Skip to main content

Ammonia Assimilation

  • Chapter
Plant Nitrogen

Abstract

In higher plants, recent advances in plant molecular biotechnology combined with modern physiological and biochemical studies have expanded our understanding of the regulatory mechanisms controlling the primary steps of inorganic nitrogen assimilation and the subsequent biochemical pathways involved (Fig. 1). Nitrate is the principal nitrogen source for most crops. The uptake and reduction of nitrate to ammonia is discussed in detail in Chapter 1.1. In this Chapter, the term ammonia will be used to indicate ammonia and ammonium ions, which are present in equilibrium in solution. In addition to nitrate reduction, ammonia is produced in plant tissues through a variety of processes as well as being taken up directly from the soil (Chap. 2.1). For example, ammonia is generated through the fixation of atmospheric nitrogen by root nodules (Chap. 3.1), by photorespiring leaves and through the phenylpropanoid pathway. Ammonia may also be released for reassimilation by sink tissue from nitrogen transport compounds (e.g. asparagine, arginine and the ureides) and through breakdown of other nitrogenous compounds (Lea et al. 1990; Woodall et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ameziane R, Bernhard K, Bates R, Lightfoot DA (1998) Metabolic engineering of C and N metabolism with NADPH glutamate dehydrogenase. Abstr Annu Mee of the American Society of Plant Physiologists, June 27-July 1, 1988. Madison, Wisconsin, pp 15

    Google Scholar 

  • Athwal GS, Pearson J, Laurie S (1997) Regulation of glutamate dehydrogenase activity by manipulation of nucleotide supply in Daucus carota suspension cultures. Physiol Plant 101: 503–509

    Article  CAS  Google Scholar 

  • Bauer D, Biehler K, Fock H, Carrayol E, Hirel B, Migge A, Becker TW (1997) A role for cytosolic glutamine synthetase in the remobilization of leaf nitrogen during water stress in tomato. Physiol Plant 99: 241–248

    Article  CAS  Google Scholar 

  • Bechtold U, Pahlich E, Lea PJ (1998) Methionine sulphoximine does not inhibit pea and wheat glutamate dehydrogenase. Phytochemistry 49: 347–354

    Article  CAS  Google Scholar 

  • Becker TW, Perrot-Rechenman C, Suzuki A, Hirel B (1993a) Subcellular and immunocytochemical localization of the enzymes involved in ammonia assimilation in mesophyll and bundle sheath strands of maize leaves. Planta 191: 129136

    Google Scholar 

  • Becker T, Nef-Campa C, Zehnacker C, Hirel B (1993b) Implication of the phytochrome in light regulation of the tomato gene(s) encoding ferredoxin-dependent glutamate synthase. Plant Physiol Biochem 31: 725–727

    CAS  Google Scholar 

  • Botella R, Verbelen JP, Valpuesta V (1988a) Immunocytolocalization of glutamine synthetase in green leaves and cotyledons of Lycopersicon esculentum. Plant Physiol 88: 943–946

    Article  PubMed  CAS  Google Scholar 

  • Botella R, Verbelen JP, Valpuesta V (1988b) Immunocytolocalization of ferredoxin GOGAT in the cells of green leaves of Lycopersicon esculentum. Plant Physiol 87: 255–257

    Article  PubMed  CAS  Google Scholar 

  • Brangeon J, Hirel B, Forchion A (1989) Immunogold localisation of glutamine synthetase in soybean leaves, roots and nodules. Protoplasma 151: 88–97

    Article  Google Scholar 

  • Brears T, Lui C, Knight TJ, Coruzzi GM (1993) Ectopic expression of asparagine synthetase in transgenic tobacco. Plant Physiol 103: 1285–1290

    PubMed  CAS  Google Scholar 

  • Brouquisse R, James F, Pradet A, Raymond P (1992) Asparagine metabolism and nitrogen distribution during protein degradation in sugar-starved maize root tips. Planta 188: 384–395

    Article  CAS  Google Scholar 

  • Brugière N (1997) Etude de l’expression de deux gènes codant pour la glutamine synthetase (GS) cytosolique chez le tabac (Nicotiana tabacum L.). Conséquences de l’inhibition de l’activité GS dans le phloème sur la physiologie de la plante. Thèse de Doctorat de l’Université de Paris VI, Paris

    Google Scholar 

  • Brugière N, Dubois F, Limami AM, Lelandais M, Roux Y, Sangwan RS, Hirel B (1999) Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell 11: 1–19

    Google Scholar 

  • Cammaerts D, Jacobs M (1985) A study of the role of glutamate dehydrogenase in the nitrogen metabolism of Arabidopsis thaliana. Plant Sci Lett 31: 65–73

    Google Scholar 

  • Carvalho E, Pereira S, Sunkel C, Salem R (1992) Detection of a cytosolic glutamine synthetase in leaves of Nicotiana tabacum L. by immunocytochemical methods. Plant Physiol 100: 1591–1594

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Cullimore JV (1988) Two isoenzymes of NADH-dependent glutamate syn- thase in root nodules of Phaseolus vulgaris L. Plant Physiol 88: 1411–1417

    Article  PubMed  CAS  Google Scholar 

  • Chevalier C, Bourgeois E, Just D, Raymond P (1996) Metabolic regulation of asparagine synthetase gene expression in maize (Zea mays L.) root tips. Plant J 9: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Coshigano KT, Melo-Oliveira R, Lim J, Coruzzi GM (1998) Arabidopiss gls mutants and distinct Fd-GOGAT genes: implication for photorespiration and primary nitrogen assimilation. Plant Cell 10: 741–752

    Google Scholar 

  • Crafts-Brandner SJ, Holzer R, Feller U (1998) Influence of nitrogen deficiency on senescence and the amounts of RNA and proteins in wheat leaves. Physiol Plant 102: 192–200

    Article  CAS  Google Scholar 

  • Davies KM, King GA (1993) Isolation and characterization of a cDNA clone for a harvest-induced asparagine synthetase from Asparagus officinalis L. Plant Physiol 102: 1337–1340

    Article  PubMed  CAS  Google Scholar 

  • Davies KM, Seelye JF, Irving DE, Borst WM, Hurst PL, King GA (1996) Sugar regulation of harvest-related genes in asparagus. Plant Physiol 111: 877–883

    Article  PubMed  CAS  Google Scholar 

  • Donn G, Tisher E, Smith JA, Goodman HM (1984) Herbicide resistant alfalfa cells: an example of gene amplification in plants. J Mol Appl Genet 2: 621–635

    PubMed  CAS  Google Scholar 

  • Dubois F, Brugiere N, Sangwan RS, Hirel B (1996) Localisation of tobacco cytosolic glutamine synthetase enzymes and the corresponding transcripts show organ- and cell-specific pattern of protein synthesis and gene expression. Plant Mol Biol 31: 803–817

    Article  PubMed  CAS  Google Scholar 

  • Eckes P, Shmidtt P, Daub W, Wegenmayer F (1989) Overproduction of alfalfa glu- tamine synthetase in transgenic tobacco plants. Mol Gen Genet 217: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Edwards JW, Walker EL, Coruzzi GM (1990) Cell-specific expression in transgenic plants reveals non-overlapping roles for chloroplast and cytosolic glutamine synthetase. Proc Natl Acad Sci USA 87: 3459–3463

    Article  PubMed  CAS  Google Scholar 

  • Ferrario-Mery S, Suzuki A, Kunz C, Valadier MH, Roux Y, Hirel B, Foyer C (1999) Modulation of amino acid metabolism in transformed tobacco plants deficient in Fd-GOGAT. Plant Soil (in press)

    Google Scholar 

  • Ficarreli A, Tassi F, Restivo FM (1999) Isolation and characterisation of two cDNA clones encoding for glutamate dehydrogenase in Nicotiana plumbaginofolia. Plant Cell Physioly 40: 339–342

    Article  Google Scholar 

  • Forde BJ, Cullimore JV (1989) The molecular biology of glutamine synthetase in higher plants. In: Miflin BJ (eds) Oxford surveys of plant molecular biology, vol. 6. Oxford University Press, Oxford, pp 247–296

    Google Scholar 

  • Fox GG, Ratcliffe RG, Robinson SA, Stewart GR (1995) Evidence for deamination by glutamate dehydrogenase in higher plants: commentary. Can J Bot. 73: 1112–1115

    Article  CAS  Google Scholar 

  • Fricke W, Pahlich E (1992) Malate: a possible source of error in the NAD glutamate dehydrogenase assay. J Exp Bot 43: 1515–1518

    Article  CAS  Google Scholar 

  • Gallardo F, Fu J, Canton FR, Garcia-Gutierez, Canovas F,Kirby E G (1999) Expression of a conifer glutamine sythetase gene in transgenic poplar. Planta 210: 1926

    Google Scholar 

  • Genix P, Bligny R, Martin J-B, Douce R (1994) Transient accumulation of asparagine in sycamore cells after a long period of sucrose starvation. Plant Physiol 94: 717–722

    Article  Google Scholar 

  • Goto S, Akagawa T, Kojima S, Hayakawa T, Yamaya T (1998) Organisation and structure of a NADH-dependent glutamate synthase gene from rice plants. Biochim Biophys Acta 1387: 293–308

    Article  Google Scholar 

  • Gregerson RG, Miller SS, Twary SN, Grantt JS, Vance CP (1993) Molecular characterisation of NADH-dependent glutamate synthase from alfalfa nodules. Plant Cell 5: 215–226

    PubMed  CAS  Google Scholar 

  • Harel E, Lea PJ, Miflin BJ (1977) The localisation of enzymes of nitrogen assimila- tion in maize leaves, and their activity during greening. Planta 134: 195–200

    Article  CAS  Google Scholar 

  • Hayakawa T, Nakamura T, Hattori F, Mae T, Ojima K, Yamaya T (1994) Cellular localisation of NADH-dependent glutamate synthase protein in vascular bundles of unexpanded leaf blades and young grains of rice plants. Planta 193: 455460

    Google Scholar 

  • Hayakawa T, Hopkins L, Peat LJ, Yamaya T, Tobin AK (1999) Quantitative intercellular localisation of NADH-dependent glutamate synthase protein in different types of root cells in rice plants. Plant Physiol 119: 409–416

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Perrot-Rechenmann C, Maudinas B, Gadal P (1982) Glutamine synthetase in Alder (Alnus glutinosa) root nodules. Purification, properties and cytoimmunochemical localization. Physiol Plant 55: 197–203

    Google Scholar 

  • Hirel B, Miao GH, Verma DPS (1993) Metabolic and developmental control of glutamine synthetase genes in legume and non legume plants. In: Verma DPS (ed) Control of plant gene expression. CRC Press, Boca Raton Florida, pp 443–458

    Google Scholar 

  • Hirel B, Phillipson B, Murchie E, Suzuki A, Kunz C, Ferrario S, Limami A, Chaillou S, Deléens E, Brugière N, Chaumont-Bonnet M, Foyer CH, Morot-Gaudry J-F (1997) Manipulating the pathway of ammonia assimilation in transgenic non-legumes and legumes. J Plant Nutr Soil Sci 160: 283–290

    Article  CAS  Google Scholar 

  • Huber TA, Streeter JG (1985) Purification and properties of asparagine synthetase from soybean root nodules. Plant Sci 42: 9–17

    Article  CAS  Google Scholar 

  • Hughes CA, Beard HS, Matthews BF (1997) Molecular cloning and expression of two cDNAs encoding asparagine synthetase in soybean. Plant Mol Biol 33: 301311

    Google Scholar 

  • Ireland RJ, Lea PJ (1999) The enzymes of glutamine, glutamate, asparagine and aspartate metabolism. In: Singh K (ed) Plant amino acids. Marcel Dekker, New York, pp 49–109

    Google Scholar 

  • Ishimaya K, Hayakawa T, Yamaya T (1998) Expression of NADH-dependent glutamate synthase protein in the epidermis and exodermis of rice roots in response to the supply of ammonium ions. Planta 204: 288–294

    Article  Google Scholar 

  • Joy KW, Ireland RJ, Lea PJ (1983) Asparagine synthesis in pea leaves and the occurrence of an asparaginase inhibitor. Plant Physiol 73: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Kamachi K, Yamaya T, Maie T, Ojima K (1991) A role for glutamine synthetase in the remobilisation of leaf nitrogen during natural senescence in rice leaves. Plant Physiol 96: 411–417

    Article  PubMed  CAS  Google Scholar 

  • Keys AF, Bird IF, Cornelius MJ, Lea PJ, Wallsgrove RM, Miflin BJ (1978) Photorespiratory nitrogen cycle. Nature 275: 741–742

    Article  Google Scholar 

  • King GA, Woollard DC, Irving DE, Borst WM (1990) Physiological changes in asparagus spear tips after harvest. Physiol Plant 80: 393–400

    Article  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384: 557–560

    Article  CAS  Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47: 569–593

    Article  PubMed  CAS  Google Scholar 

  • Lam HM, Hseih MH, Coruzzi G (1998) Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. Plant J 16: 345–353

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ and Forde B (1994) The use of mutants and transgenic plants to study amino acid metabolism. Plant Cell and Environment 17: 541–556

    Article  CAS  Google Scholar 

  • Lea PJ, Fowden L (1975) The purification and properties of glutamine-dependent asparagine synthetase isolated from Lupinus albus. Proc R Soc Lond B192: 1326

    Article  Google Scholar 

  • Lea PJ, Ireland RJ (1999) Nitrogen metabolism in higher plants. In: Singh BK (ed) Plant amino acids. Marcel Dekker, New York, pp 1–47

    Google Scholar 

  • Lea PJ, Miflin BJ (1974) An alternative route for nitrogen assimilation in plants. Nature 251: 680–685

    Article  Google Scholar 

  • Lea PJ, Robinson SA, Stewart GR (1990) The enzymology and metabolism of glutamine, glutamate and asparagine. In: Miflin BJ, Lea PJ (eds) The biochemistry of plants, vol 16 Intermediary nitrogen metabolism. Academic Press, New York, pp 147–152

    Google Scholar 

  • Leegood RC, Lea PJ, Adcock MD, Häusler RE (1995) The regulation and control of photorespiration. J Exp Bot 46: 1397–1414

    Article  CAS  Google Scholar 

  • Lightfoot D, Green NK, Cullimore JV (1988) The chloroplast-located glutamine synthetase of Phaselus vulgaris L.: nucleotide sequence, expression in different organs and uptake into isolated chloroplasts. Plant Mol Biol 11: 191–202

    Article  CAS  Google Scholar 

  • Limami A, Phillip son B, Ameziane R, Pernollet N, Jiang Q, Roy R, Deleens E, Chaumont-Bonnet M, Gresshoff PM, Hirel B (1999) Does root glutamine synthetase control plant biomass production in Lotus japonicus L.? Planta 209: 495–502

    Article  PubMed  CAS  Google Scholar 

  • Loulakakis KA, Roubelakis-Angelakis KA (1990) Intracellular localization and properties of NADH-glutamate dehydrogenase from Vitis vinifera L.: purification and characterization of the major leaf isoenzyme. J Exp Bot 41: 1223–1230

    Article  CAS  Google Scholar 

  • Loulakakis KA, Roubelakis-Angelakis KA (1991) Plant NAD(H)-glutamate dehydrogenase consists of two subunit polypeptides and their participation in the seven isoenzymes occurs in an ordered ratio. Plant Physiol 97: 104–111

    Article  PubMed  CAS  Google Scholar 

  • Loulakakis KA, Roubelakis-Angelakis KA (1992) Ammonium-induced increase in NADH-glutamate dehydrogenase activity is caused by de novo synthesis of the a-subunit. Planta 187: 322–327

    Article  CAS  Google Scholar 

  • Loulakakis KA, Roubelakis-Angelakis KA (1996) The seven NAD(H)-glutamate dehydrogenase isoenzymes exhibit similar anabolic activities. Physiol Plant 96: 29–35

    Article  CAS  Google Scholar 

  • Mack G (1995) Organ-specific changes in the activity and subunit composition of glutamine synthetase isoforms of barley (Hordeum vulgare L.) after growth on different levels of NH4’ Planta 196: 231–238

    Google Scholar 

  • Magalhaes JR, Ju GC, Rich PJ, Rhodes D (1990) Kinetics of 15NH4+ assimilation in Zea mays. Plant Physiol 94: 647–656

    Article  PubMed  CAS  Google Scholar 

  • Marsolier MC, Hirel B (1993) Metabolic and developmental control cytosolic glutamine synthetase genes in soybean. Physiol Plant 89: 613–617

    Article  CAS  Google Scholar 

  • McNally SF, Hirel B (1983) Glutamine synthetase isoforms in higher plants. Physiol Veg 21: 761–774

    CAS  Google Scholar 

  • McNally SF, Hirel B, Gadal P, Mann AF, Stewart GR (1983) Glutamine synthetase of higher plants: evidence for a specific isoform content related to their possible physiological role and their compartmentation within the leaf. Plant Physiol 72: 22–25

    Article  PubMed  CAS  Google Scholar 

  • Melo-Oliveria R, Cinha-Oliveria I, Coruzzi GM (1996) Arabidopsis mutant analysis and gene regulation define a non-redundant role for glutamate dehydrogenase in nitrogen assimilation. Proc Natl Acad Sci USA 96: 4718–4723

    Article  Google Scholar 

  • Miflin BJ, Lea PJ (1976) The pathway of nitrogen assimilation in plants. Phytochemistry 15: 873–885

    Article  CAS  Google Scholar 

  • Migge A, Meya G, Carrayol E, Hirel B, Becker TW (1996) Regulation of subunit composition of tomato plastidic glutamine synthetase by light and the nitrogen source. Planta 200: 213–220

    Article  CAS  Google Scholar 

  • Migge A, Carrayol E, Hirel B, Lohmann M, Meya G, Becker TW (1998a) Regulation of the subunit composition of plastidic glutamine synthetase of the wild-type and of the phytochrome-deficient aurea mutant of tomato by blue/UV-A- or by UV-B-light. Plant Mol Biol 37: 689–700

    Article  PubMed  CAS  Google Scholar 

  • Migge A, Carrayol E, Hirel B, Lohmann M, Meya G, Becker TW (1998b) Influence of UV-A or UV-B and of the nitrogen source on ferredoxin-dependent glutamate synthase in etiolated tomato cotyledons. Plant Physiol Biochem 36: 789–797

    Article  CAS  Google Scholar 

  • Ngai N, Tsai FY, Coruzzi G (1997) Light-induced transcriptional repression of the pea AS1 identification of cis elements and transfactors. Plant J 12: 1021–1034

    Article  PubMed  CAS  Google Scholar 

  • Oaks A (1994) Primary nitrogen assimilation in higher plants and its regulation. Can J Bot 72: 739–750

    Article  CAS  Google Scholar 

  • Oaks A (1995) Evidence for deamination by glutamate dehydrogenase in higher plants: Reply. Can J Bot 73: 1116–1117

    Article  CAS  Google Scholar 

  • Oaks A, Hirel B (1985) Nitrogen assimilation in roots. Annu Rev Plant Physiol 36: 345–365

    Article  CAS  Google Scholar 

  • Ortega JL, Roche D, Sengupta-Gopalan C (1999) Oxidative turnover of soybean root glutamine synthetase. In vitro and in vivo studies. Plant Physiol 119: 14831495

    Google Scholar 

  • Osuji GO, Madu WC (1995) Ammonium-ion-dependent isomerization of glutamate dehydrogenase in relation to glutamate synthesis in maize. Phytochemistry 39: 495–503

    Article  CAS  Google Scholar 

  • Osuji GO, Madu WC (1997) Regulation of peanut glutamate dehydrogenase by methionine sulphoximine.Phytochemistry 46: 817–825

    CAS  Google Scholar 

  • Osuna D, Galvez G, Pineda M, Aguilar M (1999) RT-PCR cloning, characterisation and mRNA expression analysis of a cDNA encoding a type II asparagine synthetase in common bean. Biochim Biophys Acta 1445: 75–85

    Article  PubMed  CAS  Google Scholar 

  • Pate JS (1989) Synthesis, transport and utilisation of products of nitrogen fixation. In: Poulson JE, Romeo JT, Conn EE (eds) Plant nitrogen metabolism. Plenum Press, New York, pp 65–115

    Chapter  Google Scholar 

  • Peat LJ, Tobin A (1996) The effect of nitrogen nutrition on the cellular localization of glutamine synthetase isoforms in barley roots Plant Physiol 111: 1109–1117

    CAS  Google Scholar 

  • Peeters KMU, Van Laere AJ (1994) Amino acid metabolism associated with N-mobilisation from the flag leaf of wheat (Triticum aestivum L.) during grain development. Plant Cell Environ 17: 131–141

    Article  CAS  Google Scholar 

  • Pérez-Garcia A, Pereira S, Pissara J, Garcia-Gutierez A, Cazorla FM, Salema R, de Vicente A, Canovas FM (1998) Cytosolic localization in tomato cells of a novel glutamine synthetase induced in response to bacterial infection or phosphinothricin treatment. Planta 206: 426–434

    Article  Google Scholar 

  • Pérez-Rodriguez J, Valpuesta V (1996) Expression of glutamine synthetase genes during natural senescence of tomato leaves. Physiol Plant 97: 576–582

    Article  Google Scholar 

  • Pryor AJ (1990) A maize glutamic dehydrogenase null mutant is cold temperature-sensitive. Maydica 35: 367–372

    Google Scholar 

  • Pujade-Renaud V, Perrot-Rechenmann C, Chrestin H, Lacrotte R, Guern J (1997) Characterization of a full-length cDNA clone encoding glutamine synthetase from rubber tree latex. Plant Physiol Biochem 35: 85–93

    CAS  Google Scholar 

  • Purnell MP, Stewart GR, Botella JR (1997) Cloning and characterization of a glutamate dehydrogenase cDNA from tomato (Lycopersicon esculentum L.). Gene 186: 249–254

    Article  PubMed  CAS  Google Scholar 

  • Rastogi R, Chourey PS, Muhitch MJ (1998) The maize glutamine synthetase GS1–2 gene is preferentially expressed in kernel pedicels and is developmentally regulated. Plant Cell Physiol 39: 443–446

    Article  PubMed  CAS  Google Scholar 

  • Redinbaugh MG, Campbell WH (1993) Glutamine synthetase and ferredoxin dependant glutamate synthase expression in the maize (Zea mays) root primary response to nitrate. Plant Physiol 101: 1249–1255

    PubMed  CAS  Google Scholar 

  • Robinson SA, Slade AP, Fox GG, Phillips R, Ratcliffe RG, Stewart GR (1991) The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiol 95: 809–816

    Article  Google Scholar 

  • Robinson SA, Stewart GR, Phillips R (1992) Regulation of glutamate dehydrogenase activity in relation to carbon limitation and protein catabolism in carrot cell suspension cultures. Plant Physiol 98: 1190–1195

    Article  PubMed  CAS  Google Scholar 

  • Rognes SE (1975) Glutamine-dependent asparagine synthetase from Lupinus luteus. Phytochemistry 14: 1975–1982

    Article  CAS  Google Scholar 

  • Sahulka J, Lisa L (1980) Effect of some disaccharides, hexoses and pentoses on nitrate reductase, glutamine synthetase, and glutamate dehydrogenase in excised pea roots. Physiol Plant 50: 32–36

    Article  CAS  Google Scholar 

  • Sakakibara H, Kawabata S, Hase T, Sugiyama T (1992) Differential effect of nitrate and light on the expression of glutamine synthetase and ferredoxin-dependent glutamate synthase in maize. Plant Cell Physiol 33: 1193–1198

    CAS  Google Scholar 

  • Sakakibara H, Fujii K, Sugiyama T (1995) Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase. Plant Cell Physiol 36: 789–797

    PubMed  CAS  Google Scholar 

  • Sakurai N, Hayakawa T, Nakamura T, Yamaya T (1996) Changes in the cellular localisation of cytosolic glutamine synthetase protein in vascular bundles of rice leaves at various stages of development. Planta 200: 306–311

    Article  CAS  Google Scholar 

  • Schmidt RR, Miller P (1999) Polypeptides and polynucleotides relating to the a and subunits of a glutamate dehydrogenase and methods of use. US Patent n° 5, 879,941, Mar 9

    Google Scholar 

  • Sechley KA, Yamaya T, Oaks A (1992) Compartmentation of nitrogen assimilation in higher plants. Int Rev Cytol 134: 85–163

    Article  CAS  Google Scholar 

  • Shi LF, Twary SN, Yoshioka H, Gregerson RG, Miller SS, Samac DA, Gantt, Unkefer PJ, Vance CP (1997) Nitrogen assimilation in alfalfa: isolation and characterisation of an asparagine synthetase gene showing enhanced expression in root nodules and dark adapted leaves. Plant Cell 9: 1339–1356

    PubMed  CAS  Google Scholar 

  • Sieciechowicz KA, Joy KW, Ireland RJ (1988) The metabolism of asparagine in plants. Phytochemistry 27: 663–671

    Article  CAS  Google Scholar 

  • Srivastava HS, Singh RP (1987) Role and regulation of L-glutamate dehydrogenase activity in higher plants. Phytochemistry 26: 597–610

    Article  CAS  Google Scholar 

  • Stewart GR, Shatilov VR, Turnbull MH, Robinson SA, Goodall R (1995) Evidence that glutamate dehydrogenase plays a role in oxidative deamination of glutamate in seedlings of Zea mays. Aust J Plant Physiol 22: 805–809

    Article  CAS  Google Scholar 

  • Stulen I, Oaks A (1977) Asparagine synthetase in corn roots. Plant Physiol 60: 680683

    Google Scholar 

  • Suzuki A, Gadal P (1984) Glutamate synthase: physiochemical and functional properties of different forms in higher plants and other organisms. Physiol Veg 22: 471–486

    CAS  Google Scholar 

  • Suzuki A, Vidal J, Gadal P (1982) Glutamate synthase isoforms in rice: immunological studies of enzymes of green leaf, etiolated leaf and root tissues. Plant Physiol 70: 827–832

    Article  PubMed  CAS  Google Scholar 

  • Syntichaki KM, Loulakakis KA, Roubelakis-Angelakis KA (1996) The amino acid sequence similarity of plant glutamate dehydrogenase to the extremophilic archeal enzyme conforms to its stress-related function. Gene 168: 87–92

    Article  PubMed  CAS  Google Scholar 

  • Temple SJ, Bagga S, Sengupta-Gopalan C (1994) Can glutamine synthetase activity be modulated in transgenic plants by the use of recombinant DNA technology? Biochem Soc Trans 22: 915–920

    PubMed  CAS  Google Scholar 

  • Temple SJ, Kunjibettu S, Roche D, Sengupta-Gopalan S (1996) Total glutamine synthetase activity during soybean nodule development is controlled at the level of transcription and holoprotein turnover. Plant Physiol 112: 1723–1733

    PubMed  CAS  Google Scholar 

  • Temple SJ, Vance CP, Gantt JS (1998) Glutamate synthase and nitrogen assimilation. Trends Plant Sci 3: 51–56

    Article  Google Scholar 

  • Tercé-Laforgue T, Carrayol E, Cren M, Desbrosses G, Hecht V, Hirel B (1999) A strong constitutive positive element is essential for the ammonium-regulated expression of a soybean gene encoding cytosolic glutamine synthetase. Plant Mol Biol 39: 551–564

    Article  PubMed  Google Scholar 

  • Tjaden G, Coruzzi G (1994) A novel AT-Rich DNA binding protein that combines an HMG I-like binding domain with putative transcription domain. Plant Cell 6: 1107–1118

    Google Scholar 

  • Trepp GB, Plank DW, Gantt, Vance CP (1999a) NADH-glutamate synthase in alfalfa root nodules. Immunocytochemical localisation. Plant Physiol 119: 829837

    Google Scholar 

  • Trepp GB, van de Mortel M, Yoshioka H, Miller SS, Samac DA, Gantt JS, Vance CP (1999b) NADH-glutamate synthase in alfalfa roots. Genetic regulation and cellular expression. Plant Physiol 119: 817–828

    Google Scholar 

  • Tsai F-Y, Coruzzi GM (1990) Dark induced and organ-specific expression of two asparagine synthetase genes in Pisum sativum. EMBO J 9: 2829–2831

    Google Scholar 

  • Tsai F-Y, Coruzzi GM (1991) Light represses the transcription of asparagine synthetase genes in photosynthetic and non-photosynthetic organs of plants. Mol Cell Biol 11: 4966–4972

    PubMed  CAS  Google Scholar 

  • Tsuprun VL, Samsonide TG, Radukina NA, Pushkin AV, Evstigneeva ZG, Kretovich WL (1980) Electron microscopy of glutamine synthetase from pea leaf chloroplast. Biochim Biophys Acta 626: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Turano FJ (1998) Characterisation of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings. Physiol Plant 104: 337–344

    Article  CAS  Google Scholar 

  • Turano FJ, Thakkar SS, Fang T, Weisemann JM (1997) Characterisation and expression of NAD(H) dependent glutamate dehydrogenase genes in Arabidopsis. Plant Physiol 113: 1329–1341

    Article  PubMed  CAS  Google Scholar 

  • Vincent R, Fraiser V, Chaillou S, Limami MA, Deleens E, Phillipson B, Couat C, Boutin J, Hirel B (1997) Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development. Planta 201: 424–433

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse RN, Smyth AJ, Massonneau A, Prosser IM, Clarkson DT (1996) Molecular cloning and characterization of asparagine synthetase from Lotus japonicus — dynamics of asparagine synthesis in N-sufficient conditions. Plant Mol Biol 30: 883–897

    Article  PubMed  CAS  Google Scholar 

  • Woodall J, Boxall JG, Forde BG, Pearson J (1996) Changing perspectives in plant nitrogen metabolism: the central role of glutamine synthetase. Sci Prog 79: 1–26

    CAS  Google Scholar 

  • Yamaya T, Oaks A (1987) Synthesis of glutamate by mitochondria–an anaplerotic function for glutamate dehydrogenase. Physiol Plant 70: 749–756

    Article  CAS  Google Scholar 

  • Zehnacker C, Becker TW, Suzuki A, Carrayol E, Caboche M, Hirel B (1992) Purification and properties of tobacco ferredoxin-dependent glutamate synthase and isolation of corresponding cDNA clones. Light inducibility and organ specificity in the gene transcription and protein expression. Planta 187: 266–274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirel, B., Lea, P.J. (2001). Ammonia Assimilation. In: Lea, P.J., Morot-Gaudry, JF. (eds) Plant Nitrogen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04064-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04064-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08731-8

  • Online ISBN: 978-3-662-04064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics