Skip to main content

Passive Membrane Permeability for Ions and the Membrane Potential

  • Chapter
Red Cell Membrane Transport in Health and Disease

Abstract

One characteristic feature of all mammalian cells is the asymmetric and non-equilibrium distribution of inorganic ions across the cell membrane. Such a distribution, established during evolution, is of fundamental importance for the regulation of cellular metabolism as well as for processes of signal transduction and excitation. The maintenance of the intracellular cation concentration as well as the cell volume is based on the balance between active and passive transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adorante JS, Cala PM (1987) Activation of electroneutral K+ flux in Amphiuma red blood cells by N-ethylmaleimide. Distinction between K/H exchange and KCl cotransport. J Gen Physiol 90:209–227

    Google Scholar 

  • Bang I (1909) Physiko-chemische Verhältnisse der Blutkörperchen. Biochemische Zeitschrift 16:255–276

    Google Scholar 

  • Beaugé LA (1975) Non-pumped sodium fluxes in human red blood cells. Evidence for facilitated diffusion. Biochim Biophys Acta 401:95–108

    Google Scholar 

  • Beaugé LA, Ortiz O (1970) Rubidium, sodium and ouabain interactions on the influx of rubidium in red blood cells. J Physiol 210:519–533

    Google Scholar 

  • Bernhardt I (1986) Untersuchungen zur Regulation des Ouabain-insensitiven Membrantransports monovalenter Kationen an Erythrozyten. D.Sc. thesis, Humboldt University

    Google Scholar 

  • Bernhardt I (1994) Alteration of cellular features after exposure to low ionic strength medium. In: Bauer J (ed) Cell electrophoresis. CRC Press, Boca Raton, pp 163–179

    Google Scholar 

  • Bernhardt I, Donath E, Glaser R (1984) Influence of surface charge and transmembrane potential on rubidium-86 efflux of human red blood cells. J Membrane Biol 78:249–255

    Google Scholar 

  • Bernhardt I, Erdmann A, Glaser R, Reichmann G, Bleiber R (1986) Influence of lipid composition on passive ion transport of erythrocytes. In: Klein R, Schmitz B (eds) Topics in lipid research. Royal Society of Chemistry, London, pp 243–248

    Google Scholar 

  • Bernhardt I, Ellory JC, Hall AC (1987a) Alteration to human erythrocyte passive cation permeability induced by decreasing ionic strength. J Physiol 396:47P

    Google Scholar 

  • Bernhardt I, Erdmann A, Vogel R, Glaser R (1987b) Factors involved in the increase of K+ efflux of erythrocytes in low chloride media. Biomed Biochim Acta 46:36–40

    Google Scholar 

  • Bernhardt I, Hall AC, Ellory JC (1988) Transport pathways for monovalent cations through erythrocyte membranes. Studia Biophys 126:5–21

    Google Scholar 

  • Bernhardt I, Hall AC, Ellory JC (1991) Effects of low ionic strength media on passive human red cell monovalent cation transport. J Physiol 434:489–506

    Google Scholar 

  • Bernhardt I, Seidler G, Ihrig I, Erdmann A (1992) Species-dependent differences in the influence of ionic strength on potassium transport of erythrocytes: The role of lipid composition. Gen Physiol Biophys 11:287–299

    Google Scholar 

  • Bernhardt I, Bogdanova AY, Kummerow D, Kiessling K, Hamann J, Ellory JC (1999) Characterisation of the K+(Na+)/H+ monovalent cation exchanger in the human red blood cell membrane: Effects of transport inhibitors. Gen Physiol Biophys 18:1–19

    Google Scholar 

  • Blackstock EJ, Stewart GW (1986) The dependence on external cation of sodium and potassium fluxes across the human red cell membrane at low temperatures. J Physiol 375:403–420

    Google Scholar 

  • Canessa M, Brugnara C, Cusi D, Tosteson DC (1986) Modes of operation and variable stoichiometry of the furosemide-sensitive Na and K fluxes in human red cells. J Gen Physiol 87:13–142

    Google Scholar 

  • Carolin DA, Maizels M (1965) Effect of the duration of loading lactose-treated red cells with cations on the rate of subsequent cation flux. J Physiol 179:54–94

    Google Scholar 

  • Chipperfield AR, Shennan DB (1986) The influence of pH and membrane potential on passive Na+ and K+ fluxes in human red blood cells. Biochim Biophys Acta 886:373–382

    Google Scholar 

  • Coakley WT, Deeley JO (1980) Effects of ionic strength, serum protein and surface charge on membrane movements and vesicle production in heated erythrocytes. Biochim Biophys Acta 602:355–375

    Google Scholar 

  • Cohn WE, Cohn ET (1939) Permeability of red corpuscles of the dog to sodium ion. Prog Soc Exp Biol Med 41:445–449

    Google Scholar 

  • Dalmark M (1975) Chloride and water distribution in human red cells. J Physiol 250:65–84

    Google Scholar 

  • Davson H (1939) Studies on the permeability of erythrocytes. VI. The effect of reducing salt content of the medium surrounding the cell. Biochem J 33:389–401

    Google Scholar 

  • Dean RB, Noonan TR, Haege L, Fenn WO (1940) see Harris (1941) and reference therein

    Google Scholar 

  • Denner K, Heinrich R, Bernhardt I (1993) Carrier-mediated residual K+ and Na+ transport of human red blood cells. J Membrane Biol 132:137–145

    Google Scholar 

  • Deuticke B, Poser B, Lütkemeier P, Haest CWM (1983) Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide. Biochim Biophys Acta 731:196–210

    Google Scholar 

  • Deuticke B, Lütkemeier P, Sistemich M (1984) Ion selectivity of aqueous leaks induced in the erythrocyte membrane by crosslinking of membrane proteins. Biochim Biophys Acta 775:150–160

    Google Scholar 

  • Deuticke B, Grebe R, Haest CWM (1990) Action of drugs on the erythrocyte membrane. In: Harris JR (ed) Blood cell biochemistry, vol 1. Plenum Press, New York, pp 475–529

    Google Scholar 

  • Deutsch CJ, Holian A, Holian SK, Daniele RP, Wilson DF (1979) Transmembrane electrical and pH gradients across human erythrocytes and human peripheral lymphocytes. J Cell Physiol 99:79–93

    Google Scholar 

  • Donath E, Pastushenko V (1979) Electrophoretical study of cell surface properties. The influence of the surface coat on the electric potential distribution and on general elec-trokinetic properties of animal cells. Bioelectrochem Bioenergetics 6:543–554

    Google Scholar 

  • Donlon JA, Rothstein A (1969) The cation permeability of erythrocytes in low ionic strength media of various tonicities. J Membrane Biol 1:37–52

    Google Scholar 

  • Dwight JFSJ, Hendry BM (1995) Actions of arachidonic acid on erythrocyte membrane Rb permeability. Clin Chim Acta 238:187–197

    Google Scholar 

  • Eisenman AJ, Ott L, Smith PK, Winkler AW (1940) A study of the permeability of human erythrocytes to potassium, sodium and inorganic phosphate by the use of radioactive isotopes. J Biol Chem 135:165–173

    Google Scholar 

  • Ellory JC, Hall AC (1988) Human red cell volume regulation in hypotonic media. Comp Biochem Physiol 90A:533–537

    Google Scholar 

  • Erdmann A, Bernhardt I, Hermann A, Glaser R (1990) Species-dependent differences in the influence of ionic strength on potassium transport of erythrocytes: The role of membrane fluidity and Ca2+. Gen Physiol Biophys 9:577–588

    Google Scholar 

  • Erdmann A, Bernhardt I, Pittman SJ, Ellory JC (1991) Low potassium-type but not high potassium-type sheep red blood cells show passive K+ transport induced by low ionic strength. Biochim Biophys Acta 1061:85–88

    Google Scholar 

  • Fievet B, Guizouarn H, Pellissier B, Garcia-Romeu F, Motais R (1993) Evidence for a K+-H+ exchange in trout red blood cells. J Physiol 462:597–607

    Google Scholar 

  • Forsyth PA, Marcelja S, Mitchell DJ, Ninham BW (1977) Phase transition in charged lipid membranes. Biochim Biophys Acta 469:335–344

    Google Scholar 

  • Fortes PAG, Ellory JC (1975) Asymmetric membrane expasion and modification of active and passive cation permeability of human red cells by the fluorescent probe 1-anilino-8-naphtalene sulfonate. Biochim Biophys Acta 413:65–78

    Google Scholar 

  • Freedman JC, Hoffman JF (1979) The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria. J Gen Physiol 74:187–212

    Google Scholar 

  • Fromherz P (1988) Spatio-temporal patterns in the fluid-mosaic model of membranes. Biochim Biophys Acta 944:108–111

    Google Scholar 

  • Funder J (1980) Alkali metal cation transport through the human erythrocyte membrane by the anion exchange mechanism. Acta Physiol Scand 108:31–37

    Google Scholar 

  • Funder J, Wieth JO (1966) Chloride and hydrogen distribution between human red cells and plasma. Acta Physiol Scand 68:234–245

    Google Scholar 

  • Funder J, Wieth JO (1980) Passive cation transport by ion pair formation. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes (Alfred Benzon Symposium). Munksgaard, Copenhagen, pp 520–527

    Google Scholar 

  • Garlid KD, DiResta DJ, Beavis AD, Martin WH (1986) On the mechanism by which dicy-clohexylcarbodiimide and quinine inhibit K+ transport in rat liver mitochondria. J Biol Chem 261:1529–1535

    Google Scholar 

  • Garay R, Adragna N, Canessa M, Tosteson DC (1981) Outward sodium and potassium co-transport in human red cells. J Membrane Biol 62:169–174

    Google Scholar 

  • Glaser R (1990) The influence of membrane electric field on cellular functions. In: Glaser R, Gingell D (eds) Biophysics of the cell surface. Springer, Berlin, pp 173–192

    Google Scholar 

  • Glynn IM (1956) Sodium and potassium movement in human red cells. J Physiol 134:278–316

    Google Scholar 

  • Glynn IM (1957) The action of cardiac glycoside on sodium and potassium movements in human red cells. J Physiol 136:148–173

    Google Scholar 

  • Goldman DE (1943) Potential, impedance and rectification in membranes. J Gen Physiol 27:37–60

    Google Scholar 

  • Gruber W, Deuticke B (1973) Comparative aspects of phosphate transfer across mammalian erythrocyte membranes. J Membrane Biol 13:19–36

    Google Scholar 

  • Gürber A (1895) Die Salze des Blutes. Jahresbericht über die Fortschritte der Tierchemie oder der physiologischen und pathologischen Chemie 24:172–175

    Google Scholar 

  • Gürber A (1904) Salze des Blutes. II. Teil. Salze der Blutkörper. Habilitationsschrift, Kgl. Bayer. Julius-Maximilians-Universität Würzburg

    Google Scholar 

  • Haas M, Schmidt WF (1985) P-Chloromercuribenzensulfonic acid Stimulation of chloride-dependent sodium and potassium transport in human red blood cells. Biochim Biophys Acta 814:43–49

    Google Scholar 

  • Haest CWM, Kamp D, Deuticke B (1981) Topology of membrane sulfhydryl groups in the human erythrocyte. Demonstration of a non-reactive population in intrinsic proteins. Biochim Biophys Acta 643:319–326

    Google Scholar 

  • Hall AC, Ellory JC (1986) Evidence for the presence of volume-sensitive KCl transport in ‘young’ human red cells. Biochim Biophys Acta 85:317–320

    Google Scholar 

  • Halperin JA, Brugnara C, Tosteson MT, Van Ha T, Tosteson DC (1989) Voltage-activated cation transport in human erythrocytes. Am J Physiol 257:C986–C996

    Google Scholar 

  • Halperin JA, Brugnara C, Van Ha T, Tosteson DC (1990) Voltage-activated cation permeability in high potassium but not in low potassium red blood cells. Am J Physiol 258:C1169–C1172

    Google Scholar 

  • Harris JE (1941) The influence of the metabolism of human erythrocytes on their potassium content. J Biol Chem 141:579–595

    Google Scholar 

  • Hille B, Schwarz W (1978) Potassium channels as multi-ion single-file pores. J Gen Physiol 72:409–442

    Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108:37–77

    Google Scholar 

  • Hoffman JF (1992) Estimates of the electrical conductance of the red cell membrane. In: Bamberg E, Passow H (eds) Progress in cell research, vol. 2. Elsevier, Amsterdam, pp 173–178

    Google Scholar 

  • Hoffman JF, Laris PC (1974) Determinations of membrane potentials in human and Am-phiuma red blood cells by means of a fluorescent probe. J Physiol 239:519–552

    Google Scholar 

  • Ihrig I, Hessel E, Seidler G, Erdmann A, Bernhardt I (1991) Investigation of monovalent cation influxes of diamide-treated human erythrocytes in solutions of different ionic strength. Biochim Biophys Acta 1069:171–174

    Google Scholar 

  • Isomaa B, Hägerstrand H, Paatero G, Engblom AC (1986) Permeability alterations and an-tihaemolysis induced by amphiphiles in human erythrocytes. Biochim Biophys Acta 860:510–524

    Google Scholar 

  • Jähnig F (1976) Electrostatic free energy and shift of the phase transition for charged lipid membranes. Biophys Chem 4:309–318

    Google Scholar 

  • Jay AWL, Burton AC (1969) Direct measurements of potential difference across the human red blood cell membrane. Biophys J 9:115–121

    Google Scholar 

  • Johnson RM (1994) Membrane stress increases cation permeability in red cells. Biophys J 67:1876–1881

    Google Scholar 

  • Joiner CH, Franco RS, Jiang M, Franco MS, Barker JE, Lux SE (1995) Increased cation permeability in mutant mouse red blood cells with defective membrane skeletons. Blood 86:4307–4314

    Google Scholar 

  • Jones GS, Knauf PA (1985) Mechanism of the increase of the cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capno-phorin. J Gen Physiol 86:721–238

    Google Scholar 

  • Jordan PC (1984) Effect of pore structure on energy barriers and applied voltage profiles. I. Symmetric channels. Biophys J 45:1091–1100

    Google Scholar 

  • Kaestner L, Bollensdorff C, Bernhardt I (1999) Non-selective voltage-activated cation channel in the human red blood cell membrane. Biochim Biophys Acta 1417:9–15

    Google Scholar 

  • Kaestner L, Christophersen P, Bernhardt I, Bennekou P (2000) The non-selective voltage-activated cation channel in the human red blood cell membrane: Reconciliation between two conflicting reports and further characterisation. J Bioelectrochem 52:117–125

    Google Scholar 

  • Knauf PA, Rothstein A (1971) Chemical modification of membranes. II. Permeation paths for sulfhydryl agents. J Gen Physiol 58:211–223

    Google Scholar 

  • Kotyk A, Janacek K (1977) Membrane transport. An interdisciplinary approach. Plenum Press, New York

    Google Scholar 

  • Krogh A (1946) The active and passive exchange of inorganic ions through the surface of living cells and through living membranes generally. Proc R Soc (London) Biol Sci 133:140–200

    ADS  Google Scholar 

  • Kuypers FA, Roelofsen B, Op den Kamp JAF, Van Deenen LLM (1984) The membrane of intact human erythrocytes tolerates only limited changes in the fatty acid composition of its phosphatidylcholine. Biochim Biophys Acta 769:337–347

    Google Scholar 

  • Kummerow D, Hamann J, Browning JA, Wilkins R, Ellory JC, Bernhardt I (2000) Variations of intracellular pH in human erythrocytes via K+(Na+)/H+ exchange under low ionic strength conditions. J Membrane Biol 176:207–216

    Google Scholar 

  • LaCelle PL, Rothstein A (1966) The passive permeability of red blood cells to cations. J Gen Physiol 50:171–188

    Google Scholar 

  • Lassen UV, Sten-Knudsen O (1968) Direct measurements of membrane potential and membrane resistance of human red cells. J Physiol 195:681–696

    Google Scholar 

  • Lauf PK (1988) Thiol-dependent K:C1 transport in sheep red cells. VIII. Activation through metabolically and chemically reversible oxidations by diamide. J Membrane Biol 101:179–188

    Google Scholar 

  • Lew VL, Bookchin RM (1986) Volume, pH, and ion-content regulation in human red cells: Analysis of transient behavior with an integrated model. J Membrane Biol 92:57–74

    Google Scholar 

  • Lu Y, Chow EI (1982) Bicarbonate/chloride transport kinetics at 37 °C and its relationship to membrane lipid in mammalian erythrocytes. Biochim Biophys Acta 689:485–489

    Google Scholar 

  • Marrink SJ, Jähnig F, Berendsen HJC (1996) Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamic simulations. Biophys J 71:632–647

    Google Scholar 

  • McLaughlin S, Poo MM (1981) The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surface of cells. Biophys J 34:85–93

    Google Scholar 

  • Mond R (1927) Umkehr der Anionenpermeabilität der roten Blutkörperchen in eine elective Durchlässigkeit für Kationen. Ein Beitrag zur Analyse der Zellmembranen. Pflügers Arch 217:618–630

    Google Scholar 

  • Nichols JW, Deamer DW (1980) Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique. Proc Natl Acad Sci USA 77:2038–2042

    ADS  Google Scholar 

  • Numata M, Orlowski J (2001) Molecular cloning and characterization of a novel (Na+, K+)/H+ exchanger localized to the trans-Golgi network. J Biol Chem 276:17387–17394

    Google Scholar 

  • Overton E (1899) Über die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung für die Physiologie. Vierteljahreschrift Naturforsch Ges (Zürich) 44:88–114

    Google Scholar 

  • Paula S, Deamer DW (1999) Membrane permeability barriers to ionic and polar solutes. In: Deamer DW, Kleinzeller A, Fambrough DM (eds) Membrane permeability (Current Topics in Membranes, vol 48). Academic Press, San Diego, pp 77–95

    Google Scholar 

  • Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 70:339–348

    Google Scholar 

  • Passow H (1969) The molecular basis of ion discrimination in the erythrocyte membrane. In: Tosteson DC (ed) The molecular basis of membrane function. Prentice-Hall, Englewood Cliffs, pp 319–351

    Google Scholar 

  • Richter S, Hamann J, Kummerow D, Bernhardt I (1997) The monovalent cation “leak” transport in human erythrocytes: An electroneutral exchange process. Biophys J 73:733–745

    Google Scholar 

  • Shaw TI (1955) K movements in washed erythrocytes. J Physiol 129:464–475

    Google Scholar 

  • Solomon AK (1952) The permeability of the human erythrocyte to sodium and potassium. J Gen Physiol 36:57–110

    Google Scholar 

  • Solomon AK (1968) Characterization of biological membranes by equivalent pores. J Gen Physiol 51:335–364

    Google Scholar 

  • Solomon AK, Chasan B, Dix JA, Lukacovic MF, Toon MR, Verkman AS (1983) The a-queous pore in the red cell membrane: band 3 as a channel for anions, cations, non-electrolytes, and water. Ann New York Acad Sci 414:97–124

    ADS  Google Scholar 

  • Sutherland RM, Stannard JN, Weed RJ (1967) Involvement of sulfhydryl groups in radiation damage to the erythrocyte membrane. Int J Radiat Biol 12:551–564

    Google Scholar 

  • Tosteson DC, Hoffman JF (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol 44:169–194

    Google Scholar 

  • Träuble H, Eibl H (1974) Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment. Proc Natl Acad Sci USA 71:214–219

    ADS  Google Scholar 

  • Van der Steen ATM, De Kruijff B, De Gier J (1982) Glycophorin incorporation increases the bilayer permeability of large unilamellar vesicles in a lipid-dependent manner. Biochim Biophys Acta 691:13–23

    Google Scholar 

  • Van Dijck PWM, Van Zoelen EJJ, Seldenrijk R, Van Deenen LLM, De Gier J (1976) Calo-rimetric behaviour of individual phospholipid classes from human and bovine erythrocyte membranes. Chem Phys Lipids 17:336–343

    Google Scholar 

  • Van Hoogevest P, Du Maine APM, De Kruijff B (1983) Characterization of the permeability increase induced by the incorporation of glycophorin in phosphatidylcholine vesicles. FEBS Letters 157:41–45

    Google Scholar 

  • Van Hoogevest P, Du Maine APM, De Kruijff B, De Gier J (1984) The influence of lipid composition on the barrier properties of band 3-containing lipid vesicles. Biochim Biophys Acta 777:241–252

    Google Scholar 

  • Van Slyke DD, Wu H, McLean FC (1923) Studies of gas and electrolyte equilibria in the blood. V. Factors controlling the electrolyte and water distribution in the blood. J Biol Chem 56:765–849

    Google Scholar 

  • Weiss TF (1996) Cellular biophysics, vol 1. The MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Wieth JO (1970) Effects of monovalente cations on sodium permeability of human red cells. Acta Physiol Scand 79:76–87

    Google Scholar 

  • Wilbrandt W (1940) Die Ionenenpermeabilität der Erythrozyten in Nichtleiterlösungen. Pflügers Arch 242:537–556

    Google Scholar 

  • Wilbrandt W, Schatzmann HJ (1960) Changes in the passive cation permeability of erythrocytes-in low electrolyte media. Ciba Found. Study Group 5:34–52

    Google Scholar 

  • Wiley JS, Cooper RA (1975) Inhibition of cation cotransport by cholesterol enrichment of human red cell membranes. Biochim Biophys Acta 413:425–431

    Google Scholar 

  • Zade-Oppen AMM, Tosteson DC, Adragna NC (1988) Effects of pH, potential, chloride and furosemide on Na+ and K+ effluxes from human red blood cells. J Membrane Biol 103:17–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bernhardt, I., Weiss, E. (2003). Passive Membrane Permeability for Ions and the Membrane Potential. In: Bernhardt, I., Ellory, J.C. (eds) Red Cell Membrane Transport in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05181-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05181-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07920-7

  • Online ISBN: 978-3-662-05181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics