Skip to main content
  • 125 Accesses

Abstract

During the last fifty years the attitude concerning the use of inhalation agents in neuroanaesthesia has changed dramatically. Before experimental and human studies of ICP and CBF were available, volatile anaesthetics, including ether, cyclopropane and trichlorethylene were used routinely, and these agents were praised for the stability of cerebral haemodynamics. With the introduction of halothane in the fifties a new era was introduced, where halothane was used for all intracranial surgical procedures. However, the impact of experimental and human studies in the sixties showing that halothane increased ICP and CBF, together with studies of neurolept anaesthesia and intravenous hypnotics (barbiturate, althesin, etomidate, propofol) indicating a stabilised ICP, and a fall in CBF and CMRO2 resulted in warning against and omission of halothane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi M, Ikemoto Y, Kubo K, Takuma C. Seizure-like movements during induction of anaesthesia with sevoflurane. Br J Anaesth 1992: 68: 214–215.

    Article  PubMed  CAS  Google Scholar 

  • Adams RW, Gronert GA, Sundt TM, Michenfelder JD. Halothane, hypocapnia, and cerebrospinal fluid pressure in neurosurgery. Anesthesiology 1972: 37: 510–517.

    Article  PubMed  CAS  Google Scholar 

  • Adams RW, Cucchiara RF, Gronert GA, et al. Isoflurane and cerebrospinal fluid pressure in neurosurgical patients. Anesthesiology 1981: 54: 97–99.

    Article  PubMed  CAS  Google Scholar 

  • Antognini JF, Carstens E. Isoflurane blunts electroencepha-lographic and thalamic-reticular formation responses to noxious stimulation in goats. Anesthesiology 1999: 91: 1770–1779.

    Article  PubMed  CAS  Google Scholar 

  • Albin MS, Bunegin L, Gelineau J. ICP and CBF reactivity to isoflurane and nitrous oxide during normocapnia, hypocapnia and intracranial hypertension. In: Miller JD, Teasdale GM, Rowan JO; Galbraith SL, Mendelow AD (Eds) Intracranial Pressure VI. Springer Verlag, Berlin, Heidelberg 1986: 719–724.

    Chapter  Google Scholar 

  • Albrecht RF, Miletich DJ, Rosenberg R, Zahed B. Cerebral blood flow and metabolic changes from induction to onset of anesthesia with halothane or pentobarbital. Anesthesiology 1977: 47: 252–256.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht RF, Miletich DJ, Madala LR. Normalization of cerebral blood flow during prolonged halothane anaesthesia. Anesthesiology 1983: 58: 26–31.

    Article  PubMed  CAS  Google Scholar 

  • Alexander SC, Wollman H, Cohen PJ, et al. Cerebrovascular response to PaCCh during halothane anaesthesia in man. J Appl Physiol 1964: 19: 561–565.

    PubMed  CAS  Google Scholar 

  • Algotsson L, Messeter K, Nordstrom CH, Ryding E. Cerebral blood flow and oxygen consumption during isoflurane and halothane anaesthesia in man. Acta Anaestheiol Scand 1988: 32: 15–20.

    Article  CAS  Google Scholar 

  • Algotsson L, Messeter K, Rosén I, Holmin T. Effects of nitrous oxide on cerebral haemodynamics and metabolism during isoflurane anaesthesia in man. Acta Anaesthesiol Scand 1992: 36: 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Alkire MT, Haier RJ, Shah NK, Anderson CT. Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology 1997: 86: 549–557.

    Article  PubMed  CAS  Google Scholar 

  • Amorim P, Chanbers G, Cottrell J, Kass IS. Nitrous oxide impairs electrophysiologic recovery after severe hypoxia in rat hippocampal slices. Anesthesiology 1997: 87: 642–651.

    Article  PubMed  CAS  Google Scholar 

  • Archer DP, Labrecque P, Tylor JL, et al. Cerebral blood volume is increased in dogs during administration of nitrous oxide or isoflurane. Anesthesiology 1987: 67: 642–648.

    Article  PubMed  CAS  Google Scholar 

  • Archer DP, Lebrecque P, Tylor JL, et al. Measurement of cerebral blood flow and volume with positron emission to-mograpy during isoflurane administration in the hypocapnic baboon. Anesthesiology 1990: 72: 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  • Artru AA, Steen PA, Michenfender JD. Cerebral metabolic effects of nalaxone administered with anaesthetic and subanaesthetic concentrations of halothane in the dog. Anesthesiology 1980: 52: 217–220.

    Article  PubMed  CAS  Google Scholar 

  • Artru AA. Relationship between cerebral blood volume and CSF pressure during anesthesia with halothane or enflurane in dogs. Anesthesiology 1983: 58: 533–539.

    Article  PubMed  CAS  Google Scholar 

  • Artru AA. Effects of enflurane and isoflurane on resistance to reabsorption of cerebrospinal fluid in dogs. Anesthesiology 1984c: 61: 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Artru AA. Effects of halothane and fentanyl anesthesia on resistance to reabsorption of CSF. J Neurosurg 1984d: 60: 252–256.

    Article  PubMed  CAS  Google Scholar 

  • Artru AA. Isoflurane does not increase the rate of CSF production in the dog. Anesthesiology 1984a: 60: 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Artru AA. Relationship between cerebral blood volume and CSF pressure during anesthesia with isoflurane or fentanyl in dogs. Anesthesiology 1984b: 60: 575–579.

    Article  PubMed  CAS  Google Scholar 

  • Artru AA. Cerebral metabolism and EEG during combination of hypocapnia and isoflurane-induced hypotension in dogs. Anesthesiology 1986a: 65: 602–608.

    Article  PubMed  CAS  Google Scholar 

  • Artru AA. Survival time during hypoxia: Effects of nitrous oxide, thiopental, and hypothermia (Editorial) Anesth Analg 1988b:67: 913–916.

    CAS  Google Scholar 

  • Artru AA. Rate of cerebrospinal fluid formation, resistance to reabsorption of cerebrospinal fluid, brain tissue water content, and electroencephalogram during desflurane anesthesia in dogs. Journal of Neurosurgical Anesthesiology 1993: 5: 178–186.

    PubMed  CAS  Google Scholar 

  • Artru AA. Intracranial volume/pressure relationsship during desflurane anesthesia in dogs: Comparison with isoflurane and thiopental/halothane. Anesth Analg 1994: 79: 751–760.

    CAS  Google Scholar 

  • Artru AA, Lam AM, Johnson JO, Sperry RJ. Intracranial pressure, middle cerebral artery flow velocity, and plasma inorganic cencentrations in neurosurgical patients receiving sovoflurane or isoflurane. Anesth Analg 1997: 85: 587–592.

    PubMed  CAS  Google Scholar 

  • Artru AA, Momota Y. Rate of CSF formation and resitance to reabsorption of CSF during sevoflurane or remifentanil in rabbits. J Neurosurg Anesthesiol 2000: 12: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Astrup J, Rosen¢rn J, Cold GE, et al. Minimum cerebral blood flow and metabolism during craniotomy. Effect of thipen-tal loading. Acta Anaesthesiol Scand 1984: 28: 478–481.

    Article  PubMed  CAS  Google Scholar 

  • Avramov MN, Shingu K, Morris K. Pregressive changes in electroencephalographs responses to nitrous oxide in humans. A possible acute drug tolerance. Anesth Analg 1990: 70: 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Back T, Kohno K, Hossmann KA. Cortical negative DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression: effect on blood flow, tissue oxygenation, and electroencephalogram. J Cereb Blood Flow Metab 1994: 14: 12–19.

    Article  PubMed  CAS  Google Scholar 

  • Baker KZ. Desflurane and sevoflurane are valuable additions to the practice of neuroanesthesiology: pro. J Neurosurg Anesthesiol 1997: 9: 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Balslev-J¢rgensen B, Misfeldt BB. Intracranial pressure during recovery from nitrous oxide and halothane anesthesia in neurosurgical patients. Br J Anaesth 1975: 47: 977–981.

    Article  Google Scholar 

  • Banks MI, Pearce RA. Dual actions of volatile anesthetics on GABAa IPCs: Dissociation of blocking and prolonging effects. Anesthesiology 1999: 90: 120–134.

    Article  PubMed  CAS  Google Scholar 

  • Barker J. Nitrous oxide in neurosurgical anaesthesia (editorial). Br J Anaesth 1987: 59: 146–147.

    Article  PubMed  CAS  Google Scholar 

  • Baughman VL, Hoffman WE, Miletich DJ, et al. Neurologic outcome in rats following incomplete cerebral ischaemia during halo thane, isoflurane, or N2O. Anesthesiology 1988: 69: 192–198.

    Article  PubMed  CAS  Google Scholar 

  • Baughman VL, Hoffman WE, Miletich DJ, Albrecht RE Isoflurane vs. methohexital during incomplete cerebral ischaemia in the rat. Anesth Analg 1989a: 68: S19.

    Article  Google Scholar 

  • Baughman VL, Hoffman WE, Thomas C, et al. The interaction of nitrous oxide and isoflurane with incomplete cerebral ischemia in the rat. Anesthesiology 1989b: 70: 767–774.

    Article  PubMed  CAS  Google Scholar 

  • Baughman VL, Hoffman WE, Thomas C, et al. Comparison of methohexital and isoflurane on neurologic outcome and histopathology following incomplete ischemia in rats. Anesthesiology 1990a: 72: 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Baughman VL, Hoffman WE, Thomas C, et al. Cerebrovascular and cerebral metabolic effects of N2O in unrestrained rats. Anesthesiology 1990b: 73: 269–272.

    Article  PubMed  CAS  Google Scholar 

  • Becker GL, Pelligrino DA, Miletich DJ, Albrecht RR The effect of nitrous oxide on oxygen consumption by isolated cerebral cortex mitochondria. Anesth Analg 1986: 65: 355–359.

    PubMed  CAS  Google Scholar 

  • Bedforth N, Hardman JG, Nathanson MH. Cerebral hemodynamics response to the introduction of desflurane: A comparison with sevoflurane. Anesth Analg 2000: 91: 152–155.

    PubMed  CAS  Google Scholar 

  • Belapavlovic M, Buchthal A, Beks JWE Barbiturates for cerebral aneurysm surgery. Acta Neurochir 1985: 76: 73–81.

    Article  Google Scholar 

  • Belapavlovic M, Buchthal A. Effect of isoflurane on intracranial pressure in patients with intracranial mass lesions. In: Miller JD, Teasdale GM, Rowan JO, Galbraith SL, Mendelow AD (eds); Intracranial Pressure VI, Springer Verlag, berlin, Heidelberg 1986: 725–731.

    Chapter  Google Scholar 

  • Bendo AA, Kaas IS, Cottrell JE. Anesthetic protection against anoxic damage in the rat hippocampal slice. Brain Research 1987: 403: 136–141.

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen AO, Cold GE, Astrup J, Rosen¢rn J. Thiopental loading during controlled hypotension for intracranial aneurysm surgery Acta Anaesthesiol Scand 1984: 28: 473–477.

    Article  CAS  Google Scholar 

  • Bergholt B, Plougmann B, Astrup J, et al. Blood flow velocities in middle cererbal artery during inhalation of 30% stable xenon. Acta Neurol Scand 1996: (suppl) 166: 46–49.

    Google Scholar 

  • Berkowitz RA, Ngai SH, Finck AD. Nitrous oxide analgesia: resenblance to opiate action. Science 1976: 194: 967–968.

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz RA, Hoffman WE, Cunnigham F, McDonald T. Changes in cerebral blood velocity in children during sevoflurane and halothane anesthesia. J Neurosurg Anesthesiol 1996: 8: 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Bickler PE, Buck LT, Hansen BM. Effects of isoflurane and hypothermia on glutamate receptor-mediated calcium influx in brain slices. Anesthesiology 1994: 81: 1461–1469.

    Article  PubMed  CAS  Google Scholar 

  • Bito H, Ikeda K. Plasma-inorganic fluoride and intracircuit degradation product concentrations in long-duration, low-flow sevoflurane anesthesia. Anesth Analg 1994: 79: 946–951.

    Article  PubMed  CAS  Google Scholar 

  • Bito H, Ikeuchi Y, Ikeda K. Effects of low-flow sevoflurane anesthesia on renal function: comparison with high-flow sevoflurane anesthesia and low-flow isoflurane asneshtesia. Anesthesiology 1997: 86: 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  • Bisonnette B, Leon JE Cerebrovascular stability during isoflurane anaesthesia in children. Can J Anaesth 1992: 39: 128–134.

    Article  PubMed  CAS  Google Scholar 

  • Black S, Konstadt S, Sami H, Roa T. Effect of 1–653 (desflurane) on somatosensory evoked potentials [abstract]. Anesthesiology 1990: 73: A181.

    Article  Google Scholar 

  • Blaise G, To Q, Parent M, et al. Does halothane interfere with the release, action, or stability of endothelium-derived relaxing factor/Nitric oxide? Anesthesiology 1994: 80: 417–426.

    Article  PubMed  CAS  Google Scholar 

  • Boop WC, Knight R. Enflurane anesthesia and changes of intracranial pressure. J Neurosurg 1978: 48: 228–231.

    Article  PubMed  CAS  Google Scholar 

  • Botty C, Brown B, Stanley V, et al. Clinical experiences with the compound 347, a halogenated anesthetic compound. Anest Analg 1968: 47: 499–505.

    Article  CAS  Google Scholar 

  • Brandt L, Dick W, Erdmann K. Nitrous oxide influences EEG changes induced by halothane, enflurane and isoflurane. Anesthesiology 1985: 63: A409.

    Article  Google Scholar 

  • Brian JE, McPherson RW, Traystman RJ. Evolution of cerebral blood flow with time during 1.4 and 2.8% isoflurane in dog. Anesthesiology 1988: 69: A532.

    Article  Google Scholar 

  • Brian JE, Traystman RJ, McPherson RW. Changes in cerebral blood flow over time during isoflurane anesthesia in dogs. J Neurosurg Anesthesiol 1990: 2: 122–130.

    Article  PubMed  Google Scholar 

  • Broich H, Bülau P, Hartmann A. et al. The effect of stable xenon inhalation on cerebral blood flow velocities and topographic electroencephalography in normal volunteers. In Yonas H (ed): Cerebral blood flow measurement with stable xenon enhanced computed tomography. New York; Raven Press 1992: 292–295.

    Google Scholar 

  • Bundgaard H, Jensen K, Cold GE, et al. Effects of perioperative indomethacin on intracranial pressure, cerebral blood flow, and cerebral metabolism in patients subjected to craniotomy for cerebral tumors. J Neurosurg Anesthesiol 1966: 8: 273–279.

    Article  Google Scholar 

  • Bundgaard H, Cold GE. A prospective comparative study of ICP during three anesthetics for elective craniotomy. Acta Anaestheiol Scand 1997: 41: (suppll0): 166.

    Article  Google Scholar 

  • Bundgaard H, Cold GE. A prospective study of ICP during two anesthetics for elective craniotomy. Acta Anaesthesiol Scand 1997: 41: (suppl 110): 195.

    Google Scholar 

  • Bundgaard H, Landsfeldt U, Cold GE. Subdural monitoring of ICP during craniotomy.Acta Neurochir 1998: (suppl 71): 276–278.

    Google Scholar 

  • Bundgaard H, von Oettingen G, Larsen KM, et al. Effects of sevoflurane on intracranial pressure, cerebral blood flow, and cerebral metabolism. A dose-response study in patients subjected to craniotomy for cerebral tumours. Acta Anaesthesiol Scand 1998: 42: 621–627.

    Article  PubMed  CAS  Google Scholar 

  • Burchiel KJ, Stockard JJ, Calverley RK, Smith NT. Relationship of pre and postanaesthetic EEG abnormalities to enflu-rane-induced seizure activity. Anesth Analg 1977: 56: 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Busto R, Dietrich W, Globus M, et al. Small differences in intraischemic brain temperature critically determine the extent of neuronal injury. J Cereb Blood Flow Metab 1987: 7: 729–738.

    Article  PubMed  CAS  Google Scholar 

  • Busto R, Globus M-T, Dietrich W, et al. Effect of mild hypothermia on ischemic-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 1989: 20: 904–910.

    Article  PubMed  CAS  Google Scholar 

  • Campkin TV. Isoflurane and cranial extradural pressure, A study in neurosurgical patients. Br J Anaesth 1984: 56: 1083–1087.

    Article  PubMed  CAS  Google Scholar 

  • Campkin TV, Flinn RM. Isoflurane: Its use to induce hypotension in neurosurgical patients. Europ J Anesthesiology 1986: 3: 395–401.

    CAS  Google Scholar 

  • Campkin TV, Flinn RM. Isoflurane and cerebrospinal fluid pressure. A study in neurosurgical patients undergoing intracranial shunt procedures. Anaesthesia 1989: 44: 50–54.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson C, Hagerdal M, Siesjo BK. Increase in cerebral oxygen uptake and blood flow in immobilization stress. Acta Physiol Scand 1975a: 95: 206–208.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson C, Hagerdal M, Siesjo BK. The effect of nitrous oxide on oxygen consumption and blood flow in the cerebral cortex of the rat. Acta Anaesth Scand 1976a: 20: 91–95.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson C, Hagerdal M, Kaasik AE, Siesjo BK. The effects of diazepam on cerebral blood flow and oxygen consumption in rats and its synergistic interaction with nitrous oxide. Anesthesiology 1976b: 45: 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson C, Chapman AG. The effects of diazepam on the cerebral metabolic state in rats and its interaction with nitrous oxide. Anesthesiology 1981: 54: 488–495.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter RL, Eger EI II, Johnson BH, et al. Pharmacokinetics of inhaled anaesthetics in humans: Measurements during and after the simultaneous administration of enflurane, halothane, isoflurane, methoxyplurane and nitrous oxide. Anesth Analg 1986: 65: 575–582.

    Article  PubMed  CAS  Google Scholar 

  • Chapman CR, Benedetti C. Nitrous oxide effects on cerebral evoked potential to pain: partial reversal with a narcotic antagonist. Anesthesiology 1979: 51: 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Chen RYZ, Fan FC, Schuessler GB, Chien S. Distribution of cerebral blood flow (CBF) during halothane anesthesia. Anesthesiology 1982: 57: A37.

    Article  Google Scholar 

  • Chen RYZ, Fan FC, Carlin RD, et al. Comparison of regional cerebral blood flow during isoflurane and halothane induced hypotension. Anesthesiology 1984: 61: A21.

    Article  Google Scholar 

  • Cheng S-C, Brunner Ea. Inhibition of GABA metabolism in rat brain slices by halothane. Anesthesiology 1981: 55: 26–33.

    Article  PubMed  CAS  Google Scholar 

  • Chi OZ, Anwar M, Sinha AK, et al. Effects of isoflurane on transport across the blood-brain barrier. Anesthesiology 1992: 76: 426–431.

    Article  PubMed  CAS  Google Scholar 

  • Cho S, Fujigaki T, Uchiyama Y, et al. Effects of sevoflurane with and without nitrous oxide on human cerebral circulation. Anesthesiology 1996: 85: 755–760.

    Article  PubMed  CAS  Google Scholar 

  • Chong KY, Craen RA, Murkin JM, et al. Rate of change of cerebral blood flow velocity with hyperventilation during anaesthesia in humans. Can J Anesth 2000: 47: 125–130.

    Article  PubMed  CAS  Google Scholar 

  • Christensen MS, H¢edt-Rasmussen K, Lassen NA. Cerebral vasodilatation by halothane anaesthesia in man and its potentiation by hypotension and hypercapnia. Br J Anaesth 1967: 927–934.

    Google Scholar 

  • Christys AR, Moss E, Powell D. Retrospective study of early postoperative convulsions after intracranial surgery with isoflurane or enflurane anaesthesia. Br. J Anaesth 1989: 62: 624–627.

    Article  PubMed  CAS  Google Scholar 

  • Clark DL, Hosick EC, Adams N, et al. Neural effects of isoflurane (Forane) in man Anesthesiology 1973: 39: 261–270.

    CAS  Google Scholar 

  • Cohen EN, Chow KL, Mathers L. Autoradiographic distribution of volatile anaesthetics within the brain. Anesthesiology 1972: 37: 324–331.

    Article  PubMed  CAS  Google Scholar 

  • Cold GE. Nitrous oxide and intracranial pressure. Br J Anaesth 1975:47: 1119.

    Article  PubMed  CAS  Google Scholar 

  • Cold GE, Christensen KJS, Nordentoft J, et al. Cerebral blood flow, cerebral metabolic rate of oxygen and relative CO2 reactivity during neurolept anesthesia in patients subjected to craniotomy for supratentorial cerebral tumors. Acta An-aesthesiol Scand 1988. 32: 310–315.

    Article  CAS  Google Scholar 

  • Cold GE, Tange M, Jensen TM, Ottesen S. Subdural pressure measurement during craniotomy. Correlation with tactile estimation of dural tension and brain herniation after opening of dura. Br J Neurosurg 1996: 10: 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Cold GE, Bergholt B, von Oettingen G, et al. Is focal decline of blood flow to anterior cingulate during inhalation of 33% stable Xenon a key to anaesthesia. Acta Anaesthesiol Scand 1999 (suppl 114):43: 113.

    Google Scholar 

  • Cole DJ, Drummond JC, Shapiro HM. A comparison of the extent of ischaemia following middle cerebral artery occlusion during three induced hypotensive techniques. Anesthesiology 1987: 67: A571.

    Article  Google Scholar 

  • Cole DJ, Shapiro HM. Different 1.2 MAC combinations of nitrous oxide-enflurane cause unique cerebral and spinal cord metabolic responses in the rat. Anesthesiology 1989: 70: 787–792.

    Article  PubMed  CAS  Google Scholar 

  • Constant I, Dubois M-C, Piat V et al. Changes in electroencephalogram and autonomic cardiovascular activity during induction of anesthesia with sevoflurane compared with halothane in children. Anesthesiology 1999: 91: 1604–1615.

    Article  PubMed  CAS  Google Scholar 

  • Conzen PF, Vollmar B et al. Systemic and regional hemodynamics of isoflurane and sevoflurane in rats. Analg Anesth 1992: 74: 79–88.

    CAS  Google Scholar 

  • Cucchiara RF, Theye RA, Michenfelder JD. The effects of isoflurane on canine cerebral metabolism and blood flow. Anesthesiology 1974: 40: 571–574.

    Article  PubMed  CAS  Google Scholar 

  • Cullen SC, Eger EI II, Cullen BF, Gregory P. Observations on the anesthetic effect of combination of xenon and halothane. Anesthesiology 1969: 31: 305–309.

    Article  PubMed  CAS  Google Scholar 

  • Cunitz G, Danhauser I, Gruss P. Die Wirkung con Enflurane (Etrane) im Vergleich zu Halothan auf den intracranielle Druck. Anaesthesist 1976: 25: 323–330.

    PubMed  CAS  Google Scholar 

  • Dahlgren N, Ingyar M, Yokoyama H, Siesjo BK. Effect of in-domethacin on local cerebral blood flow in awake, minimally restrained rats. J Cereb Blood Flow Metab 1981: 1: 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Darimont PC, Jenkins LC. The influence of intravenous anaesthetics on enflurane-induced central nervous system seizure activity. Can Anesth Soc J 1977: 24: 42–56.

    Article  CAS  Google Scholar 

  • Darby JM, Yonas H, Pentheny S. et al. Intracranial pressure response to stable xenon inhalation in patients with head injury. Surg Neurol 1989: 32: 343–345.

    Article  PubMed  CAS  Google Scholar 

  • Dash HH, Bithal PK, Muley S, et al. Tension pneumocephalus following posterior fossa surgery in sitting position. J Anaesth Clin Pharmacol 1990: 6: 207–212.

    Google Scholar 

  • De Jong RH, Heavner JE. Correlation of the Ethrane Electroencephalogram with motor activity in cats. Anesthesiology 1971: 35: 474–481.

    Article  PubMed  Google Scholar 

  • DeRood M, Deloof T, Berre J, et al. Effect of 1% enflurane anesthesia on cerebral blood flow and metabolism in neurosurgical patients during normo- and hyperventilation. Acta Anaesthesiol Belg 1980: 31 (suppl): 3–19.

    Google Scholar 

  • DeSousa SLM, Dickinson R, Lieb WR, Franks NP. Contrasting synaptic actions of the inhalational general anesthetics isoflurane and Xenon. Anesthesiology 2000: 92: 1055–1066.

    Article  CAS  Google Scholar 

  • Deutsch G, Samra SK. Effects of ntrous oxide on global and regional cortical blood flow. Stroke 1990: 21: 1293–1298.

    Article  PubMed  CAS  Google Scholar 

  • Dewitt DS, Fatouros PP, Wist AO, et al. Stable xenon versus radiolabeled microsphere cerebral blood flow measurements in baboons. Stroke 1989: 20: 1716–1723.

    Article  PubMed  CAS  Google Scholar 

  • DiGiovanni AJ, Goodrick J, Neigh JL, et al.. The effect of halothane anaesthesia on intracranial pressure in the presence of intracranial hypertension. Anesth Analg 1974: 53: 823–828.

    Article  PubMed  CAS  Google Scholar 

  • Domino KB, Hemstad JR, Lam AM, et al. Effect of nitrous oxide in intracranial pressure after cranial-dural closure in patients undergoing craniotomy. Anesthesiology 1992: 77: 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Drummond JC, Todd MM, Toutant SM, Shapiro HM. Brain surface protrusion during enflurane, halothane and isoflurane anesthesia in cats. Anesthesiology 1983a: 59: 288–293.

    Article  PubMed  CAS  Google Scholar 

  • Drummond JC, Todd MM. Shapiro HM. Cerebral blood flow autoregulation in the cat during anesthesia with halothane and isoflurane. Anesthesiology 1983b: 55: A305.

    Google Scholar 

  • Drummond JC, Todd MM. The response of feline cerebral circulation to PaCCb during anesthesia with isoflurane and halothane and during sedation with nitrous oxide. Anesthesiology 1985: 62: 268–273.

    Article  PubMed  CAS  Google Scholar 

  • Drummond JC, Todd MM, Scheller MS, Shapiro HM. A comparison of the direct cerebral vasodilating potencies of halothane and isoflurane in the New Zealand White Rabbit. Anesthesiology 1986: 65: 462–467.

    Article  PubMed  CAS  Google Scholar 

  • Drummond JC, Scheller MS, Todd MM. The effect of nitrous oxide on cortical blood flow during anaesthesia with halothane and isoflurane, with and without morphine, in the rabbit. Anesth Analg 1987: 66: 1083–1089.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer RC, Rampil IJ, Egerll EI. Bennett HL. The electroencephalogram does not predict depth of isoflurane anesthesia. Anesthesiology 1994: 81: 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Dubois MY, Sato S, Chassy J, Macnamara TE. Effects of enflurane on brainstem auditory evoked responses in humans. Anesth Analg 1982: 61: 898–902.

    Article  PubMed  CAS  Google Scholar 

  • Duffy C, Matta BE Sevoflurane and anaesthesia for neurosurgery. J Neurosurg Anesthesiol 2000: 12: 128–140.

    Article  PubMed  CAS  Google Scholar 

  • Ebert TJ, Harkin CP, Muzzi M. Cardiovascular responses to sevoflurane: a review. Anesth Analg 1995: 81: S11–22.

    Article  PubMed  CAS  Google Scholar 

  • Ebert TJ, Robinson BJ, Uhrich TD, et al. Recovery from sevoflurane anaesthesia: a comparison to isoflurane and propofol anaesthesia. Anesthesiology 1998: 89: 1524–1531.

    Article  PubMed  CAS  Google Scholar 

  • Eger EI, Stevens WC, Cromwell TH. The electroencephalogram in man anesthetized with forene. Anesthesiology 1971: 35: 504–508.

    Article  PubMed  CAS  Google Scholar 

  • Eger EI II, Koblin DD, Bowland T, et al. Nephrotoxicity of sevoflurane versus desflurane anesthesia in volunteers. Anesth Analg 1997: 84: 160–168.

    PubMed  CAS  Google Scholar 

  • Eger EI II, Gong D, Koblin DD, et al. The effect of aneshtetic duration on kinetic and recovery characteristic of desflurane versus sevoflurane, and on the kinetic charactiristic of compound A in volunteers. Anesth Analg 1998: 86: 414–421.

    PubMed  CAS  Google Scholar 

  • Eilers H, Bickler PE. Hypothermia and isoflurane similarly inhibit glutamate release evoked by chemical anoxia in rat cortical brain slices. Anesthesiology 1996: 85: 600–607.

    Article  PubMed  CAS  Google Scholar 

  • Eintrei C, Leszniewski W, Carlsson C. Local application of 133-Xenon for measurement of regional cerebral blood flow (rCBF) during halothane, enflurane and isoflurane an-aeshesia in humans. Anesthesiology 1985: 63: 391–394.

    Article  PubMed  CAS  Google Scholar 

  • Engberg M, Öberg B, Christensen KS, et al. The arterio-venous oxygen content differences (AVDO2) during halothane and neuroleptanaesthesia in patients subjected to craniotomy. Acta Anaesthiol Scand 1989: 33: 642–646.

    Article  CAS  Google Scholar 

  • Engberg M, Meisen NC, Herlevsen P, et al. Changes of blood pressure and cerebral arterio-venous oxygen content differences (AVDO2) with and without bupivacain scalp infiltration during craniotomy. Acta Anaesthiol Scand 1990: 34: 346–349.

    Article  CAS  Google Scholar 

  • Erdmann K, Brandt L. Paradoxical EEG arousal phenomenon following anesthesia with isoflurane. Anesthesiology 1986: 65: A347.

    Article  Google Scholar 

  • Eskinder H, Hillard CJ, Flynn N, et al. Halothane-induced vasodilation of canine cerebral arteries may be mediated through cyclic GMP formation. Anesth Analg 1992: 74: S91.

    Google Scholar 

  • Eskinder H, Gebremedhin D, Lee JG, et al. Halothane and isoflurane decrease the open state probability of K+ channels in dog cerebral arterial muscle cells. Anesthesiology 1995: 82: 479–490.

    Article  PubMed  CAS  Google Scholar 

  • Farber NE, Harkin CP, Niedfeldt J, et al. Regional-specific and agent-specific dilation of intracerebral microvessels by volatile anesthetics in rat brain slices. Anesthesiology 1997: 87: 1191–1198.

    Article  PubMed  CAS  Google Scholar 

  • Finck AD, Samaniego E. Ngai SH. Irreversible opoid receptor blockade decreases the analgetic effects of ketamine and nitrous oxide in mice. Anesthesiology 1988: 69: A604.

    Article  Google Scholar 

  • Finck DA, Samaniego E, Ngai SH. Nitrous oxide selectively releases Met5-Enkephalin and Met5-enkephalin-Arg6-Phe7 into canine third ventricular cerebrospinal fluid. Anesth Analg 1995: 80: 664–670.

    PubMed  CAS  Google Scholar 

  • Fink H, Blobner M, Bogdanski R, et al. Effects of xenon on cerebral blood flow and autoregulation: an experimental study in pigs. Br J Anaesth 2000: 84: 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Firestone S, Firestone LL, Ferguson C, Blanck D. Staurosporine a protein kinase C inhibitor, decreases the general anesthetic requirement in Rana Pipiens tadpoles. Anesth Analg 1993: 77: 1026–1030.

    Article  PubMed  CAS  Google Scholar 

  • Fitch W, McDowall DG. Effect of halothane on intracranial pressure gradients in the presence of intracranial space-occupying lesions. Br J Anaesth 1971: 43: 904–911.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick JH, Gilboe DD. Effects of nitrous oxide on the cerebrovascular tone, oxygen metabolism, and electroencephalogram of the isolated perfused canine brain. Anesthesiology 1982: 57: 480–484.

    Article  PubMed  CAS  Google Scholar 

  • Flynn NM, Buljubasic N, Bosnjak ZJ, Kampine JP. Isoflurane produces endothelium-independent relaxation in canine middle cerebral arteries. Anesthesiology 1992: 76: 461–467.

    Article  PubMed  CAS  Google Scholar 

  • Fontenot HJ, Wilson RD, Norris JC, Ho IK. The GABA system: New evidence of neurotransmitter involvement in the mechanism of anesthesia. Anesthesiology 1984: 61: A327.

    Article  Google Scholar 

  • Forster A, VanHorn K, Marshall LF, Shapiro HM. Anesthetic effects on blood-brain barrier function during acute arterial hypertension. Anesthesiology 1978: 49: 26–30.

    Article  PubMed  CAS  Google Scholar 

  • Franks JJ, Horn J-L, Janicki PK, Singh G. Halothane, isoflurane, xenon, and nitrous oxide inhibit calcium ATPase activity in rat brain synaptic plasma membranes. Anesthesiology 1995a: 82: 108–117.

    Article  PubMed  CAS  Google Scholar 

  • Franks JJ, Horn J-L, Janicki PK, Singh G. Stable inhibition of brain synaptic plasma membrane calcium ATPase in rats anesthetized with halothane. Anesthesiology 1995b: 82: 118–128.

    Article  PubMed  CAS  Google Scholar 

  • Franks JJ, Wamil AW, Janicki PK, et al. Anesthetic-induced alteration of Ca2+ homeostasis in neural cells: A temperature-sensitive process that is enhanced by blockade of plasma memebrane Ca2+-ATPase isoforms. Anesthesiology 1998: 89: 149–164.

    Article  PubMed  CAS  Google Scholar 

  • Friedman GA, Norfleet EA, Bedford RE Discontinuation of nitrous oxide does not prevent pneumocephalus. Anesth Analg 1981: 60: 57–58.

    Article  PubMed  CAS  Google Scholar 

  • Friesen RH, Thieme RE, Honda AT, Morrison JE. Changes in anterior fontanel pressure in preterm neonates receiving isoflurane, halothane, fentanyl or ketamine. Anesth Analg 1987: 66: 431–434.

    PubMed  CAS  Google Scholar 

  • Frietsch T, Bogdanski R, Blobner M, et al. Effects of Xenon on cerebral blood flow and cerebral glucose utilization in rats. Anesthesiology 2001: 94: 290–297.

    Article  PubMed  CAS  Google Scholar 

  • Fujibayashi T, Sugiura Y, Yanagimoto M, et al. Brain energy metabolism and blood flow during sevoflurane and ha-lothane anesthesia: effects of hypocapnia and blood pressure fluctations. Acta Anaesthesiol Scand 1993: 37: 806–810.

    Article  PubMed  CAS  Google Scholar 

  • Fuller J, Gelb AW, Karlik S. The influence of halothane and in-novar on brain oedema formation. Can Anesth Soc J 1980: S110.

    Google Scholar 

  • Gelman S, Fowler KC, Smith LR. Regional blood flow during isoflurane and halothane anaesthesia. Anesth Analg 1984: 63: 557–565.

    PubMed  CAS  Google Scholar 

  • Gibson GE, Duffy TE. Impaired synthesis of acetylcholine by mild hypoxia or nitrous oxide. J Neurochem 1981: 36: 28–33.

    Article  PubMed  CAS  Google Scholar 

  • Giller CA, Purdy P, Lindstrom WW. Effects of inhaled stable xenon on cerebr of the Ethrane Electroencephalogram with motor activity in cats. Anesthesiology 1971: 35: 474–481.

    Article  Google Scholar 

  • Giller CA, Purdy P, Lindstrom WW. Effects of inhaled stable xenon on cerebral blood flow velocity. AJNR 1990: 11: 177–182.

    PubMed  CAS  Google Scholar 

  • Gonsowski CT, Laster MJ, Eger II EI, et al. Toxocoty of compound A in rats. Effect of a 3-hour administration. Anesthesiology 1994: 80: 556–565.

    Article  PubMed  CAS  Google Scholar 

  • Gordon E. The action of drugs on intracranial contents. In: Boulton TB, Bryce-Smith R et al. (eds); Progress in Anaes-thesiology, Excerpta Medica, Amsterdam 1970: 60.

    Google Scholar 

  • Gordon E. Anaesthesia for neurosurgery. In Emeric Gordon (ed) A basis and practice of neuroanaesthesia. Excerpta Medica 1974:173–198.

    Google Scholar 

  • Gordon E, Lagerkranser M, Rudehill A, von Host H. The effect of isoflurane on cerebrospinal fluid pressure in patients undergoing neurosurgery. Acta Anaesthesiol Scand 1988: 32: 108–112.

    Article  PubMed  CAS  Google Scholar 

  • Grady RE, Weglinsky MR, Sharbrough FW, Perkins WJ. Correlation of regional cerebral blood flow with ischemic elec-troencephalographic changes during sevoflurane- nitrous oxide anesthesia for carotid endarterectomy. Anesthesiology 1998: 88: 892–897.

    Article  PubMed  CAS  Google Scholar 

  • Graf R, Saito K, Hübel K. et al. Spreading depression-like DC-negativations turn into terminal depolarization after prolonged focal ischemia in cats. J Cereb Blood Flow Metab 1995: (suppl) 15: S15.

    Google Scholar 

  • Grant IS. Delayed convulsions following enflurane anaesthesia. Anaesthesia 1986: 41: 1024–1025.

    Article  PubMed  CAS  Google Scholar 

  • Grosslight K, Foster R, Colohan AR, Bedford RE Isoflurane for neuroanesthesia: Risk factors for increases in intracranial pressure. Anesthesiology 1985: 63: 533–536.

    Article  PubMed  CAS  Google Scholar 

  • Gur D, Yonas H, Jackson DL, Wolfson SK, et al. Measurement of cerebral blood flow during xenon inhalation as measured by the microsphere method. Stroke 1985: 16: 871–874.

    Article  PubMed  CAS  Google Scholar 

  • Gyulai FE, Firestone LL, Mintun MA. Winter PM. In vivo imaging of human limbic responses to nitrous oxide inhalation. Anesth Analg 1996: 83: 291–298.

    PubMed  CAS  Google Scholar 

  • Hans P, Dethier JC, Godin D, Stevenaert A. Compared effects of enflurane and of halothane on the intracranial pressure and the cerebral perfusion pressure in dog. Acta Anaes-theiol Belg 1980: 31 (suppl): 49–59.

    CAS  Google Scholar 

  • Hansen TD, Warner DS, Todd MM, et al. Distribution of cerebral blood flow during halothane versus isoflurane anesthesia in rats. Anesthesiology 1988a: 69: 332–337.

    Article  PubMed  CAS  Google Scholar 

  • Hansen TD, Warner DS, Todd MM. Nitrous oxide is a more potent cerebral vasodilator than either halothane or isoflurane. Anesthesiology 1988b: 69: A537.

    Article  Google Scholar 

  • Hansen TD, Warner DS, Todd MM, Vust LJ. The role of cerebral metabolism in determining the local cerebral blood flow effects of voliatile anesthetics: Evidence for persistent flow-metabolsm coupling. J Cereb Blood Flow Metab 1989a: 9: 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Hansen TD, Warner DS, Todd MM, Vust LJ. Effects of nitrous oxide and volatile anaesthetics on cerebral blood flow. Br J Anaesth 1989b: 63: 290–295.

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Kelly PJ, Cole DJ, et al. Isoflurane reduces N-methyl-D-aspartate toxicity in vivo in the rat cerebral cortex. Anesth Analg 1999: 89: 1442–1447.

    PubMed  CAS  Google Scholar 

  • Haraldsted V, Asmussen J, Herlevsen P, Cold GE. Cerebral arteriovenous difference of oxygen during gradual and sudden increase of the concentration of isoflurane for induction of deliberate hypotension. Acta Anaesthesiol Scand 1992: 33: 142–144.

    Article  Google Scholar 

  • Harkin CP, Hudetz AG, Schmeling WT, et al. Halothane-induced tation of intraparenchymal arterioles in rat brain slices: a conparison to sodium nitroprusside. Anesthesiology 1997: 86: 885–894.

    Article  PubMed  CAS  Google Scholar 

  • Harp JR, Nilsson L, Siesjö BK. The effect of halothane upon cerebral oxygen consumption in the rat. Acta Anaesth Scand 1976: 20: 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Harrington TR, Manwaring K, Hodak J. Local basal ganglia and brain stem blood flow in the head.injured patient using stable xenon-enhanced CT scanning. In Miller JD, Teasdale GM, Rowan JO et al. (eds) Intracranial Pressure VI, Berlin, Springer Verlag 1986: 680–686.

    Chapter  Google Scholar 

  • Harrison JL. Postoperative seizures after isoflurane anesthesia. Anesth Analg 1986: 65: 1235–1236.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Wassman H, Czernicki Z, et al. Effect of stable xenon in room air on regional cerebral blood flow and electroencephalogram in normal baboons. Stroke 1987: 18: 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Hartung J and Cottrell JE. Nitrous oxide reduces thiopental-induced prolongation of survival in hypoxic and anoxic mice. Anesth Analg 1987: 66: 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Heath KJ, Gupta S, Matta BE The effects of sevoflurane on cerebral hemodynamics during propofol anesthesia. Anesth Analg 1997: 85: 1284–1287.

    PubMed  CAS  Google Scholar 

  • Heneghan CPH, Thornton C, Navaratnarajah M, Jones JG. Effect of isoflurane on auditory evoked response in man. Br J Anaesth 1987: 59: 277–282.

    Article  PubMed  CAS  Google Scholar 

  • Henriksen HT, Balslev J¢rgensen P. The effect of nitrous oxide on intracranial pressure in patients with intracranial disorders. Br J Anaesth 1973: 45: 486–492.

    Article  PubMed  CAS  Google Scholar 

  • Hickey R, Bunegin L, Albin MS, et al. Cerebral blood flow responses during varying rates of isoflurane induced hypotension. Anesthesiology 1986: 65: A580.

    Article  Google Scholar 

  • Hickey R, Albin MS, Bunegin L, et al. Intracranial pressure dynamics during and subsequent to induced hypotension with isoflurane. Anesthesiology 1986: 65: A460.

    Article  Google Scholar 

  • Hiroso T, Inoue M, Uchida M et al. Enflurane-induced release of an excitatory amino acid, glutamate, from mouse brain synaptpsomes. Anesthesiology 1992: 77: 109–113.

    Article  Google Scholar 

  • Hoffman WE, Miletich DJ, Albrecht RF. Cardiovascular and regional blood flow changes during halothane anesthesia in the aged rat. Anesthesiology 1982a: 56: 444–448.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman WE, Edelman. Comparison of isoflurane and desflurane anesthetic depth using burst suppression of the electroencephalogram in neurosurgical patients. Anesth Analg 1995:81:811–816.

    PubMed  CAS  Google Scholar 

  • Hoffman WE, Charbel FT, Edelman G, Ausman JI. Thiopental and desflurane treatment for brain protection. Neurosurgery 1998a: 43: 1050–1053.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman WE, Charbel FT, Edelman G, et al. Comparison of etomidate and desflurane on brain gases and pH during prolonged middle cerebral artery occlusion. Anesthesiology 1998b: 88: 1188–1194.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman WE, Wheeler P, Edelman G, et al. Hypoxic brain tissue following subarachnoid hemorrhage. Aneshtesiology 2000a: 92: 442–446.

    Article  CAS  Google Scholar 

  • Hoffman WE, Edelman G. Enhancement of brain tissue oxygenation during high dose isoflurane anaesthesia in the dog. J Neurosurg Anesthesiol 2000b: 12: 95–98.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman WE, Edelman G. Isoflurane increase brain oxygen reactivity in dogs. Anesth Analg 2000c: 91: 637–641.

    Article  PubMed  CAS  Google Scholar 

  • Holadya DA, Smith FR. Clinical characteristics and biotransformation of sevoflruane in healthy human volunteers. Anesthesiology 1981: 54: 100–106.

    Article  Google Scholar 

  • Homi J, Konchigeri HN, Exkenhoff JE, Linde HW. A new anesthetic agent-Forane. Preliminary observations in man. Anesth Analg 1972: 51: 439–477.

    Article  PubMed  CAS  Google Scholar 

  • Horn J-L, Franks JJ, Sastry BVR, Singh G. Xenon reduces Ca2+ adenosine triphosphatase pump activity in synaptic plasma membranes from the rat (abstract). Anesthesiology 1992: (suppl): A417.

    Google Scholar 

  • Hossmann KA. Glutamate-mediated injury in focal cerebral ischemia: the excitotoxin hypothesis revised. Brain Pathol 1994: 4: 22–36.

    Google Scholar 

  • Hymes JA. Seizure activity during isoflurane anesthesia. Anesth Analg 1985: 64: 367–368.

    PubMed  CAS  Google Scholar 

  • Ichinose F, Mi W-D, Miyazaki M, et al. Lack of correlation between the reduction of sevoflurane MAC and the cerebellar cyclic GMP concentrations in mice treated with 7-nitroin-dazole. Anesthesiology 1998: 89: 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Iida H, Ohata H, Iida M, et al. Isoflurane and sevoflurane induce vasodilation of cerebral vessels via ATP-sensitive channel activation. Anesthesiology 1998: 89: 954–960.

    Article  PubMed  CAS  Google Scholar 

  • Inada T, Shingu K, Uchida M, et al. Changes in the cerebral arteriovenous oxygen content difference by surgical incision are similar during sevoflurane and isoflurane anaesthesia. Can. J Anaesth 1996: 43: 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  • Ingvar M, Siesjo BK. Effect of nitrous oxide on local cerebral glucose utilization in rats. J Cereb Blood Flow Metab 1982: 2: 481–486.

    Article  PubMed  CAS  Google Scholar 

  • Jennett WB, McDowall DG, Barker J. The effect of halothane on intracranial pressure in cerebral tumors. J Neurosurg 1967: 26: 270–274.

    Article  PubMed  CAS  Google Scholar 

  • Jennett WB, Barker J, Fitch W, McDowall DG. Effect of anesthesia on intracranial pressure in patients with space-occupying lesions. Lancet 1969: i: 61–64.

    Google Scholar 

  • Joas TA, Stevens WC, Eger II EI. Electroencephalographic seizure activity in dogs during anesthesia. Br J Anaesth 1971: 43: 739–745.

    Article  PubMed  CAS  Google Scholar 

  • Johns RA, Mosciki JC, DiFazio CA. Nitric oxide sunthase inhibitor dose-dependently and reversibly reduces the threshold for halothane anaesthesia. Anesthesiology 1992: 77: 779–784.

    Article  PubMed  CAS  Google Scholar 

  • Johns RA, Tichotsky A, Muro M. et al. Halothane and isoflurane inhibit endothelium-derived relaxing factor-dependent cyclic guanosine monophsphate accumulation in endothelial cell-vascular smooth muscle Co-cultures inde-pendent of an effect on guanylyl cyclase activation. Anesthesiology 1995: 83: 823–834.

    Article  PubMed  CAS  Google Scholar 

  • Jones MV, Brooks PA, Harrison NL. Enhancement of gamma-aminobutyric acid-activated CI” currents in cultured rat hippocampal neurones by three volatile anaesthetics. J Physiol (Lond) 1992: 449: 279–293.

    CAS  Google Scholar 

  • Julien RM, Kavan EM. Electrographic studies of a new volatile anaesthetic agent: Enflurane (Ethrane). J Pharmacol and Exper Therapeut 1972: 183: 393–403.

    CAS  Google Scholar 

  • Junck L, Dhawan V, Thaler HT et al. Effects of xenon and krypton on regional cerebral blood flow in the rat. J Cereb Blood Flow Metab 1985: 126–132.

    Google Scholar 

  • Kaieda R, Todd MM, Cook LN, Warner DS. The effects of anesthetics and PaCO2 on the cerebrovascular, metabolic, and electroencephalographic responses to nitrous oxide in the rabbit. Anesth Analg 1989a: 68: 135–143.

    Article  PubMed  CAS  Google Scholar 

  • Kaieda R, Todd MM, Weeks JB, Warner DS. A comparison of the effects of halothane, isoflurane, and pentobarbital anesthesia on intracranial pressure and cerebral edema formation following brain injury in rabbits. Anesthesiology 1989c: 71: 571–579.

    Article  PubMed  CAS  Google Scholar 

  • Kant GJ, Muller TW, Lenox RH, Meyerhoff JL. In vivo effects of pentoparbitla and halothane anesthesia on levels of adenosine 3.5-monophosphate and guanosine 3,5-monophos-phate in rat brain regions and pituitary. Biochem Pharmacol 1980: 29: 1891–1896.

    Article  PubMed  CAS  Google Scholar 

  • Katz JJ, Todd MM, Warner DS. Quantitative comparison of cerebral blood volume in rats receiving halothane or isoflurane. Anesthesiology 1988: 69: A534.

    Article  Google Scholar 

  • Kawaguchi M, Kimbro JR, Drummond JC, et al. Isoflurane delays but does not prevent cerebral infarction in rats subjected to focal ischaemia. Anesthesiology 2000: 92: 1335–1342.

    Article  PubMed  CAS  Google Scholar 

  • Keats AS. Seizures from isoflurane. Anesth Analg 1985: 64: 1225–1226.

    Article  PubMed  CAS  Google Scholar 

  • Keita H, Henzel-Rouellé D, Dupont H, et al. Halothane and isoflurane increase spontaneous but reduce the N-methyl-D-aspartate-evoked dopamine release in rat striatal slices. Anesthesiology 1999: 91: 1788–1797.

    Article  PubMed  CAS  Google Scholar 

  • Kellenberger S. Malherbe P, Spiegel E. Function of the α1β2γ2Sγ-aminobutyric acid type A receptor is modulated by protein kinase C via multiple phsophorylation sites. J Biol Chem 1992: 267: 25660–25663.

    PubMed  CAS  Google Scholar 

  • Kharasch ED, Frink Jr EJ, Zager R. et al. Assessment of low-flow sevoflurane and isoflurane effects on renal function using sensitive markers of tubular toxociti. Anesthesiology 1997: 86: 1238–1254.

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Zornow MH, Illievich UM, et al. Sevofulrane versus halothane anesthesia after acute cryogenic brain injury in rabbits: relationship between arterial and intracranial pressure. J Neurosurg Anesthesiol 1994: 6: 260–264.

    PubMed  CAS  Google Scholar 

  • Kimbro JR, Kelly PJ, Drummond JC, et al. Isoflurane and pentobarbital reduce AMPA toxicity in vivo in the rat cerebral cortex. Anesthesiology 2000: 92: 806–812.

    Article  PubMed  CAS  Google Scholar 

  • Kindler CH, Eilers H, Donohoe P, et al. Volatile anesthetics increases intracellular calcium in cerebrocortical and hippocampal neurons. Anesthesiology 1999: 90: 1137–1145.

    Article  PubMed  CAS  Google Scholar 

  • Kitaguchi K, Nakajia T et al. The change in cerebral blood flow during hypotensive anesthesia induced by prostaglandin El.Masui 1992:41:766–771.

    PubMed  CAS  Google Scholar 

  • Kitaguchi K, Ohsumi H et al. Effects of sevoflurane on cerebral circulation and metabolism in patients with ischemic disease. Anesthesiology 1993. 79: 704–709.

    Article  PubMed  CAS  Google Scholar 

  • Kitahata LM, Galicich JM, Sato I. The effect of passive hyperventilation on intracranial pressure. J Neurosurg 1971: 34: 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Kitahata LM, Katz JD. Tension pneumocephalus after posterior fossa craniotomy, a complication of the sitting position. Anesthesiology 1976: 44: 448–450.

    Article  PubMed  CAS  Google Scholar 

  • Kochs E, Bischoff P, Pichlmeier U, Schulte am Esch J. Surgical stimulation induces changes in brain electrical activity during isoflurane/nitrous oxide anesthesia. Anesthesiology 1994: 80: 1026–1034.

    Article  PubMed  CAS  Google Scholar 

  • Koenig HM, Pelligrino DA, Albrecht RR Halothane vasodilation and nitric oxide in rat pial vessels. J Neurosurg Anes-thesiol 1993:5.264–271.

    CAS  Google Scholar 

  • Koenig HM What’s up with the new volatile anesthetics, des-flurane and sevoflurane, for neurosurgical patients?. Editorial. J Neurosurg Anesthesiol 1994.6: 229–232.

    PubMed  CAS  Google Scholar 

  • Koenig HM, Pelligrino DA, Wang Q, Albrecht RF. Role of nitric oxide and endothelium in rat pial vessel dilation response to isoflurane. Anesth Analg 1994: 79: 886–891.

    Article  PubMed  CAS  Google Scholar 

  • Kofke WA, Snider MT, Young RSK, Ramer JC. Prolonged low flow isoflurane anesthesia for status epilepticus. Anesthesiology 1985: 62: 653–656.

    Article  PubMed  CAS  Google Scholar 

  • Kofke WA, Hawkins RA, Davis DW, Biebuyck JE Increased brain glucose during isoflurane anesthesia. Anesthesiology 1986: 65: A582.

    Article  Google Scholar 

  • Kolbitsch C, Lorenz IH, Hörmann C, et al. A subanesthetic concentration of sevoflurane increases regional cerebral blood flow and regional cerebral blood volume and decreases regional mean transit time and regional cerebrovascular resistance in volunteers. Anesth Analg 2000: 91: 156–162.

    PubMed  CAS  Google Scholar 

  • Komatsu H, Taie S, Endo S, et al. Electrical seizures during sevoflruane anesthesia in two pediatric patients with epilepsy. Anesthesiology 1994: 81: 1535–1537.

    Article  PubMed  CAS  Google Scholar 

  • Kotani J, Sugioka S, Momota Y, Ueda Y. Effect of sevoflurane on intracranial pressure, sagittal sinus pressure, and the intracranial volume-pressure relation in cats. J Neurosurg Anesthesiol 1992: 4: 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Kruczek M, Albin MS, Wolf S, Bertoni JM. Postoperative seizure activity following enflurane anesthesia. Anesthesiology 1980: 53: 175–176.

    Article  PubMed  CAS  Google Scholar 

  • Kurata J, Nakao S-i, Murakawa M, et al. The cerebral cortex origin of enfluran-induced generalized seizures in cats. Anesth Analg 1994: 79: 713–718.

    Article  PubMed  CAS  Google Scholar 

  • Kuroda Y, Strebel S, Rafferty C, Bullock R. Neuropretective doses of N-methyl-D-aspartate receptor antagonists profoundly reduce the minimum alveolar anesthetic concentration (MAC) for isoflurane in rats. Anesth Analg 1993: 77: 795–800.

    Article  PubMed  CAS  Google Scholar 

  • Kuroda Y, Murakami M, Tsuruta J, et al. Preservation of the ratio of cerebral blood flow/metabolic rate for oxygen during prolonged anesthesia with isoflurane, sevoflurane, and halothane in humans. Anesthesiology 1996: 84: 555–561.

    Article  PubMed  CAS  Google Scholar 

  • Kuroda Y, Murakami M, Tsuruta J, Murakawa T. Blood flow velocity of middle cerebral artery during prolonged anesthesia with halothane, isoflurane, and sevoflurane in humans. Anesthesiology 1997: 87: 527–532.

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa T, Bonnekoh P, Hossmann K-A. Post-ischemic halothane anesthesia prevents delayed neuronal death of CA1 neurons in gerbils. J Cereb Blood Flow Metab. 1989: (suppl 1):S756.

    Google Scholar 

  • Kurumaji A, Mc Culloch J. Halothane anaesthesia modifies the changes in local cerebral glucose use induced by NMDA receptor blockade. J Cereb Blood Flow Metab. 1989: (suppl 1): S753.

    Google Scholar 

  • Lam AM, Gelb AW. Cardiovascular effects of isoflurane-induced hypotension for cerebral aneurysm surgery. Anesth Analg 1983: 62: 742–748.

    Article  PubMed  CAS  Google Scholar 

  • Lam AM, Mayberg TS, Eng CC, et al. Nitrous oxide-isoflurane anesthesia causes more cerebral vasodilation than an equipotent dose of isoflurane in humans. Anesth Analg 1994: 78: 462–468.

    Article  PubMed  CAS  Google Scholar 

  • Lam AM, Matta BF, Mayberg TS, Strebel S. Changes in cerebral blood flow velocity with onset of EEG silence during inhalation anaesthesia in humans: Evidence of flow-metabolism coupling? J Cereb Blood Flow Metab 1995: 15: 14–17.

    Article  Google Scholar 

  • Larsen R, Maurer I, Khambatta H. Wirkungen von Isofluran und Enfluran auf die zerebrale Hämodynamik und den zerebralen Sauerstoffverbrauch des Menschen. Anesthesist 1988: 37: 173–181.

    CAS  Google Scholar 

  • Lebowitz MH, Blitt CD, Dillon JB. Enflurane-induced central nervous system excitation and its relation to carbon dioxide tension. Anesth Analg 1972: 51: 355–363.

    Article  PubMed  CAS  Google Scholar 

  • Lee JG, Hudetz AG, Smith JJ, et al. The effect of halothane and isoflurane on cerebrocortical microcirculation and autoregulation as assessed by Laser-Doppler flowmetry. Anesth Analg 1994: 79: 58–65.

    PubMed  CAS  Google Scholar 

  • Lee JG, Smith JJ, Hudetz AG, et al. Laser-Doppler measurement of the effect of halothane and isoflurane on the cerebrovascular CO2 response in the art. Anesth Analg 1995: 80: 696–702.

    PubMed  CAS  Google Scholar 

  • Lenz C, Frietsch T, Fütterer C, et al. Local coupling of cerebral blood flow to cerebral glucose metabolisme during inhalation anesthesia in rats. Anesthesiology 1999: 91:1720–1723.

    Article  PubMed  CAS  Google Scholar 

  • Leon JE, Bissonnette B. Cerebrovascular responses to carbon dioxide in children anaesthetized with halothane and isoflurane. Can J Anaesth 1991: 38: 817–825.

    Article  PubMed  CAS  Google Scholar 

  • Levin A, Blanck TJJ. Halothane and isoflurane alter the Ca2+ binding properties of calmodulin. Anesthesiology 1995: 83: 120–126.

    Article  PubMed  CAS  Google Scholar 

  • Lin DM, Powell HC, Shapiro HM. Absence of longterm neuropathology after sustained enflurane epileptiform activity. Anesthesiology 1986: 65: A348.

    Article  Google Scholar 

  • Lloyd-Thomas AR, Cole PV, Prior PF, Isoflurane prevents EEG depression during trimetaphan-induced hypotension in man. Br J Anaesth 1990: 65: 313–318.

    Article  PubMed  CAS  Google Scholar 

  • Lockhart SH, Cohen Y, Yasuda N, et al. Cerebral uptake and elimination of desflurane, isoflurane, and halothane from rabbit brain: An In Vivo NMR study. Anesthesiology 1991: 74: 575–580.

    Article  PubMed  CAS  Google Scholar 

  • Loeb AL, Raj NR, Longnecker DE. Cerebellar nitric oxide is increased during isoflurane anesthesia compared to halothane anesthesia. A microdialysis study in rats. Anesthesiology 1998: 89: 723–730.

    Article  PubMed  CAS  Google Scholar 

  • Longnecker DE, Shuptrine JR, Seyde WC, Walker MS. Hemorrhage and cerebral tissue oxygenation: A comparison of ketamine, isoflurane and enflurane. Anesthesiology 1986: 65: A324.

    Article  Google Scholar 

  • Lu H, Werner C, Engehard K, Scholz M, Kochs E. The effect of sevoflurane on cerebral blood flow autoregulation in rats. Anesth Analg 1998: 87: 854–858.

    PubMed  CAS  Google Scholar 

  • Lukatch HS, Maclver MB. Voltage-clamp analysis of halothane effects on GABA (A fast) and GABA (A slow) inhibitory currents. Brain Res 1997: 765: 108–112.

    Article  PubMed  CAS  Google Scholar 

  • Lunsford LD, Maroon JC, Sheptak PE, Albin MS. Subdural tension pneumocephalus: report of two cases. J Neurosurg 1979: 50: 525–527.

    Article  PubMed  CAS  Google Scholar 

  • Luttropp HH, Rommer B, Perhag L, et al. Left ventricular performance and cerebral haemodynamics during xenon anaesthesia. Anaesthesia 1993: 48: 1045–1049.

    Article  PubMed  CAS  Google Scholar 

  • Lutz LJ, Milde JH, Milde LN. The cerebral function, metabolic, and hemodynamic effects of desflurane in dogs. Anesthesiology 1990: 73: 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Lutz LJ, Milde JH, Milde LN. The response of the canine cerebral circulation to hyperventilation during anesthesia with desflurane. Anesthesiology 1991: 74: 504–507.

    Article  PubMed  CAS  Google Scholar 

  • Lynch C, Pancrazio JJ. Snails, spiders and streospecificity-Is there a role for calcium channels in anesthtic mechanisms. Anesthesiology 1994: 81: 1–5.

    PubMed  Google Scholar 

  • Madsen JB, Cold GE, Eriksen HO, et al. CBF and CMRO2 during craniotomy for small supratentorial cerebral tumous in enflurane anaesthesia. A dose-response study. Acta Anaes-thesiol Scand 1986: 30: 633–636.

    Article  CAS  Google Scholar 

  • Madsen JB, Cold GE, Hansen ES, Bardrum B.Cerebral blood flow, cerebral metabolic rate of oxygen and relative CO2 reactivity during craniotomy for supratentorial cerebral tumours in halothane anaesthesia. A dose-response study. Acta Anaesthesiol Scand 1987a: 31: 454–457.

    Article  PubMed  CAS  Google Scholar 

  • Madsen JB, Cold GE, Hansen ES, Bardrum B. The effect of isoflurane on cerebral blood flow and metabolism in humans during craniotomy for small supratentorial cerebral tumors. Anesthesiology 1987b: 66: 332–336.

    Article  PubMed  CAS  Google Scholar 

  • Madsen JB, Cold GE, Hansen ES, et al. Cerebral blood flow and metabolism during isoflurane-induced hypotension in patients subjected to surgery for cerebral aneurysms. Br J An-aesth 1987c: 59: 1204–1207.

    Article  CAS  Google Scholar 

  • Madsen JB, Cold GE. Cerebral blood flow and oxygen uptake during anesthesia with halothane, enflurane or isoflurane. J Cereb Blood Flow Metab 1987: 7 (suppl 1): S628.

    Google Scholar 

  • Maekawa T, Tommasino C, Shapiro HM, et al. Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat. Anesthesiology 1986: 65: 144–151.

    Article  PubMed  CAS  Google Scholar 

  • Maekawa T, Ishikawa T, Nakakimura K, et al. Effects of volatile anesthetics on local cerebral blood flow and glucose utilization in brain ischemia. J Cereb Blood Flow Metab 1989: (suppl 1): S289.

    Google Scholar 

  • Malan TP, DiNardo JA, Isner RJ. et al. Cardiovascular effects of sevoflurane compared with those of isoflurane in volunteers. Anesthesiology 1995: 83: 918–928.

    Article  PubMed  CAS  Google Scholar 

  • Mann JD, Cookson SL, Mann ES. Differential effects of pentobarbital, ketamine hydrochoride, and enflurane anaesthesia on CSF formation rate and outflow resistance in the rat. In Shulman K, Marmarou A, Miller JD, Becker DP, Hochwald GM, Brock M (eds); Intracranial Pressure IV. Springer Verlag, Berlin, Heidelberg 1980: 466–471.

    Chapter  Google Scholar 

  • Manohar M, Parks C. Regional distribution of brain and myocardial perfusion in swine while awake and during 1.0 and 1.5 MAC isoflurane anesthesia produced without and with 50% nitrous oxide. Cardiovasc Res 1984: 18: 344–353.

    Article  PubMed  CAS  Google Scholar 

  • Mantz J, Cheramy A, Thierry A-M, et al. Anesthetic properties of riluzole (54272 RP), a new inhibitor of glutamate neurotransmission. Anesthesiology 1992: 76: 844–848.

    Article  PubMed  CAS  Google Scholar 

  • Marion DW, Crosby K. The effect of stable xenon on ICP. J Cereb Blood Flow Metab 1991: 11: 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Marks EC, Yonas H, Sanders HM, et al. Effects of xenon and CO2 inhalation on flow velocity measured with transcranial Doppler. In Yonas H (ed) Cerebral Blood Flow Meas-urement with Stable Xenon Enhanced Computed Tomography. New York, Raven Press. 1992: 286–291.

    Google Scholar 

  • Marx GF, Andrews IC, Orkin LR. Cerebrospinal fluid pressures during halothane anesthesia. Can Anaesth Soc J 1962: 9: 239–245.

    Article  PubMed  CAS  Google Scholar 

  • Mazzarella B, Mastronardi P, Cafiero T, et al. Isoflurane and intracranial pressure. In: Miller JD, Teasdale GM, Rowan JO, Galbraith SL, Mendelow AD (eds); Intracranial Pressure VI, Springer Verlag, Berlin, Heidelberg 1986: 732–735.

    Chapter  Google Scholar 

  • Mazze RI, Jamison R. Renal effect of sevoflurane. Anesthesiology 1995: 83: 443–445.

    Article  PubMed  CAS  Google Scholar 

  • Mazze RI, Jamison R. Low-flow (1l/min) sevoflurane. Is it safe. Anesthesiology 1997: 86: 1225–1227.

    Article  PubMed  CAS  Google Scholar 

  • McDowall DG, Harper AM, Jacobsen I. Cerebral blood flow during halothane anesthesia. Br J Anaesth 1963: 35: 394–402.

    Article  PubMed  CAS  Google Scholar 

  • McFarlane C, Warner D, Todd M, Nordholm L. AMPA-receptor competitive antagonism reduces halothane MAC in rats. Anesthesiology 1992: 77: 1165–1170.

    Article  PubMed  CAS  Google Scholar 

  • McFarlane C, Warner DS, Dexter F, Ludwig PA. Minimum alveolar concentration for halotahne in the rat is resistant to effects of forebrain ischemia and reperfusion. Anesthesiology 1994: 81: 1206–1211.

    Article  PubMed  CAS  Google Scholar 

  • McHenry LC. Quantitative cerebral blood flow determination. Application of a krypton 85 desaturation technique in man. Neurology (Minneap.) 1964: 14: 785–793.

    Article  Google Scholar 

  • McLeskey CH, Cullen BF, Kennery RD, Galindo A. Control of cerebral perfusion pressure during induction of anesthesia in high-risk neurosurgical patients. Anesth Analg 1974: 53: 985–992.

    Article  PubMed  CAS  Google Scholar 

  • McPherson RW, Traystman RJ. Effects of isoflurane on cerebral autoregulation. Anesthesiology 1987: 67: A 576.

    Article  Google Scholar 

  • McPherson RW, Brian JE, Traystman RJ. Cerebrovascular responsiveness to carbon dioxide in dogs with 1.4% and 2.8% isoflurane. Anesthesiology 1989a: 70: 843–850.

    Article  PubMed  CAS  Google Scholar 

  • McPherson RW, Brian JE, Traystman RJ. Evaluation of cerebral blood flow with time during isoflurane anesthesia. J Cereb Blood Flow Metab 1989b: 9: (suppl 1): S472.

    Google Scholar 

  • McPherson RW, Derrer SA, Traystman RJ. The effect of 1 MAC isoflurane on cerebrovascular response to increased or decreased cerebral perfusion pressure. Anesthesiology 1990: 73;No 3A, A1219.

    Google Scholar 

  • McPherson RW, Derrer SA, Traystman RJ. Changes in cerebral CO2 responsivity over time during isoflurane anesthesia in the dog. J Neurosurg Anesthesiol 1991: 3: 12–19.

    Article  PubMed  CAS  Google Scholar 

  • McPherson RW, Kirsch JR, Moore LE, Trystman RJ. N-Nitro-L-arginine methyl ester prevents cerebral hyperemia by inhaled anesthetics in dogs. Anesth Analg 1993: 77: 891–897.

    Article  PubMed  CAS  Google Scholar 

  • McPherson RW, Kirsch JR, Tobin JR, et al. Cerebral blood flow in primates is increased by isoflurane over time and is decreased by nitric oxide synthase inhibition. Anesthesiology 1994: 80: 1320–1327.

    Article  PubMed  CAS  Google Scholar 

  • Mennerick S, Jevtovic-Todorovic V, Todorovic SM, et al. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 1998: 18: 9716–9726.

    PubMed  CAS  Google Scholar 

  • Messick JM, Casement B, Sharbrough FW, et al. Correlation of regional cerebral blood flow (rCBF) with EEG changes during isoflurane anesthesia for carotid endarterectomy: Critical rCBF. Anesthesiology 1987: 66: 344–349.

    Article  PubMed  Google Scholar 

  • Meyer FB, Muzzi DA. Cerebral protection during aneurysm surgery with isoflurane anaesthesia. J Neurosurg 1992: 76: 541–543.

    Article  PubMed  CAS  Google Scholar 

  • Michenfelder JD, VanDyke RA, Theye RA. The effect of anesthetic agents and techniques on canine cerebral ATP and lactate levels. Anesthesiology 1970: 33: 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Michenfelder JD, Cucchiara RE Canine cerebral oxygen consumption during enflurane anesthesia and its modification during induced seizures. Anesthesiology 1974: 40: 575–580.

    Article  PubMed  CAS  Google Scholar 

  • Michenfelder JD, Theye RA. In vivo toxic effects of halothane on canine cerebral metabolic pathways. Am J Physiol 1975: 229: 1050–1055.

    PubMed  CAS  Google Scholar 

  • Michenfelder J. Milde J. Influence of anesthetics on metabolic functional, and pathological responses to regional cerebral ischemia. Stroke 1975: 6: 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Michenfelder JD, Theye RA. Canine systemic and cerebral effects of hypotension induced by hemorrhage, trimethaphan, halothane or nitroprusside. Anesthesiology 1977: 46: 188–195.

    Article  PubMed  CAS  Google Scholar 

  • Michenfelder JD. Does isoflurane aggravate regional cerebral ischaemia? (Editorial). Anesthesiology 1987: 66: 451–452.

    Article  PubMed  CAS  Google Scholar 

  • Michenfelder JD, Sundt TM, Fode N, Sharbrough FW. Isoflurane when compared to enflurane and halothane decreases the frequency of cerebral ischaemia during carotid endar-terectomy. Anesthesiology 1987: 67: 336–340.

    Article  PubMed  CAS  Google Scholar 

  • Michenfelder JD, Milde JH. The interaction of sodium nitroprusside, hypotension, and isoflurane in determining cerebral vasculature effects. Anesthesiology 1988: 69: 870–875.

    Article  PubMed  CAS  Google Scholar 

  • Mielck F, Stephan H, Weyland A, Sonntag H. Effect of one minimum alveolar anesthesic concentration sevoflurane on cerebral metabolisme, blood flow, and CO2 reactivity in cardiac patients. Anesth Analg 1999: 89: 364–369.

    PubMed  CAS  Google Scholar 

  • Milde LN, Milde JH, Lanier WL, Michenfelder JD. Comparison of the effects of isoflurane and thiopental on neurologic outcome and neuropathology after temporary focal cerebral ischemia in primates. Anesthesiology 1988: 69: 905–913.

    Article  PubMed  CAS  Google Scholar 

  • Milde LN. The hypoxic mouse model for screening cerebral protective agents: A re-examination. Anesth Analg 1988: 67: 917–922.

    Article  PubMed  CAS  Google Scholar 

  • Milde LN, Milde JH. The cerebral and systemic hemodynamic and metabolic effects of desflurane-induced hypotension in dogs. Anesthesiology 1991: 74: 513–518.

    Article  PubMed  CAS  Google Scholar 

  • Miletich DJ, Ivankovich AD, Albrecht RF, et al. Absence of autoregulation of cerebral blood flow during halothane and enflurane anesthesia. Anesth Analg 1976: 55: 100–109.

    PubMed  CAS  Google Scholar 

  • Mills P, Sessler DI, Moseley M, et al. An in vivo 19-F nuclear magnetic resonance study of isoflurane elimination from the rabbit brain. Anesthesiology 1987: 67: 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Mirsky AF, Stockard JJ, Skoff BF, Jones TA. Brainstem auditory evoked potential alterations during induced and spontaneous generalized spike-wave activity in animals and humans Neuroscience 1979: 5: 196.

    Google Scholar 

  • Misfeldt BB, Balslev J¢rgensen P, Rish¢j M. The effect of nitrous oxide and halothane upon the intracranial pressure in hypocapnic patients with intracranial disorders. Br J An-aesth 1974: 46: 853–858.

    Article  CAS  Google Scholar 

  • Miura Y, Grocott H, Bart RD, et al. Differential effects of anesthetic agents on outcome from near-complete but not incomplete global ischaemia in the rat. Anesthesiology 1998: 89: 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki H, Nakamura Y, Arai T, Kataoka K. Increase of glutamate uptake in astrocytes A possible mechanism of action of volatile anesthetics. Anesthesiology 1997: 86: 1359–1366.

    Article  PubMed  CAS  Google Scholar 

  • Miyono K, Tanifiji Y, Eger El. The effect of halothane dose on striatal dopamine: An in vivo microdialysis study. Brain Res 1993: 605: 342–344.

    Article  Google Scholar 

  • Morita H, Nemoto EM, Bleyaert AL, Stezoski SW. Brain blood flow autoregulation and metabolism during halothane anesthesia in monkeys. Am J Physiol 1977: 233: H670–676.

    PubMed  CAS  Google Scholar 

  • Moss E, McDowall DG. ICP increases with 50% nitrous oxide in oxygen in severe head injuries during controlled ventilation. Br J Anaesth 1979: 51: 757–760.

    Article  PubMed  CAS  Google Scholar 

  • Moss E, Dearden NM, McDowall DG. Effects of 2% enflurane on intracranial pressure and cerebral perfusion pressure. Br J Anaesth 1983: 55: 1083–1087.

    Article  PubMed  CAS  Google Scholar 

  • Muldoon SM, Hart JL, Bowen KA, Freas W. Attenuation of en-dothelium-mediated vasodilation by halothane. Anesthesiology 1988: 68: 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Murakawa M, Adachi T, Nakao S, et al. Activation of the cortical and medullary dopaminergic systems by nitrous oxide in rats: A possible neurochemical basis for psychotropic effects of postanesthetic nausea and vomiting. Anesth Analg 1994: 78: 376–381.

    Article  PubMed  CAS  Google Scholar 

  • Murkin JM, Farrar JK, Tweed WA, Guiraudon G. Cerebral blood flow, oxygen consumption and EEG during isoflurane anesthesia. Anest Analg 1986: 65: S107.

    Article  Google Scholar 

  • Murphy FL, Kennell EM, Johnstone RE, et al. The effects of enflurane, isoflurane and halothane on cerebral blood flow and metabolism in man. Abstracts and scientific papers. Annual meeting of the American Sos Anaesth 1974: 61–62.

    Google Scholar 

  • Murr R, Schürer L, Berger S. et al. Effects of isoflurane, fentanyl, or thiopental anesthesia on regional cerebral blood flow in rabbits. Anesth Analg 1993: 77: 898–907.

    Article  PubMed  CAS  Google Scholar 

  • Murr R, Berger S, Schürer L, et al. Influence of isoflurane, fentanyl, thiopental, and α-chloralose on formation of brain edema resulting from focal cryogenic lesion. Anesth Analg 1995:80: 1108–1115.

    PubMed  CAS  Google Scholar 

  • Mutch WAC, Ringaert KRA. Effects of haemorrhage and phenylephedrine on cerebral blood flow in rats during isoflurane anaesthesia. Can J Anaesth 1987: S106–S107.

    Google Scholar 

  • Mutch WAC, Malo LA, Ringaert KRA. Phenylephedrine increases regional cerebral blood flow following hemorrhage during isoflurane-oxygen anesthesia. Anesthesiology 1989: 70: 276–279.

    Article  PubMed  CAS  Google Scholar 

  • Muzzi DA, Losasso TJ, Dietz NN et al. The effect of desflurane and isoflurane on cerebrospinal fluid pressure in humans with supratentorial mass lesions. Anesthesiology 1992: 76: 720–724.

    Article  PubMed  CAS  Google Scholar 

  • Myers RR, Shapiro HM. Local cerebral metabolism during enflurane anesthesia:identification of epileptigenic foci. Electroenceph Clin Neurophysiol 1979: 47: 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Terasako K, Toda H, et al. Mechanisms of endo-thelium-dependent relaxation by halothane, isoflurane, and sevoflurane. Can J Anesth 1994: 41: 340–346.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Todd MM. Effects of hypothermia, pentobarbital, and isoflurane on postdepolarization amino acid release during complete global cerebral ischemia. Anesthesiology 1996: 85: 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Nandate K, Vuylsteke A, Ratsep I, et al. Effects of isoflurane, sevoflurane and propofol anaesthesia on jugular venous oxygen saturation in patients undergoing coronary artery bypass surgery. Br J Anaesth 2000: 84: 631–633.

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M, Astrup J, Infarct rim: effect of hyperglycemia on direct current potential and [14C]2-deoxyglucose phosphorylation. J Cereb Blood Flow Metab 1986: 6: 607–615.

    Article  PubMed  CAS  Google Scholar 

  • Nehls DG, Todd MM, Spetzler RF, et al. A comparison of the cerebral protective effects of isoflurane and barbiturates during temporary focal ischaemia in primates. Anesthesiology 1987: 66: 453–464.

    Article  PubMed  CAS  Google Scholar 

  • Neigh JL, Garman JK, Harp JR. The electroencephalographic pattern during anesthesia with ethrane: Effects of depth of anesthesia, PaCO2 and nitrous oxide. Anesthesiology 1971: 35: 482–487.

    Article  PubMed  CAS  Google Scholar 

  • Nellgård B, Mackensen GB, Pineda J, et al. Anesthetic effects on cerebral metabolic rate predict histologic outcome from near-complete forebrain ischemia in the rat. Anesthesiology 2000: 93: 431–436.

    Article  PubMed  Google Scholar 

  • Neundorfer B, Klose R. EEG-veränderungen bei kindern während enflurane-anästhesie. Prakt Anesth 1975: 10: 271–284.

    CAS  Google Scholar 

  • Newberg LA, Michenfelder JD. Cerebral protection by isoflurane during hypoxemia or ischemia. Anesthesiology 1983: 59: 29–35.

    Article  PubMed  CAS  Google Scholar 

  • Newberg LA, Milde JH, Michenfelder JD. The cerebral metabolic effects of isoflurane at and above concentrations that suppress cortical electrical activity. Anesthesiology 1983: 59: 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Newberg LA, Milde JH, Michenfelder JD. Systemic and cerebral effects of isoflurane-induced hypotension in dogs. Anesthesiology 1984: 60: 541–546.

    Article  PubMed  CAS  Google Scholar 

  • Newman B, Gelb AW, Lam AM. The effect of isoflurane-induced hypotension on cerebral blood flow and cerebral metabolic rate for oxygen in humans. Anesthesiology 1986: 64: 307–310.

    Article  PubMed  CAS  Google Scholar 

  • Ngai SH, Finck AD. Prolonged exposure to nitrous oxide decreases opiate receptor density in rat brainstem. Anesthesiology 1982: 57: 26–30.

    Article  PubMed  CAS  Google Scholar 

  • Nicholas JF, Lam AM. Isoflurane-induced hypotension does not cause inpairment in pulmonary gas exchange. Can Anesth Soc J 1984: 31: 352–358.

    Article  CAS  Google Scholar 

  • Nichikawa K-I and Maclver MB. Excitatory synaptic transmission mediated by NMDA receptors is more sensitive to isoflurane than are non-NMDA receptor-mediated responses. Anesthesiology 2000: 92: 228–236.

    Article  Google Scholar 

  • Nischikawa K, Maclver M. Agent-selective effects of volatile anesthetics on GABAa receptor-mediated synaptic inhibition in hippocampal interneurons. Anesthesiology 2001: 94: 340–347.

    Article  Google Scholar 

  • Nishiyama T, Sugai N, Hanaoka K. Cerebrovascular CO2 reactivity in elderly and younger adlut patients during sevoflurane anaesthesia. Can J Anaesth 1997: 44: 160–164.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama T, Matsukawa T, Yokoyama T, Hanaoka K. Cerebrovascular carbon dioxide reactivity during general anaesthesia: A comparison between sevoflurane and isoflurane. Anesth Analg 1999: 89: 1437–1441.

    CAS  Google Scholar 

  • Obrist WD, Jaggi JL, Harel D, Smith DS. Effect of stable xenon inhalation on human CBF. J Cereb Blood Flow Metab 1985: 5 (suppl 1): 557–558,.

    Google Scholar 

  • Ohm WW, Cullen BF, Amory DW, Kennedy RD. Delayed seizure activity following enflurane anesthesia. Anesthesiology 1975: 42: 367–368.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto H, Meng W, Ma J, et al. Isoflurane-induced cerebral hyperemia in neuronal nitric oxide synthase gene deficient mice. Anesthesiology 1997: 86: 875–884.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Yamada S, Mizumoto K, et al. Inhibitory effects of halothane, isoflurane, sevoflurane, and pentobarbital on the constriction induced by hypocapnia and bicarbonate in isolated canine cerebral arteries. J Neurosurg Anesthesiol 2000: 12: 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Okuda Y, McDowall DG, Ali MM, Lane JR. Changes in CO2 responsiveness and in autoregulation of the cerebral circulation during and after halothane-induced hypotension. J Neurol Neurosurg Psychiat 1976: 39: 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Olsen KS, Henriksen L, Owen-Falkenberg A, et al. Effect of 1 or 2 MAC isoflurane with or without ketanserin on cerebral blood flow autoregulation in man. Br J Anaesth 1994: 72: 66–71.

    Article  PubMed  CAS  Google Scholar 

  • Opacka-Juffry J, Ahier RG, Cremer JE. Nomifensine-induced increase in extracellular striatal dopamine is enhanced by isoflurane anesthesia. Synapse 1991: 7: 169–171.

    Article  PubMed  CAS  Google Scholar 

  • Ori C, Dam M, Pizzolato G, et al. Effects of isoflurane anesthesia on local cerebral glucose utilization in the rat. Anesthesiology 1986: 65: 152–156.

    Article  PubMed  CAS  Google Scholar 

  • Osawa M, Shingu K, Murakawa M, et al. Effects of sevoflurane on central nervous system electrical activity in cats. Anesth Analg 1994: 79: 52–57.

    Article  PubMed  CAS  Google Scholar 

  • Oshita S, Ishikawa T, Tokutsu Y, Takeshita H. Cerebral circulatory and metabolic stimulation with nitrous oxide in the dog. Acta Anaesth Scand 1979: 23: 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Pagel PS, Kampine JP, Schmeling WT, Wartier DC. Comparison of the systemic and coronary hemodynamic actions of desflurane, isoflurane, halothane, and enflurane in the chronically instrumented dog. Anesthesiology 1991: 74: 539–551.

    Google Scholar 

  • Pajewski TN, Difazio CA, Mosciki JC, Johns RA. Nitric oxide synthase inhibitor, 7-nitro indazole and nitro-L-arginine methyl ester dose-dependently reduce the threshold for isoflurane anaesthesia. Anesthesiology 1996: 85: 1111–1119.

    Article  PubMed  CAS  Google Scholar 

  • Pajewski TN, Cechova S, Johns RA. The soluble guanylyl cyclase inhibitor ODQ dose dependently reduces the threshold of isoflurane anaesthesia in rats (Abstract). Anesthesiology 1998: 89: A800.

    Article  Google Scholar 

  • Park WK, Pancrazio JJ, Suh CK, Lynch III C. Myocardial depressant effects of sevoflurane. Anesthesiology 1996: 84: 1166–1176.

    Article  PubMed  CAS  Google Scholar 

  • Patel PM, Mutch WAC. The cerebral pressure-flow relationship during 1.0 MAC isoflurane anesthesia in the rabbit: The effect of different vasopressors. Anesthesiology 1990: 72: 118–124.

    Article  PubMed  CAS  Google Scholar 

  • Patel PM, Drummond JC, Cole DJ, et al. Isoflurane and pentobarbital reduce the frequency of transient ischemic depolarizations during focal ischemia in rats. Anesth Analg 1998: 86: 773–780.

    PubMed  CAS  Google Scholar 

  • Pelligrino DA, Miletich DJ, Hoffman WE, Albrecht RF. Nitrous oxide markedly increases cerebral cortical metabolic rate and blood flow in the goat. Anesthesiology 1984: 60: 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Perouansky M, Baranov D, Salman M, Yaari Y. Effect of halothane on glutamate receptor-mediated excitatory postsy-napnic currents. Anesthesiology 1995: 83: 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Petersen KD, Landsfeldt U, Cold GE, et al. ICP during three anaesthetics for elective craniotomy. J Neurosurg Anesthesiol 2000: 12: 167.

    Google Scholar 

  • Peterson DO, Drummond JC, Todd MM. Effects of halothane and isoflurane on somatosensory evoked potentials in man. Anesthesiology 1984: 61: A344.

    Article  Google Scholar 

  • Pfeifer G, Oehmen S, Limberg NJ, Schultheiss R. Die Wirkung von Isofluran auf den intrakraniellen Druck. Anästh Intensivther Notfallmed 1987: 22: 214–220.

    Article  PubMed  CAS  Google Scholar 

  • Plougmann J, Astrup J, Pedersen J. Effect of stable xenon inhalation on intracranial pressure during measurement of cerebral blood flow in head injury. J Neurosurg 1994, 81: 822–828.

    Google Scholar 

  • Quinlan JJ, Firestone S, Firestone LL. Isoflurane’s enhancement of chloride flux through rat brain -aminobutyric acid type A receptors is stereoselective. Anesthesiology 1995: 83: 611–615.

    Article  PubMed  CAS  Google Scholar 

  • Ramani R, Todd MM, Warner DS. The influence of a cryogenic brain injury on the cerebrovascular response to isoflurane in the rabbit. J Cereb Blood Flow Metab. 1991: 11: 388–397.

    Article  PubMed  CAS  Google Scholar 

  • Rampil IJ, Laster M, Dwyer RC, et al. No EEG evidence of acute tolerance to desflurane in swine. Anesthesiology 1991a: 74: 889–892.

    Article  PubMed  CAS  Google Scholar 

  • Rampil IJ, Lockhart SH, Eger II EI, et al. The Electroencephalographs effect of desflurane in humans. Anesthesiology 1991b:74: 434–439.

    Article  PubMed  CAS  Google Scholar 

  • Rampil IJ, Kim J-S, Lenhardt R, Negishi C. Bispectral EEG index during nitrous oxide administration. Anesthesiology 1998: 89: 671–677.

    Google Scholar 

  • Ratcheson RA, Bilezikjian L, Ferrendelli JA. Effects of nitrous oxide anesthesia upon cerebral energy metabolism. J Neurochem 1977: 28: 223–225.

    Article  PubMed  CAS  Google Scholar 

  • Ravussin P, de Tribolet N, Wiler-Smith HG. Total intravenous anesthesia is best for neurological surgery. J Neurosurg An-esthesiol 1994: 6: 285–289.

    CAS  Google Scholar 

  • Ray KF, Kohlenberger RW, Shapiro HM. Local cerebral blood flow and metabolism during halothane and enflurane. Anesthesiology 1979: 51: S10.

    Article  Google Scholar 

  • Reasoner DK, Warner DS, Todd MM, McAllister A. Effects of nitrous oxide on cerebral metabolic rate in rats anaesthetized with isoflurane. Br J Anaesth 1990: 65: 210–215.

    Article  PubMed  CAS  Google Scholar 

  • Reasoner DK, Todd MM, Scamman FL, Warner DS. The incidence of pneumocephalus after supratentorial craniotomy. Observations of the disappearance of intracranial air. Anesthesiology 1994: 80: 1008–1012.

    Article  PubMed  CAS  Google Scholar 

  • Rehberg B, Xiao Y-H, Duch DSD. Central nervous system sodium channels are significantly suppressed at clinical concentrations of volatile anesthetics. Anesthesiology 1996: 84: 27A.

    Google Scholar 

  • Reinhold M, DeRood M, Capon A, et al. The Action of enflurane (Ethrane) on cerebral blood flow. Acta Anaesthesiol Belg 1974: 25: 257–265.

    PubMed  CAS  Google Scholar 

  • Reinhold H, DeRood M. Cerebral blood flow under enflurane anesthesia. Acta Anaesthesiol Belg 1976: 27 (suppl): 250–258.

    PubMed  Google Scholar 

  • Reinstrup P, Uski T, Messeter K. Influence of halothane and isoflurane on the contractile response to potassium and prostaglandin F 2a in isolated human pial arteries. Br J Anaesth 1994: 72: 581–586.

    Article  PubMed  CAS  Google Scholar 

  • Reinstrup P, Ryding E, Algotsson L, et al. Effects of nitrous oxide on human regional cerebral blood flow and isolated pial arteries. Anesthesiology 1994: 81: 396–402.

    Article  PubMed  CAS  Google Scholar 

  • Reinstrup P. The effects of halothane, isoflurane and N2O on human cerebrovascular contractility and circulation. Modulation by carbon dioxide tension. Thesis, Grahns Boktryckeri, Lund 1994.

    Google Scholar 

  • Reinstrup P, Ryding E, Algotsson L, et al. Regional cerebral blood flow (SPECT) during anesthesia with isoflurane and nitrous oxide in humans. Br. J Anaesth 1997: 78: 407–411.

    Article  PubMed  CAS  Google Scholar 

  • Rengasamy A, Pajewski TN, Johns RA. Inhalation anesthetic effects on rat cerebellar nitric oxide and cyclic guanosine monophosphate production. Anesthesiology 1997: 86: 689–698.

    Article  PubMed  CAS  Google Scholar 

  • Roald OK, Forsman M, Steen PA. Partial reversal of the cerebral effects of isoflurane in the dog by benzodiazepine antagonist flumazenil. Acta Anaesthesiol Scand 1988: 32: 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Roald OK, Forsman M, Steen PA. The effect of prolonged isoflurane anaesthesia on cerebral blood flow and metabolism in the dog. Acta Anaesthesiol Scand 1989: 33: 210–213.

    Article  PubMed  CAS  Google Scholar 

  • Roald OK, Forsman M, Heier MS, Steen PA. Cerebral effets of nitrous oxide when added to low and high concentrations of isoflurane in the dog. Anesth Analg 1991: 72: 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Roily G, VanAken J. Influence of enflurane on cerebral blood flow in man Acta Anaesthesiol Scand 1979: 71, (Suppl), 59–63.

    Article  Google Scholar 

  • Ropper AH, Kofke WA, Bromfield EB, Kennedy SK. Comparison of isoflurane, halothane, and nitrous oxide in status epilepticus. Ann Neurology 1986: 19: 98–99.

    Article  CAS  Google Scholar 

  • Roth S, Jones SC, Ebrahim Z, et al. Cerebral blood flow and metabolism during isoflurane-induced hypotension. Anesthesiology 1986: 65: A572.

    Article  Google Scholar 

  • Saintz JJG, Camiruaga JAE, Cano FF, De la Herran JL. Effects of isoflurane on intraventricular pressure in neurosurgical patients. Br J Anaesth 1988: 61: 347–349.

    Article  Google Scholar 

  • Saito R, Graf R, Hübel K, et al. Halothane, but not alphachoralose, blocks potassium-evoked cortical spreading depression in cats. Brain Res 1995: 699: 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Saito R, Graf R, Hübel K. et al. Reduction of infract volume by halotahne: effect on cerebral blood flow or perifocal spreading depression-like depolarizations. J Cereb Blood Flow Metab 1997: 17: 857–864.

    Article  PubMed  CAS  Google Scholar 

  • Sakabe T. Effect of enflurane (Ethrane) on canine cerebral metabolism and circulation. Masui 1975: 24: 323.

    PubMed  CAS  Google Scholar 

  • Sakabe T, Kuramoto T, Inoue S, Takeshita H. Cerebral responses to the addition of nitrous oxide to halothane in man. Br J Anaesth 1976: 48: 957–961.

    Article  PubMed  CAS  Google Scholar 

  • Sakabe T, Kuvamoto T, Kumagae S, Takeshita H. Cerebral effects of nitrous oxide in the dog. Anesthesiology 1978: 48: 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Sakabe T, Maekawa T, Fujii S, et al. Cerebral circulation and metabolism during enflurane anesthesia in humans. Anesthesiology 1983: 59: 532–536.

    Article  PubMed  CAS  Google Scholar 

  • Sakabe T, Tsutsui T, Maekawa T, et al. Local cerebral glucose utilization during nitrous oxide and pentobarbital anesthesia in rats. Anesthesiology 1985: 63: 262–266.

    Article  PubMed  CAS  Google Scholar 

  • Sano T, Drummond JC, Patel PM, et al. A comparison of the cerebral protective effect of isoflurane and mild hypothermia in a model of incomplete forebrain ischemia in the rat. Anesthesiology 1992: 76: 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Sakaki T, Abe K, Hoshida T, et al. Isoflurane in the management of status epilepticus after surgery for lesion around the motor area. Acta Neurochir (Wien) 1992: 116: 38–43.

    Article  CAS  Google Scholar 

  • Sarraf-Yazdi S, Sheng H, Miura Y, et al. Relative neuroprotective effects of dizocilpine and isoflurane during focal cerebral ischemia in the rat. Anesth Analg 1998: 87: 72–78.

    PubMed  CAS  Google Scholar 

  • Sarraf-Yazdi S, Sheng H, Brinkhous AD, Pearlstein RD, Warner DS. J Neurosurg Anesthesiol 1999: 11: 1–36.

    Article  Google Scholar 

  • Satapathy GC, Dash HH. Tension pneumocephalus after nuerosurgery in the supine position. Br J Anaesth 2000: 84: 115–117.

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Shirane R, Kato M, Yoshimoto T. Effect of inhalational anesthesia on cerebral circulation in Moyamoya disease. J Neurosurg Anesthesiol 1999: 11: 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Scheller MS, Todd MM, Drummond JC. The effects of halothane and isoflurane on cerebral blood flow at various levels of PaCO2 in rabbits. Anesthesiology 1984: 61: A528.

    Article  Google Scholar 

  • Scheller MS, Todd MM, Drummond JC. Isoflurane, halothane, and regional cerebral blood flow at various levels of PaCO2 in rabbits. Anesthesiology 1986: 64: 598–604.

    Article  PubMed  CAS  Google Scholar 

  • Scheller MS, Todd MM, Drummond JC, Zornow MH. The intracranial pressure effects of isoflurane and halothane administered following cryogenic brain injury in rabbits. Anesthesiology 1987: 67: 507–512.

    Article  PubMed  CAS  Google Scholar 

  • Scheller MS, Tateichi A, Drummond JC, Zornow MH. The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure and electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology 1988: 68: 5481–6551.

    Article  Google Scholar 

  • Scheller MS, Zornow M, Fleischer J, et al. The noncompetitive N-methyl-D-aspartate receptor antagonist MK-801 profoundly reduces volatile anesthetic requirements in rabbits. Neuropharmacology 1989: 28: 677–681.

    Article  PubMed  CAS  Google Scholar 

  • Scheller MS. Nakakimura K, Fleischer JE, Zornow MH. Cerebral effects of sevoflurane in the dog: Comparison with isoflurane and enflurane. Br J Anaesth 1990: 65: 388–392.

    Article  PubMed  CAS  Google Scholar 

  • Schettini A, Moreshead G. Effects of halothane and sodium thipentone on surface brain pressure and brain electrical impedance in dogs with normal intracranial tension. Br J Anaesth 1978: 50: 1003–1012.

    Article  PubMed  CAS  Google Scholar 

  • Schettini A, Furniss WW. Brain water and electrolyte distribution during the inhalation of halothane. Br J Anaesth 1979: 51: 1117–1123.

    Article  PubMed  CAS  Google Scholar 

  • Schregel W, Geissler C, Schäfermeyer H, Cunitz G. Diameters of large cerebral arteries — relevant for patients with brain disorders? Eur J Anaesth 1991: 8: 321–323.

    Google Scholar 

  • Schregel W, Schäfermeyer H, Müller C, et al. Einfluss von Halothan, Alfentanil und Propofol auf Flussgeschwindigkeiten, “Gefässquerschnitt” und “Volumenfluss” in der a. cerebri media. Anaesthesist 1992: 41: 21–26.

    PubMed  CAS  Google Scholar 

  • Schulte am Esch J, Thiemig I, Pfeifer G, Entzian W. Die Wirkung einiger Inhalationsanaesthetika auf den Intrakra-niellen Druck unter besonderer Berücksichtigung des Stickoxydul. Anaesthesist 1979: 28: 136–141.

    PubMed  CAS  Google Scholar 

  • Schwartz AE, Tuttle RH, Poppers PJ. Electroencephalographic burst suppresion in elderly and young patients anesthetized with isoflurane. Anesth Analg 1989: 68: 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Sebel PS, Ingram DA, Flynn PJ, et al. Evoked potentials during isoflurane anaesthesia. Br J Anaesth 1986: 58: 580–585.

    Article  PubMed  CAS  Google Scholar 

  • Segal IS, Walton JR, Irwin I, et al. Modulating role of dopamine on anesthetic requirement. Eur J Pharmacol 1990: 186: 9–15.

    Article  PubMed  CAS  Google Scholar 

  • Seo K, Maekawa T, Takeshita H, Okuda Y. Cerebral energy state and glycolytic metabolism during enflurane anesthesia in the rat. Acta Anaesthesiol Scand 1984: 28: 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Seyde WC, Longnecker DE. Cerebral oxygen tension in rats during deliberate hypotension with sodium nitroprusside, 2-chloroadenosine or deep isoflurane anesthesia. Anesthesiology 1986: 64: 480–485.

    Article  PubMed  CAS  Google Scholar 

  • Seyde WC, Ellis JE, Longnecker DE. The addition of nitrous oxide to halothane decreases renal and splanchnic flow and increases cerebral blood flow in rats. Br J Anaesth 1986: 58: 63.

    Article  PubMed  CAS  Google Scholar 

  • Shah NK, Long CW, Marx W, et al. Cerebrovascular response to CO2 in edematous brain during either fentanyl or isoflurane anesthesia. Anesthesiology 1988: 69: A620.

    Article  Google Scholar 

  • Shah NK, Long C, Marx W, et al. Cerebrovascular response to CO2 in edematous brain during either fentanyl or isoflurane anesthesia. J Neurosurg Anesthesiol 1990: 2: 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Shapira Y, Paez A, Lam AM, Pavlin EG. Influence of traumatic head injury on halothane MAC in rats. Anesth Analg 1992: 74: S282.

    Google Scholar 

  • Shapiro HM, Wyte SR, Harris AB, Galindo A. Acute intraoperative intracranial hypertension in neurosurgical patients. Anesthesiology 1972a: 37: 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro HM, Greenberg JH, Reivich M, et al. Local cerebral glucose uptake in awake and halothane-anaesthetized primates. Anesthesiology 1978: 48: 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Sharbrough FW, Messick JM, Sundt TM Jr. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke 1973: 4: 674–683.

    Article  PubMed  CAS  Google Scholar 

  • Shimosato S, Carter JG, Kemmotsu O, Takahashi T. Cardio-circulatory effects of prolonged administration of isoflurane in normocarbic human volunteers. Acta Anaesthesiol Scand 1982: 26: 27–30.

    Article  PubMed  CAS  Google Scholar 

  • Sigmon DH, Florentino-Pineda I, Van Dyke RA, Beierwaltes WH. Halothane impairs the hemondynamic influence of endothelium-derived nitric oxide. Anesthesiology 1995: 82: 135–143.

    Article  PubMed  CAS  Google Scholar 

  • Slater SJ, Cox KJA, Lonbardi JV, et al. Inhibition of protein kinase C by alcohols and anesthetics. Nature (Lond) 1993: 364: 82–84.

    Article  CAS  Google Scholar 

  • Smiley RM, Ornstein E, Matteo RS, et al. Desflurane and isoflurane in surgical patients: comparison of emergency time. Anesthesiology 1991: 74: 425–428.

    Article  PubMed  CAS  Google Scholar 

  • Smith AL, Neigh JL, Hoffman JC, Wollman H. Effects of general anesthesia on autoregulation of cerebral blood flow in man. J Appl Physiol 1970: 29: 665–669.

    PubMed  CAS  Google Scholar 

  • Smith AL, Wollman H. Cerebral blood flow and metabolism. Effects of anesthetic drugs and techniques. Anesthesiology 1972: 36: 378–400.

    Article  PubMed  CAS  Google Scholar 

  • Smith AL. The mechanism of cerebral vasodilatation by halothane. Anesthesiology 1973: 39: 581–587.

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Hoff J, Nielsen S, Larson C. Barbiturate protection in focal cerebral ischemia. Stroke 1974: 5: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Smith AL, Marque JJ. Anesthetics and cerebral oedema. Anesthesiology 1976: 45: 64–72.

    Article  PubMed  CAS  Google Scholar 

  • Smith EH, Rees JMV. The effects of naloxone on the analgesic activities of general anesthetics. Experientia 1981: 37: 289–290.

    Article  PubMed  CAS  Google Scholar 

  • Soonthon-Brant V, Patel P, Drummond CJ et al. Fentanyl does not increase brain injury after focal cerebral ischemia in rats. Anesth Analg 1999: 88: 49–55.

    PubMed  CAS  Google Scholar 

  • Stahle L, Collin AK, Ungerstedt U. Effects of halothane anesthesia on extracellular levels of dopamine, dihydroxy phenylacetic acid, homovanillic acid and 5-hydroxylindo-lacetic acid in rat striatum: A micro dialysis study. Arch Pharmacol 1990: 342: 136–140.

    Article  CAS  Google Scholar 

  • Statler KD, Kochanek PM, Dixon CE, et al. Isoflurane improves long-term neurological outcome versus fentanyl after traumatic brain injury in rats. J Neurotrauma 2000: 17: 1179–1189.

    Article  PubMed  CAS  Google Scholar 

  • Stauton M, Drexler C, Schmid PG, et al. Neuronal nitric oxide synthase mediates halothane-induced cerebral microvascular dilation. Anesthesiology 2000: 92: 125–132.

    Article  Google Scholar 

  • Steen PA, Michenfelder JD. Barbiturate protection in tolerant and nontolerant hypoxic mice. Anesthesiology 1979: 50: 404–408.

    Article  PubMed  CAS  Google Scholar 

  • Stevens WC, Cromwell TH, Halsey MJ, et al. The cardiovascular effects of a new inhalation anesthetic, forene, in human volunteers at constant arterial carbon dioxide tension. Anesthesiology: 1971: 35: 8–16.

    Article  PubMed  CAS  Google Scholar 

  • Stockard JJ, Bickford R. The neurophysiology of anesthesia. In: Gordon E, ed. A basis and practice of neuroanesthesia. Amsterdam:Excerpta Medica 1975: 3–46.

    Google Scholar 

  • Stone DJ, Johns RA. Endothelium-dependent effects of ha-lothane, enflurane, and isoflurane on isolated rat aortic vascular rings. Anesthesiology 1989: 71: 126–132.

    Article  PubMed  CAS  Google Scholar 

  • Strebel S, Kaufmann M, Aselmi L, Schaefer HG. Nitrous oxide is a potent cerebrovasodilator in humans when added to isflurane. Acta Anaesthesiol Scand 1995: 39: 653–658.

    Article  PubMed  CAS  Google Scholar 

  • Study RE. Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. Anesthesiology 1994: 81: 104–116.

    Article  PubMed  CAS  Google Scholar 

  • Stullken EH, Sokoll MD. Anesthesia and subarachnoid intracranial pressure. Anesth Analg 1975: 54: 494–500.

    PubMed  Google Scholar 

  • Stullken EH, Sokoll MD. Intracranial pressure during hypotension and subsequent vasopressor therapy in anesthetized cats. Anesthesiology 1975: 42: 425–431.

    Article  PubMed  CAS  Google Scholar 

  • Stullken AH, Milde JH, Michenfelder JD, Tinker JH. The nonlinear responses of cerebral metabolism to low concentrations of halothane, enflurane, isoflurane and thiopental. Anesthesiology 1977: 46: 28–34.

    Article  PubMed  CAS  Google Scholar 

  • Sturaitis MK, Moore LE, Kirsch JR, McPherson RW. A cholinergic agonist induces cerebral hyperemia in isoflurane- byt not pentobarbital-anesthetized dogs. Anesth Analg 1994: 78: 876–883.

    Article  PubMed  CAS  Google Scholar 

  • Stånge K, Lagerkranser M, Sollevi A. Effect of isoflurane-induced hypotension on cerebral autoregulation in the anesthetized pig. J Neurosurg Anesthesiol 1990: 2: 114–121.

    Article  PubMed  Google Scholar 

  • Summors AC, Gupta AK, Matta BE Dynamic cerebral autoregulation during sevoflruane anesthesia: A conparison with isoflurane. Anesth Analg 1999: 88: 341–345.

    CAS  Google Scholar 

  • S¢ndergård W. Intracranial pressure during general anaesthesia. Dan Med Bull 1961: 8: 18–26.

    Google Scholar 

  • Takahashi H, Murada K, Ikeda K. Sevoflurane does not increase intracranial pressure in hyperventilated dogs. Br J Anaesth 1993: 71: 551–555.

    Article  PubMed  CAS  Google Scholar 

  • Takasaki M. The effects of enflurane on canine cerebral oxygen consumption and blood flow. Jap J Anaesthesiol 1974: 23: 806.

    CAS  Google Scholar 

  • Takahashi H, Kirsch JR, Okada T, Traystman RJ. Intensity of halothane- and hypercapnia-induced cerebral hyperemia is strain dependent in rats. Anesth Analg 1996: 83: 359–365.

    PubMed  CAS  Google Scholar 

  • Talke P, Caldwell J,Dodson B, Richardson CA. Desfluran and isoflurane increase lumbar cerebrospinal fluid pressure in patients undergoing transsphenoidal hypophysectomy. Anesthesiology 1996: 85: 999–1004.

    Article  PubMed  CAS  Google Scholar 

  • Talke P, Caldwell JE, Richardson CA. Sevoflurane increases lumbar cerebrospinal fluid pressure in normocapnic patients undergoing transsphenoidal hypophysectomy. Anesthesiology 1999: 91: 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Tambuniello G, Munari C, Gianesi GC. The behaviour of intracranial pressure during anesthesia with enflurane and oxygen alone. Minerva Anesthsiol 1978: 44: 923.

    Google Scholar 

  • Intrathecally administration of cGMP-dependent protein kinase la inhibitor significantly reduced the threshold for isoflurane anaesthesia. Anesthesiology 2000: 92: 493–499.

    Article  PubMed  CAS  Google Scholar 

  • Tempelhoff R. The new inhalational anesthetics desflurane and sevoflurane are valuable additions to the practice of neuroanesthesia: con. J Neurosurg Anesthesiol 1997: 9: 69–71.

    Article  PubMed  CAS  Google Scholar 

  • Theye RA, Michenfelder JD. The effect of halothane on canine cerebral metabolism. Anesthesiology 1968a: 29:1113–1118.

    Article  PubMed  CAS  Google Scholar 

  • Theye RA, Michenfelder JD. The effect of nitrous oxide on canine cerebral metabolism. Anesthesiology 1968b: 29: 1119–1124.

    Article  PubMed  CAS  Google Scholar 

  • Thornton C, Catley DM, Jordan C, et al. Enflurane anaesthesia causes graded changes in the brainstem and early cortical auditory evoked response in man. Br J Anaesth 1983: 55: 479–485.

    Article  PubMed  CAS  Google Scholar 

  • Tinker JH, Sharbrough FW, Michenfelder JD. Anterior shift of the dominant EEG rhythm during anesthesia in the Java monkey: Correlation with anesthetic potency. Anesthesiology 1977: 46: 252–259.

    Article  PubMed  CAS  Google Scholar 

  • Tobin JR, Martin LD, Breslow MJ, Traystman RJ. Selective anesthetic inhibition of brain nitric oxide synthase. Anesthesiology 1994: 81: 1264–1269.

    Article  PubMed  CAS  Google Scholar 

  • Toda H, Nakamura K, Hatano Y, et al. Halothane and isoflurane inhibit endothelium-dependent relaxation elicited by acetylcholine. Anesth Analg 1992: 75: 198–203.

    Article  PubMed  CAS  Google Scholar 

  • Todd MM, Drummond JC, Sang UH. The hemodynamic consequences of high-dose methohexital anesthesia in humans. Anesthesiology 1984a: 61: 495–501.

    Article  PubMed  CAS  Google Scholar 

  • Todd MM, Drummond JC. A comparison of the cerebrovascular and metabolic effects of halothane and isoflurane in the cat. Anesthesiology 1984b: 60: 276–282.

    Article  PubMed  CAS  Google Scholar 

  • Todd MM. The effects of PaCO2 on the cerebrovascular response to nitrous oxide in the halothane-anaesthetized rabbit. Anest Analg 1987: 66: 1090–1095.

    Article  CAS  Google Scholar 

  • Todd MM, Warner DS. A comfortable hypothesis reevaluated (editorial). Anestheiology 1992: 76: 161–164.

    Article  CAS  Google Scholar 

  • Todd MM, Warner DS, Sokoll MD, et al. A prospective, comparative trial of three anesthetics for elective supratentorial craniotomy. Anesthesiology 1993: 78: 1005–1020.

    Article  PubMed  CAS  Google Scholar 

  • Todd MM, Wu B, Warner DS, Maktabi M. The dose-related effects of nitric oxide sunthase inhibition on cerebral blood flow during isoflurane and pentobarbital anesthesia. Anesthesiology 1994: 1128–1136.

    Google Scholar 

  • Todd MM, Weeks J. Comparative effects of propofol, pentobarbital, and isoflruane on cerebral blood flow and blood volume. J Neurosurg Anesthesiol 1996: 8: 296–303.

    Article  PubMed  CAS  Google Scholar 

  • Toung T, Donham RT, Lehner A, et al. Tension pneumo-cephalus after posterior fossa craniotomy: report of four additional cases and review of postoperative pneumo-cephalus. Neurosurgery 1983: 12: 164–168.

    Article  PubMed  CAS  Google Scholar 

  • Tsai SK, Lee C, Kwan W-F, Chen B-J. Recovery of cognitive functions after anaesthesia with desflurane or isoflurane and nitrous oxide. Br J Anaesth 1992: 69: 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Tsai Y-C, Lin S-S, Lee K-C, Chang C-L. Cerebral effects of nitrous oxide during isoflurane-induced hypotension in the pig. Br J Anaesth. 1994: 73: 667–672.

    Article  PubMed  CAS  Google Scholar 

  • Turner CR, Losasso TJ, Muzzi DA, Weglinski MR. Brain relaxation and cerebrospinal fluid pressure during craniotomy for resection of supratentorial mass lesions. J Neurosurg Anesthesiol 1996: 8: 126–132.

    Article  PubMed  CAS  Google Scholar 

  • Uggeri MJ, Proctor GJ, Johns RA. Halothane, enflurane, and isoflurane attenuate both receptor- and non-receptor-mediated EDRF production in rat thoracic aorta. Anesthesiology 1992: 76: 1012–1017.

    Article  PubMed  CAS  Google Scholar 

  • Van Aken J, Hautekiet A, Roily C. Influence of enflurane on cerebral blood flow in man. Acta Anaesthesiol Belg 1977, 28: 133–140.

    Google Scholar 

  • Van Aken H, Fitch W, Graham DI, et al. Cardiovascular and cerebrovascular effects of isoflurane-induced hypotension in the baboon. Anesth Analg 1986: 65: 565–574.

    Article  PubMed  Google Scholar 

  • Verhaegen M, Todd M, Warner D. A comparison of cerebral ischemic flow thresholds during halothane/N20 and isoflurane/N2O anesthesia in rats. Anesthesiology 1992.

    Google Scholar 

  • Verhaegen M, Todd MM, Warner DS. Ischemic-depolarization during halothane-nitrous oxide and isoflurane-nitrous oxide anesthesia. Anesthesiology 1994: 81: 965–973.

    Article  PubMed  CAS  Google Scholar 

  • Virtue RW, Lund LO, Phleps M, et al. Difluoromethyl 1,1,2-tri-fluoro-2-chloroethyl ether as an anaesthetic agent: results with dogs and a preliminary note on observations in man. Can Anaesth Soc J 1966: 13: 233–241.

    Article  PubMed  CAS  Google Scholar 

  • Waaben J, Husum B, Hansen AJ, Gjedde A. Hypocapnia prevents the decrease in regional cerebral metabolism during isoflurane-induced hypotension. J Neurosurg Anesthesiol 1989: 1: 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Wallin RF, Regan BM, Napoli MD, Stern IJ. Sevoflurane: a new inhalation anaesthetic agent. Anesth Analg 1975: 54: 758–766.

    Article  PubMed  CAS  Google Scholar 

  • Warner DS, Boarini DJ, Kassell NE Cerebrovascular adaptation to prolonged halothane anesthesia is not related to cerebrospinal fluid pH. Anesthesiology 1985: 63: 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Warner DS, Deshpanda JK, Wieloch T. The effect of isoflurane on neuronal necrosis follwing near-complete forebrain is-chaemia in the rat. Anesthesiology 1986: 64: 19–23.

    Article  PubMed  CAS  Google Scholar 

  • Warner DS, Zhou J, Ramani R, Todd MM. Reversible focal ischemia in the rat: Effects of halothane, isoflurane, and methohexital anesthesia. J Cereb Blood Flow Metab 1991: 11:794–802.

    Article  PubMed  CAS  Google Scholar 

  • Warner DS, Ludvig PS, Pearlstein R, Brinkhous AD. Halothane reduces focal ischemic injury in the rat when brain temperature is controlled. Anesthesiology 1995: 82: 1237–1245.

    Article  PubMed  CAS  Google Scholar 

  • Warner DS. Isoflurane neuropretection (editorial). Anesthesiology 2000: 92: 1226–1228.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Arai T, Aoki M, et al. Effects of halothane on the synthesis of neurotransmitter amino acids in mous brain. Acta Anaesthesiol Scand 1993: 37: 706–709.

    Article  PubMed  CAS  Google Scholar 

  • Watts ADJ, Herrick IA, McLachlan RS, et al. The effect of sevoflruane and isoflurane anesthesia on interictal spile activity among patients with refractory epilepsy. Anesth Analg 1999: 89: 1275–1281.

    Article  PubMed  CAS  Google Scholar 

  • Weeks J, Todd MM, Warner DS, Katz J. Volatile anesthetics and cerebral blood volume. J Cereb Blood Flow Metab. 1989: 9: suppl 1, S 474.

    Google Scholar 

  • Wollman H, Alexander SC, Cohen PJ, et al. Cerebral circulation of man during halothane anesthesia. Effects of hypocarbia and of d-tubocurarine. Anesthesiology 1964: 25: 180–184.

    Article  PubMed  CAS  Google Scholar 

  • Wollman H, Alexander SC, Cohen PJ, et al. Cerebral circulation during general anesthesia and hyperventilation in man. Thiopental induction to nitrous oxide and d-tubocuranine. Anesthesiology 1965: 26: 329–334.

    Article  PubMed  CAS  Google Scholar 

  • Wollman H, Smith AL, Neigh JL, Hoffman JC. Cerebral blood flow and oxygen consumption in man during electroencephalographic seizure patterns associated with ethrane anesthesia. In: Cerebral blood flow-clinical and experimental results. (eds) Brock M, Fieschi C, Ingvar D, et al. Springer, New York. 1969: 246–248.

    Chapter  Google Scholar 

  • Woodcock TE, Murkin JM, Farrar K, et al. Pharmacologic EEG suppression during cardiopulmonary bypass: Cerebral hemodynamic and metabolic effects of thiopental or isoflurane during hypothermia and normothermia. Anesthesiology 1987: 67: 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Wyrwicz AM, Pszenny MH, Schofield JC, et al. Noninvasive observations of fluorinated anaesthetics in rabbit brain by fluorine-19 nuclear magnetic resonance. Science 1983: 222: 428–430.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Hatano Y, Ogawa K, et al. Halothane and isoflurane attenuate the relaxant response to nonadrenergic and noncholinergic nerve stimulation of isolated canine cerebral arteries. Anesth Analg 1998: 86: 552–526.

    PubMed  CAS  Google Scholar 

  • Yamamura T, Fukuda M, Takeya H, et al. Fast oscillatory EEG activity induced by analgesic concentrations of nitrous oxide in man. Anesth Analg 1981: 60: 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Yang JC, Clark WC, Ngai SH. Antagonism of nitrous oxide by naloxone in man. Anesthesiology 1980: 52: 414–417.

    Article  PubMed  CAS  Google Scholar 

  • Yli-Hankala A, Vakkuri A, Särkelä M, et al. Epileptiform electroencephalogram during mask induction of anesthesia with sevoflurane. Anesthesiology 1999: 91: 1596–1603.

    Article  PubMed  CAS  Google Scholar 

  • Young Kwon J, Bacher A, Deyo DJ, et al. Effects of pentobarbital and isoflurane on conditioned learning after transient global cerebral ischemia in rabbits. Anesthesiology 2000: 92: 171–177.

    Article  Google Scholar 

  • Young WL, Prohovnik I, Correll JW, et al. A comparison of the cerebral hemodynamic effects of sufentanil and isoflurane in humans undergoing carotid endarterectomy. Anesthesiology 1989a: 71: 863–869.

    Article  PubMed  CAS  Google Scholar 

  • Young WL, Prohovnik I, Correll JW, et al. Cerebral blood flow and metabolism in patients undergoing anesthesia for carotid endarterectomy. Anesth Analg 1989b: 68: 712–717.

    Article  PubMed  CAS  Google Scholar 

  • Young WL, Prohovnik I, Correll JW, et al. A comparison of cerebral blood flow reactivity to CO2 during halothane versus isoflurane anesthesia for carotid endarterectomy. Anesth Analg 1991: 73: 416–421.

    Article  PubMed  CAS  Google Scholar 

  • Young WL, Barkai AI, Prohovnik I, et al. Effect of PaCO2 on cerebral blood flow distribution during halothane compared with isoflurane anaesthesia in the rat. Br J Anaesth 1991: 67: 440–446.

    Article  PubMed  CAS  Google Scholar 

  • Zattoni J, Siani C, Rivano C. Effects of ethrane on intracranial pressure. In: Lawin P, Beer R (eds) Ethrane: Proceedings of the first European Symp on modern Anaesthetic Agents. Springer Verlag, Berlin, Heidelberg, New York 1974: 272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cold, G.E., Dahl, B.L. (2002). Inhalation anaesthetics. In: Topics in Neuroanaesthesia and Neurointensive Care. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04845-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04845-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07537-7

  • Online ISBN: 978-3-662-04845-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics