Advertisement

Active-Matrix Liquid-Crystal Displays

  • Toshihisa Tsukada
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 37)

Abstract

The active-matrix liquid-crystal display (AMLCD) is a flat-panel display in which the display medium is liquid crystal and each picture element (pixel) is driven by such active devices as diodes or transistors. These active devices are arranged in rows and columns on a glass substrate to control each pixel, and hence the name of active matrix. Before the AMLCDs were introduced, liquid-crystal displays were operated on a basis of simple matrix or passive-matrix. Passive-matrix liquid-crystal displays feature flatness, lightweight, and low-power consumption. Due to these features, they have been first installed in such devices as wrist watches or calculators. Then, their application fields have expanded to pocket TVs, word processors, and factory automation machines. There was a constant demand for larger sizes and higher resolutions.

Keywords

Liquid Crystal Threshold Voltage Nematic Liquid Crystal Liquid Crystal Molecule Gate Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.1
    P. K. Weimer: Proc. IRE-AIEE Solid State Device Res. Conf. (Stanford, California), 1961.Google Scholar
  2. 2.2
    P. K. Weimer: Thin film transistors. In Field Effect Transistors, edited by J. T. Wallmark and H. Johnson. Prentice Hall (New Jersey), 1966.Google Scholar
  3. 2.3
    B. J. Lechner, F. J. Marlowe, E. O. Nester and J. Tults: Liquid crystal matrix displays. Proc. IEEE, 59, 1566–1579, 1971.CrossRefGoogle Scholar
  4. 2.4
    G. H. Heilmeier, L. A. Zanoni and L. A. Barton: Dynamic scattering: a new electrooptic effect in certain classes of nematic liquid crystals. Proc. IEEE, 56, 1162–1171, 1968.CrossRefGoogle Scholar
  5. 2.5
    T. P. Brody, J. A. Asars and G. D. Dixon: A 6× 6 inch 20 lines-per-inch liquid-crystal display panel. IEEE Trans. Electron Devices, ED-20, 995–1001, 1973.CrossRefGoogle Scholar
  6. 2.6
    M. Schadt and W. Helfrich: Voltage-dependent optical activity of a twisted nematic liquid crystal. Applied Physics Letters, 18, 127–128, 1971.CrossRefGoogle Scholar
  7. 2.7
    P. G. LeComber, W. E. Spear and A. Gaith: Amorphous-silicon field-effect device and possible application. Electronics Letters, 15, 179–181, 1979.CrossRefGoogle Scholar
  8. 2.8
    T. Tsukada: State-of-the-art of a-Si TFT/LCD. Transaction of the Institute of Electronics, Information and Communication Engineers (Japan), J76-C-II, 177–183, 1993.Google Scholar
  9. 2.9 M. Ohta, M. Oh-e, K. Kondo: Development of Super-TFT-LCDs with in-plane-switching display mode, Proc. Int. Display Res. Conf., S30–2, 707–710, 1995 (Hamamatsu).Google Scholar
  10. 2.10
    Y. Kaneko, A. Sasano, and T. Tsukada: Analysis and design of a-Si TFT/LCD panels with a pixel model. IEEE Transaction Electron Devices, ED-36, 2953–2958, 1989.Google Scholar
  11. 2.11
    T. Tsukada (1993). Development of aluminum gate thin-film transistors based on aluminum oxide insulators. In Amorphous Insulating Thin Films. Material Research Society Symposium Proceedings (Boston, 1992), edited by J. Kanicki et al., 371–382. Pittsburgh: Material Research Society.Google Scholar
  12. 2.12
    F. Morin: Electrooptical performance of a TFT-addressed TNLC panel. Proc. 3rd International Display Research Conference (Kobe, 1983). 412–414, California: SID, 1983.Google Scholar
  13. 2.13
    Y. Kaneko, Y. Tanaka, N. Kabuto, and T. Tsukada: A new address scheme to improve the display quality of a-Si TFT/LCD panel. IEEE Transaction Electron Devices, ED-36, 2949–2952, 1989.Google Scholar
  14. 2.14
    Y. Nanno, Y. Mino, E. Takeda, and S. Nagata: Characterization of sticking effects of TFT-LCD. In Digest of Technical Papers of the Society for Information Display International Symposium (Las Vegas, 1990), 404–407, California: SID, 1990.Google Scholar
  15. 2.15
    Y. Kanemori, M. Katayama, K. Nakazawa, H. Kato, K. Yano, Y. Fukuoka, et al.: 10.4-in-diagonal color TFT-LCDs without residual images. In Digest of Technical Papers of the Society for Information Display International Symposium (Las Vegas, 1990), 408–411, California: SID, 1990.Google Scholar
  16. 2.16
    Y. Nasu, S. Kawai, S. Kisumi, K. Oki, and K. Hori: Color LCD for character and TV display addressed by self-aligned a-Si:H TFT. In Digest of Technical Papers of the Society for Information Display International Symposium (San Diego, 1986), 289–292, California: SID, 1986.Google Scholar
  17. 2.17
    K. Asama, T. Kodama, S. Kawai, Y. Nasu, and S. Yanagisawa: A self-alignment processed a-Si TFT matrix circuit for LCD SID panels. In Digest of Technical Papers of the Society for Information Display International Symposium (Philadelphia, 1983), 144–145, California: SID, 1983.Google Scholar
  18. 2.18
    H. Yamamoto, H. Matsumaru, K. Tsutsui, N. Konishi, M. Nakatani, K. Shira-hashi, A. Sasano, and T. Tsukada: A new a-Si TFT with Al2O3/SiN double-layered gate insulator for 10.4-inch diagonal multicolor display. In Technical Digest of the International Electron Devices Meeting (San Francisco, 1990), 851–854, New York: IEEE, 1990.CrossRefGoogle Scholar
  19. 2.19
    T. Tsukada: Scaling theory of liquid-crystal displays addressed by thin-film transistors, IEEE Tr. Electron Devices, 45, 387–393, 1998.CrossRefGoogle Scholar
  20. 2.20
    R. H. Dennard, F. H. Gensslen, H-N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc: Design of ion-implanted MOSFET’s with very small physical dimensions, IEEE J. Solid-State Circuits, SC-9, 256–268, 1974.CrossRefGoogle Scholar
  21. 2.21
    W. H. Dumbaugh, P. L. Bocko: Substrate glasses for flat-panel displays. In Digest of Technical Papers of the Society for Information Display International Symposium (Las Vegas, 1990), 70–72, California: SID, 1990.Google Scholar
  22. 2.22
    P. K. Weimer: An evaporated thin-film triode, In Proceedings of the IRE-AIEE Solid State Device Research Conference (Stanford, California, 1961), 1961.Google Scholar
  23. 2.23
    P. K. Weimer: The TFT — a new thin-film transistor, Proc. IRE, 50, 1462–1469, 1962.CrossRefGoogle Scholar
  24. 2.24
    T. P. Brody, J. A. Asars, and G. D. Dixon: A 6x6 inch 20 lines-per-inch liquid-crystal display panel, IEEE Trans. Electron Devices, ED-20, 995–1001, 1973.CrossRefGoogle Scholar
  25. 2.25
    F-C. Luo, W. A. Hester, and T. P. Brody: Alphanumeric and video performance of a 6′× 6′ 30 lines-per-inch thin-film transistor-liquid crystal display panel, In Digest of Technical Papers of the Society for Information Display International Symposium (San Francisco, 1978). California: SID, 1978.Google Scholar
  26. 2.26
    P. G. LeComber, W. E. Spear, and A. Gaith: Amorphous-silicon field-effect device and possible application, Electronics Letters, 15, 179–181, 1979.CrossRefGoogle Scholar
  27. 2.27
    A. J. Snell, K. D. Mackenzie, W. E. Spear, and P. G. LeComber: Application of amorphous silicon field effect transistors in addressable liquid crystal display panels, Applied Physics, 24, 357–362, 1981.CrossRefGoogle Scholar
  28. 2.28
    W. E. Spear and P. G. LeComber: Investigation of the localized state distribution in amorphous Sifilms, Journal of Non-Crystalline Solids, 810, 727–738, 1972.CrossRefGoogle Scholar
  29. 2.29
    Y. Okubo, T. Nakagiri, Y. Osada, M. Sugata, N. Kitahara, and K. Hatanaka: Large-scale LCDs addressed by a-Si TFT array, In Digest of Technical Papers of the Society for Information Display International Symposium (San Diego, 1982), California: SID, 1982.Google Scholar
  30. 2.30
    S. M. Sze: Physics of Semiconductor Devices, pp. 567–573. New York: Wiley-Interscience, 1969.Google Scholar
  31. 2.31
    M. J. Powell: Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors, Applied Physics Letters, 43, 597–599, 1983.CrossRefGoogle Scholar
  32. 2.32
    N. Lustig and J. Kanicki: Gate dielectric and contact effects in hydrogenated amorphous silicon-silicon nitride thin-film transistors, Journal of Applied Physics, 65, 3951–3955, 1989.CrossRefGoogle Scholar
  33. 2.33
    M. Ohta, M. Tsumura, J. Ohida, J. Ohwada, and K. Suzuki: Active matrix network simulator considering non-linear C-V characteristics of TFTs intrinsic capacitances, In Proceedings of the 12th International Display Research Conference (Hiroshima, 1992), 431–434. California: SID, 1992.Google Scholar
  34. 2.34
    M. Nakazato and T. Higuchi: Capacitance-voltage characteristics of a-Si TFTs, In Proceedings of the 12th International Display Research Conference (Hiroshima, 1992), 439–442, California: SID, 1992.Google Scholar
  35. 2.35
    D. E. Carlson and C. R. Wronski: Amorphous silicon solar cell, Applied Physics Letters, 28, 671–673, 1976.CrossRefGoogle Scholar
  36. 2.36
    H. Yamamoto, C. Baji, H. Matsumaru, Y. Tanaka, C. Seki, C. Tsukada, et al.: High speed contact type linear sensor array using a-Si pin diodes, In Extended Abstracts of the 15th Conference on Solid State Devices and Materials (Tokyo, 1983), 205–208, The Japan Society of Applied Physics, 1983.Google Scholar
  37. 2.37
    I. Shimizu, T. Komatsu, K. Saito, and E. Inoue: A-Si thin film as a photoreceptor for electrophotography, Journal of Non-Crystalline Solids, 35 & 36, 773–778, 1980.CrossRefGoogle Scholar
  38. 2.38
    Y. Kaneko, A. Sasano, T. Tsukada, R. Oritsuki, and K. Suzuki: Improved reliability in amorphous silicon thin-film transistors, In Extended Abstracts of the 18th International Conference on Solid State Devices and Materials (Tokyo, 1986). 669–702. The Japan Society of Applied Physics, 1986.Google Scholar
  39. 2.39
    M. Katayama, H. Morimoto, S. Yasuda, T. Takamatu, H. Tanaka, M. Hi-jikigawa: High-resolution full-color LCDs addressed by double-layered gate-insulator a-Si TFTs, In Digest of Technical Papers of the Society for Information Display International Symposium (Anaheim, 1988), 310–313, California: SID, 1988.Google Scholar
  40. 2.40
    D. L. Staebler and C. R. Wronski: Reversible conductivity changes in discharge-produced amorphous Si, Applied Physics Letters, 31, 292–294, 1977.CrossRefGoogle Scholar
  41. 2.41
    R. A. Street: Hydrogenated Amorphous Silicon, p. 216. Cambridge: Cambridge University Press, 1991.CrossRefGoogle Scholar
  42. 2.42
    R. Oritsuki, T. Horii, A. Sasano, K. Tsutsui, T. Koizumi, Y. Kaneko, and T. Tsukada: Threshold voltage shift of a-Si TFTs during pulse operation, In Extended Abstracts of the International Conference on Solid State Devices and Materials (Yokohama, 1991), 635–637. The Japan Society of Applied Physics, 1991.Google Scholar
  43. 2.43
    T. Toyabe, H. Masuda, Y. Kaneko, A. Sasano, H. Fukushima, and T. Tsukada: A two-dimensional numerical model of amorphous silicon thin-film transistors, In Technical Digest of the International Electron Devices Meeting (Washington, D. C, 1986), 575–578, IEEE, 1986.Google Scholar
  44. 2.44 S. Morozumi, T. Ohta, R. Araki, T. Sonehara, K. Kubota, Y. Ono, T. Nakazawa, H. Ohara: A 250 × 240 element LCD addressed by lateral MIM, Proc. Intn’l Display Res. Conf., 103, 404–407, 1983 (Kobe).Google Scholar
  45. 2.45
    R. A. Gibson, P. G. LeComber, and W. E. Spear: The characteristics of high current amorphous silicon diodes, Appi. Phys., 21, 307–311, 1980.CrossRefGoogle Scholar
  46. 2.46
    N. Szydlo, E. Chartier, N. Proust, J. Magarino, and D. Kaplan: High current post-hydrogenated chemical vapor deposited amorphous silicon p-i-n diodes, Appl. Phys. Lett., 40, 988–990, 1982.CrossRefGoogle Scholar
  47. 2.47
    D. G. Ast: Materials Limitations of amorphous-Si:H transistors, IEEE Tr. Electron Devices, ED-30, 532–539, 1983.CrossRefGoogle Scholar
  48. 2.48
    N. Szydlo, E. Chartier, J. N. Perbet, N. Proust, J. Magarino, and M. Hareng: Integrated matrix-addressed LCD using amorphous-silicon back-to-back diodes, Proc. SID (Society for Information Display), 265–268, 1984.Google Scholar
  49. 2.49
    Y. Goto, T. Ogawa, S. Sawada and S. Sugimori: Fluorinated liquid crystals for active matrix displays, Mol. Cryst. Liq. Cryst., 209, 1–7, 1991.CrossRefGoogle Scholar
  50. 2.50
    V. Reiffenrath, J. Krause, H. J. Plach and G. Weber: New liquid-crystalline compounds with negative dielectric anisotropy, Liq. Cryst., 5, 159–170, 1989.CrossRefGoogle Scholar
  51. 2.51
    M. Schadt, M. Petrzilka, P. R. Gerber and A. Villiger: Polar alkenyls: physical properties and correlations with molecular structure of new nematic liquid crystals, Mol. Cryst. Liq. Cryst., 122, 241–260, 1985.CrossRefGoogle Scholar
  52. 2.52
    D. Lippens, J. P. Parneix and A. Chapoton, Journal de Physique, 38, 1465, 1977.CrossRefGoogle Scholar
  53. 2.53
    W. H. de Jeu, W. A. P. Claassen and A. M. J. Spruijt: The determination of the elastic constants of nematic liquid crystals. Mol.Cryst. and Liq. Cryst., 37, 269–280, 1976.CrossRefGoogle Scholar
  54. 2.54
    M. Schadt and W. Helfrich: Voltage-dependent optical activity of a twisted nematic liquid crystal, Applied Physics Letters, 18, 127–128, 1971.CrossRefGoogle Scholar
  55. 2.55
    E. Jakeman and E. P. Raynes: Electro-optic response times in liquid crystals, Physics Letters, 39A, 69–70, 1972.Google Scholar
  56. 2.56
    K. Katoh, S. Imagi and N. Kobayashi: Active-matrix-addressed color LCDs for avionic application. In Digest of Technical Papers of the Society for Information Display International Symposium (Anaheim, 1988), 238–241. California: SID, 1988.Google Scholar
  57. 2.57
    C. H. Gooch and H. A. Tarry: The optical properties of twisted nematic liquid crystal structures with twist angles < 90°, Journal of Physics D: Applied Physics, 8, 1575–1584, 1975.CrossRefGoogle Scholar
  58. 2.58
    C. H. Gooch and H. A. Tarry: Optical characteristics of twisted nematic liquid-crystal films, Electronics Letters, 10, 2–4, 1974.CrossRefGoogle Scholar
  59. 2.59
    R. M. A. Azzam and N. M. Bashara: Simplified approach to the propagation of polarized light in anisotropic media-application to liquid crystals, Journal of the Optical Society of America, 62, 1252–1257, 1972.CrossRefGoogle Scholar
  60. 2.60
    F. Funada, M. Okada, N. Kimura and K. Awane: Selection and optimizing of liquid crystal display modes for the full color active-matrix LCDs, Journal of the Institute of Television Engineers, 42, 1029–1034, 1988 (In Japanese).CrossRefGoogle Scholar
  61. 2.61
    D. W. Berreman: Optics in smoothly varying anisotropic planar structures: application to liquid-crystal twist cells, Journal of the Optical Society of America, 63, 1374–1380, 1973.CrossRefGoogle Scholar
  62. 2.62
    C. C. Yang: Two-domain twisted nematic and tilted homeotropic liquid crystal displays for active matrix applications. In Proc. International Display Research Conference (San Diego, 1991), 68–72, California: SID, 1991.Google Scholar
  63. 2.63
    Y. Koike, T. Kamada, K. Okamoto, N. Ohashi, I. Tornita and M. Okabe: A full-color TFT-LCD with a domain-divided twisted-nematic structure. In Digest of Technical Papers of the Society for Information Display International Symposium (Boston, 1992), 798–801, California: SID, 1992.Google Scholar
  64. 2.64 R. Kiefer, C. Weber, F. Windscheid, G. Baur: In-plane switching of nematic liquid crystals, Proc. Intn’l Display Res. Conf., P 230, 547–550, 1992 (Hiroshima).Google Scholar
  65. 2.65
    K. Ohmuro, S. Kataoka, T. Sasaki, Y. Koike: Development of super-high-image-quality vertical-alignment-mode LCD, Digest Tech. Papers Society for Information Display Intn’l Symposium, 845–848, 1997.Google Scholar
  66. 2.66
    R. A. Soref: Transverse field effects in nematic liquid crystals, Appl. Phys. Lett., 22, 165–166, 1973.CrossRefGoogle Scholar
  67. 2.67
    R. A. Soref: Field effects in nematic liquid crystals obtained with interdigital electrodes, J. Appl. Phys., 45, 5466–5468, 1974.CrossRefGoogle Scholar
  68. 2.68 M. Ohta, M. Oh-e, K. Kondo: Development of Super-TFT-LCDs with in-plane switching display mode, Proc. Intn’l Display Res. Conf., S. 30–2, 707–710, 1995 (Hamamatsu).Google Scholar
  69. 2.69
    M. Ohe and K. Kondo: Electro-optical characteristics and switching behavior of the in-plane switching mode, Appl. Phys. Lett., 67, 3895–3897, 1995.CrossRefGoogle Scholar
  70. 2.70
    P. M. Alt and P. Pleshko: Scanning limitations of liquid-crystal displays, IEEE Transactions on Electron Devices, ED-21, 146–155, 1979.Google Scholar
  71. 2.71
    J. Nehring, A. R. Kmetz: Ultimate limits for matrix addressing of rms-responding liquid-crystal displays, IEEE Transactions on Electron Devices, ED-26, 795–802, 1979.CrossRefGoogle Scholar
  72. 2.72
    T. J. Scheffer and J. Nehring: A new, highly multiplexable liquid crystal display, Applied Physics Letters, 45, 1021–1023, 1984.CrossRefGoogle Scholar
  73. 2.73
    F. Leenhouts and M. Schadt: Electro-optics of supertwist displays; dependence on liquid crystal material parameters, In Proc. 6th International Display Research Conference (Tokyo, 1986), 388–391. California: SID, Tokyo: ITE, 1986.Google Scholar
  74. 2.74
    K. Kinugawa, Y. Kondo, M. Kanasaki, H. Kawakami and E. Kaneko: 640×480 pixel LCD using highly twisted birefringence effect with low pretilt angle, In Digest of Technical Papers of the Society for Informatio Display International Symposium (San Diego, 1986), pp. 122–125. California: SID, 1986.Google Scholar
  75. 2.75
    P. A. Breddels and H. A. van Sprang: An analytical expression for the optical threshold in highly twisted nematic systems with nonzero tilt angles at the boundaries, Journal of Applied Physics, 58, 2162–2166, 1985.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Toshihisa Tsukada
    • 1
  1. 1.Central Research LaboratoryHitachi, Ltd.TokyoJapan

Personalised recommendations