Microbial Systems in Sedimentary Environments of Continental Margins

  • A. Boetius
  • B. B. Jørgensen
  • R. Amann
  • J. P. Henriet
  • K. U. Hinrichs
  • K. Lochte
  • B. J. MacGregor
  • G. Voordouw


The zone of continental margins is most important for the ocean’s productivity and nutrient budget and connects the flow of material from terrestrial environments to the deep-sea. Microbial processes are an important “filter” in this exchange between sediments and ocean interior. As a consequence of the variety of habitats and special environmental conditions at continental margins an enormous diversity of microbial processes and microbial life forms is found. The only definite limit to microbial life in sedimentary systems of continental margins appears to be high temperatures in the interior earth or in fluids rising from the interior. Many of the catalytic capabilities which microorganisms possess are still only incompletely explored and appear to continuously expand as new organisms are discovered. Recent discoveries at continental margins such as the microbial life in the deep sub-seafloor, microbial utilization of hydrate deposits, highly specialized microbial symbioses and the involvement of microbial processes in the formation of carbonate mounds have extended our understanding of the Earth’s bio- and geosphere dramatically. The aim of this paper is to identify important scientific issues for future research on microbial life in sedimentary environments of continental margins.


Continental Margin Sedimentary Environment Particulate Organic Matter Microbial Process Sulfur Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169Google Scholar
  2. Balzer W, Helder W, Epping E, Lohse L, Otto S (1998) Benthic denitrification and nitrogen cycling at the slope and rise of the NW European Continental Margin (Goban Spur). Prog Oceanogr 42:111–126CrossRefGoogle Scholar
  3. Benz M, Brune A, Schink B (1998) Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic mitrate-reducing bacteria. Arch Microbiol 169:159–165CrossRefGoogle Scholar
  4. Bidle KD, Azam F (1999) Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397:508–512CrossRefGoogle Scholar
  5. Boetius A, Lochte K (1996) The effect of organic matter composition on hydrolytic potentials and growth of benthic bacteria in deep-sea sediments. Mar Ecol Prog Ser 140:235–250CrossRefGoogle Scholar
  6. Boetius A, Ravenschlag K, Schubert C, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRefGoogle Scholar
  7. Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: The paradigm shift. Microb Molec Biol Rev 64:573–606CrossRefGoogle Scholar
  8. Devries DJ, Beart PM (1995) Fishing for drugs from the sea. — Status and strategies. Trends Pharmacol Sci 16:275–279CrossRefGoogle Scholar
  9. Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microb Ecol 26:79–88CrossRefGoogle Scholar
  10. Faulkner DJ (2000) Marine natural products. Nat Prod Rep 17:7–55CrossRefGoogle Scholar
  11. Finster K, Liesack W, Thamdrup B (1998) Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp nov, a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microb 64:119–125Google Scholar
  12. Fisher CR (1990) Chemoautotrophic and methanotrophic symbiosis in marine invertebrates. Rev Aquat Sci 2:399–436Google Scholar
  13. Freiwald A (2002) Reef-forming cold-water corals. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 365–385Google Scholar
  14. Friedrich AB, Merkert H, Fendert T, Hacker J, Proksch P, Hentschel U(1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar Biol 134:461–470CrossRefGoogle Scholar
  15. Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner, de Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958CrossRefGoogle Scholar
  16. Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115CrossRefGoogle Scholar
  17. Henriet JP, Guidard S & the ODP “Proposal 573” Team (2002) Carbonate mounds as a possible example for microbial activity in geological processes. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 439–455Google Scholar
  18. Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590CrossRefGoogle Scholar
  19. Hinrichs KU, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 457–477Google Scholar
  20. Huber R, Huber H, Stetter KO (2000) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol Rev 24:615–623CrossRefGoogle Scholar
  21. Jetten MSM, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UGJM, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MCM, Kuenen JG (1998) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437CrossRefGoogle Scholar
  22. Jørgensen BB (2000) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine Geochemistry. Springer, Berlin pp 173–207CrossRefGoogle Scholar
  23. Kühl M, Revsbech NP (2000) Biogeochemical microsensors for boundary layer studies. In: Boudreau BB, Jorgensen BB (eds) The Benthic Boundary Layer. Oxford University Press, New York pp 180–210Google Scholar
  24. Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M. (1999) Combination of fluorescent in situ hybridization and microautoradiography — a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297Google Scholar
  25. Lochte K, Pfannkuche O (2002) Processes driven by the small-sized organisms at the water-sediment interface. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 405–418Google Scholar
  26. MacGregor BJ, Ravenschlag K, Amann R(2002) Nucleic acid based techniques for analyzing the diversity, structure, and function of microbial communities in marine waters and sediments. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 419–438Google Scholar
  27. MacRae JD, Hall KJ (1998) Biodegradation of Polycyclic Aromatic Hydrocarbons (PAH) in marine sediment under denitrifying conditions. Water Sci Techn 38:177–185CrossRefGoogle Scholar
  28. McInerney JO, Wilkinson M, Patching JW, Embley TM, Powell R (1995) Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deepsea deposit feeder. Appl Environ Microbiol 61:1646–1648Google Scholar
  29. Orphan V, House CH, Hinrichs KU, McKeegan KD, DeLong EF (in press) Coupled isotopic and phylogenetic analyses of single cells: direct evidence for methane-consuming archaeal/bacterial consortia. ScienceGoogle Scholar
  30. Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: A review. Hydrogeol J 8:11–28CrossRefGoogle Scholar
  31. Ramsing NB, Kühl M, Jørgensen BB (1993) Distribution of sulfate-reducing bacteria and 02-H2S in biofilm determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol 59: 3840–3849Google Scholar
  32. Ravenschlag K, Sahm K, Knoblauch C, Jorgensen BB, Amann R (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl Environ Microb 66:3592–3602CrossRefGoogle Scholar
  33. Reeburgh WS (1996) “Soft spots” in the global methane budget. In: Lidstrom ME, Tabita FR (eds) Microbial Growth on C 1 Compounds. Kluwer Academic Publishers, Netherlands pp 334–342CrossRefGoogle Scholar
  34. Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Maclntyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role ofmicrobes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992CrossRefGoogle Scholar
  35. Schulz HN, Brinkhoff T, Ferdelman TG, Marine MH, Teske A, Jorgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495CrossRefGoogle Scholar
  36. Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geol 28:1091–1094CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Boetius
    • 1
    • 2
  • B. B. Jørgensen
    • 2
  • R. Amann
    • 2
  • J. P. Henriet
    • 3
  • K. U. Hinrichs
    • 4
    • 5
  • K. Lochte
    • 6
  • B. J. MacGregor
    • 2
  • G. Voordouw
    • 7
    • 5
  1. 1.Alfred Wegener Institut für Polar- und MeeresforschungBremerhavenGermany
  2. 2.Max Planck Institut für Marine MikrobiologieBremenGermany
  3. 3.RCMG University of GentGentBelgium
  4. 4.Woods Hole Oceanographic InstitutionWoods HoleUSA
  5. 5.Hanse — WissenschaftskollegDelmenhorstGermany
  6. 6.Institut für MeereskundeUniversität KielKielGermany
  7. 7.University of CalgaryCalgaryCanada

Personalised recommendations