Skip to main content

Aquatic Humic Matter: from Molecular Structure to Ecosystem Stability

  • Chapter
Aquatic Humic Substances

Part of the book series: Ecological Studies ((ECOLSTUD,volume 133))

Abstract

Identification, Delimitation and Chemical Properties of Humic Substances. The most straightforward way to solve a problem is to first define the agents of interest. However, this is not a trivial matter when it comes to humic substances (HS). First of all, the definition of HS per se is not trivial, since the distinction between aquatic humus and other types of dissolved, colloidal or particulate matter is not unifying. Being composed of a multitude of complex molecules of different origin, structure, molecular size and age, HS also possess a number of different properties. Hence, at best, one can only hope to infer average structure and functionality from average properties (Perdue, this Vol.).Yet some basic features can be identified; the most obvious would be the presence of chromophores, typically giving from yellow to reddish or brownish colour owing to a pronounced light absorption in the UV, blue and green parts of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amon RMW, Benner R (1996a) Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochim Cosmochim Acta 60: 1783–1792

    Article  CAS  Google Scholar 

  • Amon RMW, Benner R (1996b) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41: 41–51

    Article  CAS  Google Scholar 

  • Bushaw KL, Zepp RG, Tarr MA, Schulz-Jander D, Bourbonniere RA, Hodson RE, Miller WL, Bronk DA, Moran MA (1996) Photochemical release of biologically available nitrogen from dissolved organic matter. Nature 381: 404–407

    Article  CAS  Google Scholar 

  • Carpenter SR, Pace ML (1997) Dystrophy and eutrophy in lake ecosystems: Implications of fluctuating inputs. Oikos 78: 3–14

    Google Scholar 

  • Francko DA, Heath RT (1979) Functionally distinct classes of complex phosphorus in lake water. Limnol Oceanogr 24: 463–473

    Article  CAS  Google Scholar 

  • Francko DA, Heath RT (1982) UV-sensitive complex phosphorus: association with dissolved humic material and iron in a bog lake. Limnol Oceanogr 27: 564–569

    Article  CAS  Google Scholar 

  • Hessen DO, Andersen T (1991) Bacteria as a source of phosphorus for zooplankton. Hydrobiologia 206: 217–223

    Article  Google Scholar 

  • Hessen DO, Källqvist T (1994) Bioavailability of humic bound organic nitrogen for freshwater algae. Nitrogen from Mountains to Fjords. Newsletter 1/94. NIVA, Oslo.

    Google Scholar 

  • Hessen DO, Nygaard K (1992) Bacterial transfer of methane and detritus: implications for the pelagic carbon budget and gaseous release. Arch Hydrobiol 37: 139–148

    CAS  Google Scholar 

  • Hessen DO, Andersen T, Lyche A (1990) Carbon metabolism in a humic lake; pool sizes and cycling through zooplankton. Limnol Oceanogr 35: 84–99

    Article  CAS  Google Scholar 

  • Jones RI, Salonen K (1985) The importance of bacterial utilization of released phytoplankton photosynthate in two humic forest lakes in southern Finland. Holarct Ecol 8: 133–140

    Google Scholar 

  • Lindell MJ, Granéli W, Tranvik LJ (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40: 195–199

    Article  Google Scholar 

  • McKnight DM, Smith RL, Harnish RA, Miller CL, Bencala KE (1993) Seasonal relationships between planktonic microorganisms and dissolved organic material in an alpine stream. Bio-geochemistry 21: 39–59

    CAS  Google Scholar 

  • Meyer JL, Edwards RT, Risley R (1987) Bacterial growth on dissolved organic matter from a blackwater river. Microb Ecol 13: 13–29

    Article  CAS  Google Scholar 

  • Moran MA, Zepp RG (1997) Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol Oceanogr (in press)

    Google Scholar 

  • Petersen RC, Persson U (1987) Comparison of the biological effects of humic materials under acidified conditions. Sci Total Environ 62: 387–398

    Article  PubMed  CAS  Google Scholar 

  • Rudd JWM, Hamilton RD (1978) Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnol Oceanogr 23: 337–348

    Article  CAS  Google Scholar 

  • Salonen K, Hammar T (1986) On the importance of dissolved organic matter in the nutrition of zooplankton in some lake waters. Oecologia (Berl) 8: 246–253

    Article  Google Scholar 

  • Salonen K, Kolonen K, Arvola L (1983) Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101: 65–70

    Article  Google Scholar 

  • Schindler DW, Curtis JP, Parker BR, Stainton M (1996) Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379: 705–708

    Article  CAS  Google Scholar 

  • Scully NM, Lean DRS (1994) The attenuation of ultraviolet radiation in temperate lakes. Arch Hydrobiol Beih Ergeb Limnol 43: 135–144

    Google Scholar 

  • Sherr EB (1988) Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335: 348–351

    Article  CAS  Google Scholar 

  • Sommer U, Gliwicz GM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106: 433–471

    Google Scholar 

  • Sun L, Perdue EM, Meyer JL, Weis J (1997) Using elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnol Oceanogr (in press)

    Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. Dr W Junk, Boston Tranvik LJ (1989) Bacterioplankton growth, grazing mortality, and quantitative relationship to primary production in a humic and a clearwater lake. J Plankton Res 11: 985–1000

    Google Scholar 

  • Tranvik LJ (1990) Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl Environ Microbiol 56: 1672–1677

    PubMed  CAS  Google Scholar 

  • Tranvik LJ (1994) Effects of colloidal organic matter on the growth of bacteria and protists in lake water. Limnol Oceanogr 39: 1276–1285

    Article  CAS  Google Scholar 

  • Tranvik LJ, Sherr EB, Sherr BF (1993) Uptake and utilization of “colloidal DOM” by heterotrophic flagellates in seawater. Mar Ecol Prog Ser 92: 301–309

    Article  Google Scholar 

  • Vadstein 0, Olsen Y (1989) Chemical composition and PO4 uptake kinetics of limnetic bacterial communities cultured in chemostat under P-limitation. Limnol Oceanogr 34: 939–946

    Article  CAS  Google Scholar 

  • Wetzel RG (1984) Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bull Mar Sci 35: 503–509

    Google Scholar 

  • Wetzel RG (1992) Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198

    Article  CAS  Google Scholar 

  • Wetzel RG (1995) Death, detritus, and energy flow in aquatic ecosystems. Freshw Biol 33: 83–89

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hessen, D.O., Tranvik, L.J. (1998). Aquatic Humic Matter: from Molecular Structure to Ecosystem Stability. In: Hessen, D.O., Tranvik, L.J. (eds) Aquatic Humic Substances. Ecological Studies, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03736-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03736-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08362-4

  • Online ISBN: 978-3-662-03736-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics