153: 1818–1824

    PubMed  CAS  Google Scholar 

  • Shnyra A, Hultenby K, Lindberg AA (1993) Role of the physical state of Salmonella lipopolysaccharide in expression of biological and endotoxic properties. Infect Immun 61: 5351–5360

    PubMed  CAS  Google Scholar 

  • Somerville JE, Cassiano L, Bainbridge B, Cunningham MD, Darveau RP (1996) A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide. J Clin Invest 97: 359–365

    Article  PubMed  CAS  Google Scholar 

  • Steeghs L, den Hartog R, den Boer A, Zomer B, Roholl P, van der Ley P (1998) Meningitis bacterium is viable without endotoxin. Nature 392: 449–450

    Article  PubMed  CAS  Google Scholar 

  • Stefanova I, Corcoran ML, Horak EM, Wahl LM, Bolen JB, Horak ID (1993) Lipopolysaccharide induces activation of CD14-associated protein tyrosine kinase p53/56lyn. J Biol Chem 268: 20725–20728

    PubMed  CAS  Google Scholar 

  • Stegmayr B, Björck S, Holm S, Nisell J, Rydvall A, Settergren B (1992) Septic shock induced by group A streptococcal infection: clinical and therapeutic aspects. Scand J Infect Dis 24: 589–597

    Article  PubMed  CAS  Google Scholar 

  • Sunshine MG, Gibson BW, Engstrom JJ, Nichols WA, Jones BD, Apicella MA (1997) Mutation of the htrB gene in a virulent Salmonella typhimurium strain by inter-generic transduction: strain construction and phenotypic characterization. J Bacteriol 179: 5521–5533

    PubMed  CAS  Google Scholar 

  • Sweet MJ, Hume DA (1996) Endotoxin signal transduction in macrophages. J Leukoc Biol 60: 8–26

    PubMed  CAS  Google Scholar 

  • Takayama K, Qureshi N, Mascagni P, Nashed MA, Anderson L., Raetz CRH (1983) Fatty acyl derivatives of glucosamine 1-phosphate in Escherichia coli and their relation to lipid A. J Biol Chem 258: 7379–7385

    PubMed  CAS  Google Scholar 

  • Takayama K, Rothenberg RJ, Barbour AG (1987) Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 55: 2311–2313

    PubMed  CAS  Google Scholar 

  • Takayama K, Qureshi N, Beutler B, Kirkland TN (1989) Diphosphoryl lipid A from Rhodopseudomonas sphaeroides ATCC 17023 blocks induction of cachectin in macrophages by lipopolysaccharide. Infect Immun 57: 1336–1338

    PubMed  CAS  Google Scholar 

  • Takayama K, Mitchell DH, Din ZZ, Mukerjee P, Li C, Coleman DL (1994) Monomeric Re lipopolysaccharide from Escherichia coli is more active than the aggregated form in the Limulus amoebocyte lysate assay and in inducing Egr-1 mRNA in murine peritoneal macrophages. J Biol Chem 269: 2241–2244

    PubMed  CAS  Google Scholar 

  • Tapping RI, Gegner JA, Kravchenko V, Tobias PS (1998) Roles for LBP and soluble CD14 in cellular uptake, pp 73–78. In: Levin J, Pollack M, Yokochi, T, Nakano M (eds), Endotoxin and sepsis, Wiley-Liss, New York

    Google Scholar 

  • Tebo JM, Chaoqun W, Ohmori Y, Hamilton TA (1994) Murine inhibitory protein-rcBa negatively regulates KB-dependent transcription in lipopolysaccharidestimulated RAW 264.7 macrophages. J Immunol 153: 4713–4720

    PubMed  CAS  Google Scholar 

  • Tobias PS, Ulevitch RJ (1993) Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology 187: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Tobias PS, Soldau K, Gegner JA, Mintz D, Ulevitch RJ (1995) Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem 270: 10482–10488

    Article  PubMed  CAS  Google Scholar 

  • Ulmer AJ, Feist W, Heine H, Kirikae T, Kirikae F, Kusumoto S, Kusama T, Brade H, Schade U, Rietschel ET, Flad H-D (1992) Modulation of endotoxin-induced monokine release in human monocytes by lipid A partial structures that inhibit binding of ‘25I-lipopolysaccharide. Infect Immun 60: 5145–5152

    PubMed  CAS  Google Scholar 

  • Unger FU (1981) The chemistry and biological significance of 3-deoxy-D-mannooctulosonic acid (Kdo). Adv Carb Chem Biochem 38: 323–388

    Article  CAS  Google Scholar 

  • Van Deventer SJH, Ten Cate JW, Tytgat GNJ (1988) Intestinal endotoxaemia. Gastroenterology 94: 825–831

    PubMed  Google Scholar 

  • Van Putten JP (1993) Phase variation of lipopolysaccharide directs interconversion of invasive and immunoresistant phenotypes of Neisseria gonorrhoeae. EMBO J 12: 4043–4051

    PubMed  Google Scholar 

  • Vincent JL (1996) Definition and pathogenesis of septic shock. Curr Top Microbiol Immunol 216: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Viriyakosol S, Kirkland TN (1995) A region of human CD14 required for lipopolysaccharide binding. J Biol Chem 270: 361–368

    Article  PubMed  CAS  Google Scholar 

  • Vishwanath S, Hackstadt T (1988) Lipopolysaccharide phase variation determines the complement-mediated serum susceptibility of Coxiella burnetii. Infect Immun 56: 40–44

    PubMed  CAS  Google Scholar 

  • Vogel SNA (1990) The role of cytokines in endotoxin-mediated host response, pp 238–258. In: Oppenheim JJ, Shevack EM (eds), Immunopharmacology: the role of cells and cytokines in immunity and inflammation, Oxford University Press, New York

    Google Scholar 

  • Wang MH, Flad H-D, Feist W, Brade H, Kusumoto S, Rietschel ET, Ulmer AJ (1991) Inhibition of endotoxin-induced interleukin 6 production by synthetic lipid A partial structures in human peripheral blood mononuclear cells. Infect Immun 59: 4655–4664

    PubMed  CAS  Google Scholar 

  • Weidemann B, Brade H, Rietschel ET, Dziarski R, Bazil V, Kusumoto S, Flad H-D, Ulmer AJ (1994) Soluble peptidoglycan-induced monokine production can be blocked by anti-CD 14 monoclonal antibodies and by lipid A partial structures. Infect Immun 62: 4709–4715

    PubMed  CAS  Google Scholar 

  • Weidemann B, Schletter J, Dziarski R, Kusumoto S, Stelter F, Rietschel ET, Flad HD, Ulmer AJ (1997) Specific binding of soluble peptidoglycan and muramyldipeptide to CD14 on human monocytes. Infect Immun 65: 858–864

    PubMed  CAS  Google Scholar 

  • Weinstein SL, Sanghera JS, Lemke K, DeFranco AL, Pelech SL (1992) Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages. J Biol Chem 267: 14955–14962

    PubMed  CAS  Google Scholar 

  • Weintraub A, Zähringer U, Wollenweber HW, Seydel U, Rietschel ET (1989) Structural characterization of the lipid A component of Bacteroides fragilis strain NCTC 9343 lipopolysaccharide. Eur J Biochem 183: 425–431

    Article  PubMed  CAS  Google Scholar 

  • Weiser JN, Love JM, Moxon ER (1989) The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. Cell 59: 657–665

    Article  PubMed  CAS  Google Scholar 

  • Weiser JN, Pan N, McGowan KL, Musher D, Martin A, Richards J (1998) Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J Exp Med 187: 631–640

    Article  PubMed  CAS  Google Scholar 

  • Weiss J, Elsbach P, Shu C, Castillo J, Horwitz A, Theofan G (1992) Human bactericidal permeability-increasing protein and a recombinant NHS-terminal fragment cause killing of serum-resistant Gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria. J Clin Invest 90: 1122–1130

    Article  PubMed  CAS  Google Scholar 

  • Wenzel R, Bone R, Fein A, Quenzero R, Schentag J, Gorelick KJ, Wedel NI, Perl T (1991) Results of a second double-blind, randomized, controlled trial of anti endotoxin antibody E5 in Gram-negative sepsis. Interscience Conference on Antimicrobial Agents and Chemotherapy, Anonymous 294 ed. ASM, Washington

    Google Scholar 

  • Wenzel RP, Pinsky MR, Ulevitch RJ, Young L (1996) Current understandings of sepsis. Clin Infect Dis 22: 407–413

    Article  PubMed  CAS  Google Scholar 

  • Westphal O, Luderitz O (1954) Chemische Erforschung von Lipopolysacchariden Gram-negativer Bakterien. Angew Chem 66: 407–417

    Article  CAS  Google Scholar 

  • White KA, Kaltashov IA, Cotter RJ, Raetz CRH (L997) A monofunctional 3-deoxyD-manno-octulosonic acid (Kdo) transferase and Kdo kinase in extracts of Haemophilus influenzae. J Biol Chem 272: 16555–16563

    Google Scholar 

  • Whitfield C, Valvano MA (1993) Biosynthesis and expression of cell-surface polysaccharides in Gram-negative bacteria. Adv Microb Physiol 3.5: 135–246

    Google Scholar 

  • Wolff M (1904) Beiträge zur Immunitätslehre. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg I Orig 37: 392

    Google Scholar 

  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD 14, a receptor for complexes of lipopolysaccharide ( LPS) and LPS binding protein. Science 249: 1431–1433

    Google Scholar 

  • Wurfel MM, Kunitake ST, Lichenstein H, Kane JP, Wright SD (1994) Lipopolysaccharide ( LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. J Exp Med 180: 1025–1035

    Google Scholar 

  • Wurfel MM, Monks BG, Ingalls RR, Dedrick RL, Delude R, Zhou D, Lamping N, Schumann RR, Thieringer R, Fenton MJ, Wright SD, Golenbock D (1997) Targeted deletion of the lipopolysaccharide ( LPS)-binding protein gene leads to profound suppression of LPS responses ex vivo, whereas in vivo responses remain intact. J Exp Med 186: 2051–2056

    Google Scholar 

  • Xie Y, von Gavel S, Cassady AI, Stacey KJ, Dunn “FL, Hume DA (1993) The resistance of macrophage-like tumor cell lines to growth inhibition by lipopolysaccharide and pertussis toxin. Br J Haematol 84: 392–401

    Google Scholar 

  • Yamasaki R, Griffiss JM, Quinn KP, Mandrell RE (1993) Neuraminic acid is a2–3 linked in the lipooligosaccharide of Neisseria rneningitidis serogroup B strain 6275. J Bacteriol 175: 4565–4568

    PubMed  CAS  Google Scholar 

  • Yang R-B, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ (1998) Toll-like receptor-2 mediates lipopolysaccharideinduced cellular signalling. Nature 395: 284–288

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Wright SD, (1996) Catalytic properties of lipopolysaccharide (LPS) binding protein. Transfer of LPS to soluble CD14. J Biol Chem 271: 4100–4105

    Article  PubMed  CAS  Google Scholar 

  • Yu CL, Haskard DO, Cavender D, Ziff M (1986) Effects of bacterial lipopolysaccharides on the binding of lymphocytes to endothelial cell monolayers. J Immunol 136: 569–573

    PubMed  CAS  Google Scholar 

  • Zabel P, Wolter DT, Schönharting M, Schade FU (1989) Oxpentifylline in endotoxaemia. Lancet 1474–1477

    Google Scholar 

  • Zähringer U, Lindner B, Rietschel ET (1994) Molecular structure of lipid A. The endotoxic center of bacterial lipoplysaccharides. Adv Carb Chem Biochem 50: 211–276

    Google Scholar 

  • Zähringer U, Wagner F. Rietschel ET, Ben-Menachem G, Deutsch J, Rottem S (1997) Primary structure of a new phosphocholine-containing glycoglycerolipid of Mycoplasma fermentans. J Biol Chem 272: 26262–26270

    Article  PubMed  Google Scholar 

  • Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M (1997) The IKB kinase complex (IKK) contains two kinase subunits, IKKa and IKK/3, necessary for lx-B phosphorylation and NE- i(-13 activation. Cell 91: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Morrison DC (1993) Pertussis toxin-sensitive factor differentially regulates lipopolysaccharide-induced tumor necrosis factor-a and nitric oxide production in mouse peritoneal macrophages. J Immunol 150: 1011–1018

    PubMed  CAS  Google Scholar 

  • Ziegler-Heitbrock H, Ulevitch RJ (1993) CD14: cell surface receptor and differentiation marker. Immunol Today 14: 121–125

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman S.H., Evans GE. Snyder YM, Roeder WD (1989) Endotoxin-macrophage interaction: post-transcriptional regulation of tumor necrosis factor expression. J Immunol 143: 1223–1227

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hauschildt, S. et al. (2000). Structure and Activity of Endotoxins. In: Aktories, K., Just, I. (eds) Bacterial Protein Toxins. Handbook of Experimental Pharmacology, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05971-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05971-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08540-6

  • Online ISBN: 978-3-662-05971-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics