Skip to main content

Introducing the Atomic Nucleus: Nuclear Structure

  • Chapter
From Nucleons to the Atomic Nucleus

Abstract

Here we consider the large-scale structure of the atomic nucleus. A nucleus comprises a system of A nucleons, which, when well separated from each other and outside the range of the strongly attractive nuclear force, has as its energy just the sum of the rest mass of the individual nucleons (Fig. 3.1 left) . In bringing, in a hypothetical way, the nucleons close together, at the range of the strong force (approximately 10-14–10-13m), condensation into the bound atomic nucleus will result (Fig. 3.1 right) with a release of the corresponding binding energy. This causes an observable deficit in the mass of the actual nucleus as compared to the sum of the masses of the individual nucleons. This “loss” of mass is known as a mass defect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. Before listing some textbooks discussing nuclear structure, we cite two more popular review papers: Hodgson, P.E. (1994) Contemp. Phys. 35, 329

    Article  ADS  Google Scholar 

  2. Wilkinson, D. (1984) Nucl. Phys. A421, 1c

    Article  Google Scholar 

  3. An overview of technical developments in the 1990s, for advanced readers: Johnson, N.R. (ed.) (1990) Nuclear Structure in the Nineties, Nucl. Phys. A520

    Google Scholar 

  4. A large number of textbooks are devoted to nuclear structure. We first give some that concentrate on the topic as a whole: Bohr, A., Mottelson, B. (1969) Nuclear Structure, Vol. 1 (Benjamin, New York)

    Google Scholar 

  5. Bohr, A., Mottelson, B. (1975) Nuclear Structure, Vol. 2 (Benjamin, New York)

    Google Scholar 

  6. Eisenberg, J.M., Greiner, W. (1987) Nuclear Models, Vol. 1, 3rd ed. (North-Holland, Amsterdam)

    Google Scholar 

  7. Eisenberg, J.M., Greiner, W. (1987) Excitation Mechanisms of the Nucleus, Vol. 2, 3rd ed. (North-Holland, Amsterdam)

    Google Scholar 

  8. Eisenberg, J.M., Greiner, W. (1976) Microscopic Theory of the Nucleus, Vol. 3 (North-Holland, Amsterdam)

    Google Scholar 

  9. Hornyack, W.F. (1975) Nuclear Structure (Academic, New York)

    Google Scholar 

  10. Ring, P., Schuck, P. (1980) The Nuclear Many-body Problem (Springer, Berlin Heidelberg)

    Book  Google Scholar 

  11. de Shalit, A., Fesbach, H. (1974) Theoretical Nuclear Physics (Wiley, New York)

    Google Scholar 

  12. Textbooks concentrating more on shell model methods: Brussaard, P.J., Glaudemans, P.W.M. (1977) Shell Model Applications in Nuclear Spectroscopy (North-Holland, Amsterdam)

    Google Scholar 

  13. Heyde, K.L.G. (1994) The Nuclear Shell Model Study edition, 2nd ed. (Springer, Berlin Heidelberg)

    Google Scholar 

  14. Lawson, R.D. (1980) Theory of the Nuclear Shell Model (Clarendon Press, Oxford)

    Google Scholar 

  15. Mayer, M.G., Jensen, H.D. (1955) Elementary Theory of Nuclear Shell Structure (Wiley, New York)

    MATH  Google Scholar 

  16. de Shalit, A., Talmi, I. (1963) Nuclear Shell Theory (Academic, New York)

    Google Scholar 

  17. Talmi, I. (1993) Simple Models of Complex Nuclei: The Shell Model and Interacting Boson Model (Harwood, New York)

    Google Scholar 

  18. Those textbooks that deal with collective motion in the nucleus include, of course, the monumental volume series of Bohr and Mottelson mentioned above. Some further references are: Kumar, K. (1984) Nuclear Models and the Search for Unity in Nuclear Physics (Universitetsforlanger, Oslo)

    Google Scholar 

  19. Nilsson, S.G., Ragnarsson, I. (1995) Nuclear Shells and Shapes (Cambridge University Press, New York)

    Google Scholar 

  20. Rowe, D.J. (1970) Nuclear Collective Motion (Methuen, New York)

    Google Scholar 

  21. Two textbooks discussing numerical methods and computer codes that describe nuclear structure and nuclear reaction properties are: Langanke, K., Maruhn, J.A., Koonin, S.E. (ed.) (1991) Computational Nuclear Physics 1: Nuclear Structure (Springer New York)

    Google Scholar 

  22. Langanke, K., Maruhn, J.A., Koonin, S.E. (ed.) (1993) Computational Nuclear Physics 2: Nuclear Reactions (Springer New York)

    Google Scholar 

  23. In studying various nuclear structure processes, one first has to understand how the nucleon interactions generate an average field. On Hartree-Fock theory, the details are well described in the general nuclear structure textbooks. A number of more detailed but important papers in this field, as well a number of review papers on self-consistent Hartree-Fock techniques with applications, are the following: Baktash, C., Haas, B., Nazarewicz, W. (1995) Ann. Rev. Nucl. Part. Sci. 45, 485

    Article  ADS  Google Scholar 

  24. Aberg, S., Flocard, H., Nazarewicz, W. (1990) Ann. Rev. Nucl. Part. Sci. 40, 439

    Article  ADS  Google Scholar 

  25. Goodman, A.L. (1979) Adv. Nucl. Phys. 11, 283

    Google Scholar 

  26. Quentin, P., Flocard, H. (1978) Ann. Rev. Nucl. Sci. 28, 523

    Article  ADS  Google Scholar 

  27. Skyrme, T.H.R. (1956) Phil. Mag. 1, 1043

    Article  ADS  MATH  Google Scholar 

  28. Vautherin, D., Brink, D.M. (1972) Phys. Rev. C5, 626

    Article  ADS  Google Scholar 

  29. Waroquier, M., Heyde, K., Wenes, G. (1983) Nucl. Phys. A404, 269

    Article  Google Scholar 

  30. Waroquier, M., Ryckebusch, J., Moreau, J., Heyde, K., Blasi, N., Van der Werf, S., Wenes, G. (1987) Phys. Rep. 148, 249

    Article  ADS  Google Scholar 

  31. A basic article combining Hartree-Fock methods with the time dependence of nuclear dynamics is Bonche, P., Koonin, S., Negele, J.W. (1976) Phys. Rev. C13, 1226

    ADS  Google Scholar 

  32. Audi, G., Wapstra, A.H. (1995) Nucl. Phys. A595, 409

    Article  Google Scholar 

  33. Bethe, H.A., Bacher, R.F. (1936) Rev. Mod. Phys. 8, 82

    Article  ADS  Google Scholar 

  34. Mattauch, H.E., Thiele W., Wapstra, A.H. (1965) Nucl. Phys. 67, 1

    Article  Google Scholar 

  35. Moller, P., Nix, J.R., Myers, W.D., Swiatecki, W.J. (1995) At. Data Nucl. Data Tables 59, 185

    Article  ADS  Google Scholar 

  36. Myers, W.D., Swiatecki, W.J. (1966) Nucl. Phys. 81, 1

    Google Scholar 

  37. Concerning the shell model, a large body of references exists relating to aspects of constructing effective interactions starting from the bare nucleon interactions, the construction of effective forces in given model spaces, on large-scale shell model studies, and recent developments concerning Shell Model Monte-Carlo extensions. We give here a number of important references in this domain. Weizsäcker, von C.F. (1935) Z.Phys. 96, 431

    Article  ADS  MATH  Google Scholar 

  38. Barrett, B.R., Kirson, M.W. (1973) Adv. Nucl. Phys. 6, 219

    Article  Google Scholar 

  39. Brandow, B.H. (1967) Rev. Mod. Phys. 39, 771

    Article  ADS  Google Scholar 

  40. Brown, G.E., Kuo, T.T.S. (1967) Nucl. Phys. A92, 481

    Article  Google Scholar 

  41. Brueckner, K.A., Eden, R.J., Francis, N.C. (1955) Phys. Rev. 100, 891

    Article  ADS  Google Scholar 

  42. Brueckner, K.A., Gammel, J.L. (1958) Phys. Rev. 109, 1023

    Article  MathSciNet  ADS  Google Scholar 

  43. Hjorth-Jensen, M., Osnes, E., Müther, H. (1992) Ann. Phys. 213, 102

    Article  ADS  Google Scholar 

  44. Hjorth-Jensen, M., Kuo, T.T.S., Osnes, E. (1995) Phys. Rep. 261, 125

    Article  ADS  Google Scholar 

  45. Kuo, T.T.S. (1981) in Topics in Nuclear Physics, Lect. Notes Phys., Vol.144 (Springer, Berlin Heidelberg)

    Book  Google Scholar 

  46. Kuo, T.T.S., Brown, G.E. (1966) Nucl. Phys. 85, 40

    Article  Google Scholar 

  47. Schucan, T.H., Weidenmüller, H.A. (1972) Ann. Phys. (N.Y.) 73, 108

    Article  ADS  Google Scholar 

  48. Schucan, T.H., Weidenmüller, H.A. (1973) Ann. Phys. (N.Y.) 76, 425

    Article  Google Scholar 

  49. Discussions of large-scale shell model calculations; the codes (acronyms of the various large-scale shell model codes are given) and applications include: Brown, B.A., Wildenthal, B.H. (1988) Ann. Rev. Nucl. Sci. 38, 29

    Article  ADS  Google Scholar 

  50. Caurier, E. (1989) ANTOINE CRN Strasbourg

    Google Scholar 

  51. Caurier, E., Zuker, A.P., Poves, A., Martinez-Pinedo, G. (1994) Phys. Rev. C50, 225

    Article  ADS  Google Scholar 

  52. van Hees, A.G.M., Glaudemans, P.W.M. (1981) RITSCHIL Z. Phys. A303, 267

    ADS  Google Scholar 

  53. McRae, W.D., Etchegoyen, A., Brown, B.A. (1988) OXBASH MSU Report 524

    Google Scholar 

  54. Nakada, K., Sebe, T., Otsuka, T. (1994) Nucl. Phys. A571, 467

    Article  Google Scholar 

  55. Schmid, K.W., Grümmer, F. (1987) VAMPIR Rep. Progr. Phys. 50, 731

    Article  ADS  Google Scholar 

  56. Sebe, T., Harvey, M. (1968) AECL report No. 3007

    Google Scholar 

  57. Wildenthal B.H. (1976) Varenna Lectures 69, 383

    Google Scholar 

  58. Wildenthal, B.H., McGrory, J.B., Halbert, E.C., Graber, H.D. (1971) Phys. Rev. C4, 1708

    Article  ADS  Google Scholar 

  59. A recent conference proceedings on state-of-the-art shell model studies is: Wyss, R. (ed.) (1995) Proc. Int. Symp. on New Nuclear Structure Phenomena in the Vicinity of Closed Shells, Phys. Script. T56

    Google Scholar 

  60. References on Shell Model Monte-Carlo calculations: Honma, M., Mizusaki, T., Otsuka, T. (1996) Phys. Rev. Lett. 77, 3315

    Article  ADS  Google Scholar 

  61. Koonin, S.E., Dean, D.J., Langanke, K. (1997) Phys. Rep. 278, 1

    Article  ADS  Google Scholar 

  62. Lang, G.H., Johnson, C.W., Koonin, S.E., Ormand, W.E. (1993) Phys. Rev. C48, 1518

    Article  ADS  Google Scholar 

  63. Mizusaki, T., Honma, M., Otsuka, T. (1996) Phys. Rev. C53, 2786

    Article  ADS  Google Scholar 

  64. Ormand, W.E., Dean, D.J., Johnson, C.W., Lang, G.H., Koonin, S.E. (1994) Phys. Rev. C49, 1422

    Article  ADS  Google Scholar 

  65. Pudliner, B.S., Pandharipande, V. R. , Carlson, J., Wiringa, R.B. (1995) Phys. Rev. Lett. 74, 4396

    Article  ADS  Google Scholar 

  66. Works discussing the importance of possible low-lying excitations from outside the regular shell model spaces, with many references to the vast literature, are: Heyde, K., Van Isacker, P., Waroquier, M., Wood, J.L., Meyer, R.A. (1983) Phys. Rep. 102, 291

    Article  ADS  Google Scholar 

  67. Wood, J.L., Heyde, K., Nazarewicz, W., Huyse, M., Van Duppen, P. (1992) Phys. Rep. 215, 101

    Article  ADS  Google Scholar 

  68. There is a very large literature on symmetries in nuclear physics. First we give a couple of more general introductory references: Gross, D.J. (1995) Physics Today December, p. 46

    Google Scholar 

  69. Peierls, R. (1992) Contemp. Physics 33, 221

    Article  ADS  Google Scholar 

  70. Rowe, D.J., Nash, C. (1991) Symmetry, Art and Nuclear Physics (University of Toronto, Toronto)

    Google Scholar 

  71. Wambach, J. (1991) Contemp. Phys. 32, 291

    Article  ADS  Google Scholar 

  72. Yang, C.N. (1991) AAPPSB Bull. Vol. 1, No. 3, p. 3

    Google Scholar 

  73. Concepts relating to structural symmetries, and the relation between geometrical symmetries and various modes of motion are extensively discussed in the works of Bohr and Mottelson (Vol. 2) and the volumes of Eisenberg and Greiner. Here we add a couple of references on the ‘scissors’ mode: Berg, U.E.P., Kneissl, U. (1987) Ann. Rev. Nucl. Part. Sci. 37, 33

    Article  ADS  Google Scholar 

  74. Bohle, D., Richter, A., Steffen, W., Dieperink, A.E.L., Lo Iudice, N., Palumbo, F., Scholten, O. (1984) Phys. Lett. B137, 27

    Google Scholar 

  75. de Coster, C., Heyde, K., Richter, A., Wörtche, H.J. (1992) Nucl.Phys. A542, 375

    Article  Google Scholar 

  76. Kneissl, U., Pitz, H.H., Zilges, A. (1996) Prog. Part. Nucl. Phys. 37, 349

    Article  ADS  Google Scholar 

  77. Richter, A. (1996) in Building Blocks of Nuclear Structure, ed. by A. Covello (World Scientific, Singapore)

    Google Scholar 

  78. Ziegler, W., Rangacharyulu, C., Richter, A., Spieler, C. (1990) Phys. Rev. Lett. 65, 2515

    Article  ADS  Google Scholar 

  79. The history of symmetry concepts in nuclear physics is impressive and here we give a chronological list of some keynote articles Heisenberg, W. (1932) Z.Phys. 77, 1

    Article  MathSciNet  ADS  Google Scholar 

  80. Wigner, E.P. (1937) Phys. Rev. 51, 106

    Article  ADS  Google Scholar 

  81. Racah, G. (1943): Phys. Rev. 63, 367

    Article  ADS  Google Scholar 

  82. Mayer, M.G. (1949) Phys. Rev. 75, 1969

    Article  ADS  Google Scholar 

  83. Haxel, O., Jensen, H.H.D., Suess, H.E. (1949) Phys. Rev. 75, 1766

    Article  ADS  Google Scholar 

  84. Bohr, A. (1951) Phys. Rev. 81, 134

    Article  ADS  MATH  Google Scholar 

  85. Bohr, A. (1952) Mat. Fys. Medd. Dan. Vid. Selsk. 26, No. 4

    Google Scholar 

  86. Bohr, A., Mottelson, B. (1953) Mat. Fys. Medd. Dan. Vid. Selsk. 27, No. 16

    Google Scholar 

  87. Elliott, J.P. (1958) Proc. Roy. Soc. A245, 128, 562

    ADS  Google Scholar 

  88. Elliott, J.P., Harvey, M. (1963) Proc. Roy. Soc. A272, 557

    Article  ADS  Google Scholar 

  89. Arima, A, Iachello, F. (1975) Phys. Lett. B57, 39

    Google Scholar 

  90. Arima, A., Iachello, F. (1975) Phys. Rev. Lett. 35, 1069

    Article  ADS  Google Scholar 

  91. Rowe, D.J. (1996) Prog. Part. Nucl. Phys. 37, 265

    Article  MathSciNet  ADS  Google Scholar 

  92. On dynamical symmetries there is also a large amount of literature and, for mathematical aspects, we refer to some general textbooks: Gilmore, B. (1974) Lie Groups, Lie Algebras and some of their Applications (Wiley, New York)

    MATH  Google Scholar 

  93. Hamermesh, M. (1962) Group Theory and its Applications to Physical Problems (Addison-Wesley, Reading, MA)

    Google Scholar 

  94. Iachello, F. (1983) Lie Groups, Lie Algebras and Some Applications, Trento Lecture Notes, UT. F97

    Google Scholar 

  95. Lipkin, H. (1965) Lie Groups for Pedestrians (North-Holland, Amsterdam)

    Google Scholar 

  96. Parikh, J.C. (1978) Group Symmetries in Nuclear Structure (Plenum, New York)

    Book  Google Scholar 

  97. Wybourne, B.G. (1974) Classical Groups for Physicists (Wiley, New York)

    MATH  Google Scholar 

  98. A very extensive literature deals with the interacting boson model (IBM). Here we quote a number of essential textbooks, the original Ann. Phys. (N.Y.) articles, and some more general articles written in a popular style: Casten, R.F. (ed.) (1993) Algebraic Approaches to Nuclear Structure (Gordon & Breach, New York)

    Google Scholar 

  99. Iachello, F., Arima, A. (1988) The Interacting Boson Model (University Press, Cambridge)

    Google Scholar 

  100. Iachello, F., van Isacker, P. (1991) The Interacting Boson-Fermion Model (University Press, Cambridge)

    Book  Google Scholar 

  101. Arima, A., Iachello, F. (1976) Ann. Phys. (N.Y.) 99, 253

    Article  ADS  Google Scholar 

  102. Arima, A., Iachello, F. (1978) Ann. Phys. (N.Y.) 111, 201

    Article  ADS  Google Scholar 

  103. Arima, A., Iachello, F. (1979) Ann. Phys. (N.Y.) 123, 436

    Article  Google Scholar 

  104. Casten, R.F. (1984) Comments Nucl. Part. Phys. 12, 119

    Google Scholar 

  105. Dieperink, A.E.L. (1985) Comments Nucl. Part. Phys. 14, 25

    Google Scholar 

  106. Talmi, I. (1983) Comments Nucl. Part. Phys. 11, 241

    Google Scholar 

  107. Rotational properties of deformed nuclei have quite a long history. We start by listing chronologically some of the original older papers: Nilsson, S.G. (1955) K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 29, No. 16

    Google Scholar 

  108. Strutinski, V.M. (1967) Nucl. Phys. A95, 420

    Article  Google Scholar 

  109. Strutinski, V.M. (1968) Nucl. Phys. A122, 1

    Article  Google Scholar 

  110. Brack, M., Damgaard, J., Jensen, A.S., Pauli, H.C., Strutinsky, V.M., Wong, C.Y. (1972) Rev. Mod. Phys. 44, 320

    Article  ADS  Google Scholar 

  111. These concepts are also discussed at length in the books of Bohr and Mottel-son, Eisenberg and Greiner, Nilsson and Ragnarsson and Ring and Schuck. Some older papers concentrating on deformation, backbending and also presenting extensive data are: Bunker, M.E., Reich, C.W. (1971) Rev. Mod. Phys. 43, 438

    Article  ADS  Google Scholar 

  112. Johnson, A., Szymanski, Z. (1973) Phys. Rep. 7, 181

    Article  ADS  Google Scholar 

  113. Ogle, W., Wahlborn, S., Piepenbring, R., Frederiksson, S. (1971) Rev. Mod. Phys. 43, 424

    Article  ADS  Google Scholar 

  114. Ragnarsson, I., Nilsson, S.G., Sheline, R.K. (1978) Phys. Rep. 45, 1

    Article  ADS  Google Scholar 

  115. Some recent review papers concentrating on many aspects of rapidly rotating and strongly deformed nuclei, e.g., superdeformation and hyper deformation, including the original discovery paper by Twin et al.: Aberg, S., Flocard, H., Nazarewicz, W. (1990) Ann. Rev. Nucl. Part. Sci. 40, 439

    Article  ADS  Google Scholar 

  116. Beausang, C.W., Simpson, J. (1996) J. Phys. G 22, 527

    Article  ADS  Google Scholar 

  117. Firestone, R.B., Singh, B. (1995) Table of Superdeformed Nuclear Bands and Fission Isomers LBL-35916, UC-413

    Google Scholar 

  118. Garrett, J.D. (1988) in The Response of Nuclei under Extreme Conditions, ed. by Broglia, R.A., Bertsch, G. (Plenum, New York)

    Google Scholar 

  119. Janssens, R.V.F., Khoo, T.L. (1991) Ann. Rev. Nucl. Part. Sci. 41, 321

    Article  ADS  Google Scholar 

  120. LaFosse, D.R. et al. (1996) Phys. Rev. C54, 1585

    Article  ADS  Google Scholar 

  121. Nolan, P.J., Twin, P. (1988) Ann. Rev. Nucl. Part. Sci. 38, 533

    Article  ADS  Google Scholar 

  122. Sharpey-Schafer, J.F., Simpson, J. (1988) Rep. Prog. Phys. 21, 293

    Google Scholar 

  123. Twin, P. et al. (1986) Phys. Rev. Lett. 57, 811

    Article  ADS  Google Scholar 

  124. We also include a number of more popular articles discussing properties of rapidly rotating nuclei and the experimental facilities to detect them: Garrett, J. (1984) Comm. Nucl. Part. Phys. 13, 1

    Google Scholar 

  125. Goldhaber, J. (1991) LBL Research Review, Spring, p. 22

    Google Scholar 

  126. Hellemans, A. (1996) Science 271, 24

    Article  ADS  Google Scholar 

  127. Lieb, K.P., Broglia, R., Twin, P. (1994) Nucl. Phys. News 3, 21

    Google Scholar 

  128. Newton, J.O. (1989) Contemp. Phys. 30, 277

    Article  ADS  Google Scholar 

  129. Phillips, W.R. (1993) Nature 366, 4 November, p. 13

    Article  ADS  Google Scholar 

  130. Information about nuclear interactions as derived from the theoretical and experimental study of nuclear level distributions, and symmetries governing the nuclear many-body system are discussed in the popular presentation Weidenmüller, H. (1986) Comm. Nucl. Part. Phys. 16, No. 4, 199

    Google Scholar 

  131. A detailed study of the derivation of level distributions as a function of matrix element distributions is given in the Vol. 1 of Bohr and Mottelson. We quote a couple of works that give access to the extensive literature on both experimental and theoretical level distributions. On quantum chaos in a more general context: Haake, F. (1991) Quantum Signatures of Chaos (Springer, Berlin Heidelberg)

    MATH  Google Scholar 

  132. Harney, H.L., Dittes, F.-M., Müller, A. (1992) Ann. Phys. (N.Y.) 220, 159

    Article  ADS  MATH  Google Scholar 

  133. Sieber, M., Steiner, F. (1991) Phys. Rev. Lett. 67, 194

    Article  MathSciNet  ADS  Google Scholar 

  134. On the statistical properties of level distributions in atomic nuclei: Bohigas, O. (1991) in Chaos and Quantum Physics, ed. by Giannoni, M., Voros, A., Zinn-Justin, J. (North-Holland, New York)

    Google Scholar 

  135. Bohigas, O., Weidenmüller, H. (1988) Ann. Rev. Nucl. Part. Sci., 421

    Google Scholar 

  136. Brody, T.A., Flores, J., French, J.B., Mello, P.A., Pandey, A., Wong, S.S.M. (1981) Rev. Mod. Phys. 53, 385

    Article  MathSciNet  ADS  Google Scholar 

  137. Guhr, T., Weidenmüller, H. (1990) Ann. Phys. (N.Y.) 199, 412

    Article  ADS  Google Scholar 

  138. Haq, R.U., Pandey, A., Bohigas, O. (1982) Phys. Rev. Lett. 48, 1086

    Article  ADS  Google Scholar 

  139. Raman, S. et al. (1991) Phys. Rev. C43, 521

    ADS  Google Scholar 

  140. Shriner Jr., J.F., Bilpuch, E.G., Endt, P.M., Mitchell, G.E. (1990) Z. Phys. A335, 393

    ADS  Google Scholar 

  141. Weidenmüller, H. (1985) in Nuclear Structure, ed. by Broglia, R.A., Hagemann, G., Herskind, B. (North-Holland, Amsterdam)

    Google Scholar 

  142. Statistical properties derived from shell model and collective model studies: Alhassid, Y., Whelan, N. (1991) Phys. Rev. C43, 2637

    Article  ADS  Google Scholar 

  143. Alhassid, Y., Novoselsky, A. (1992) Phys. Rev. C45, 1677

    Article  ADS  Google Scholar 

  144. Drödz, S., Speth, J. (1991) Phys. Rev. Lett. 67, 529

    Article  ADS  Google Scholar 

  145. Frazier, N., Brown, B.A., Zelevinsky, V. (1996) Phys. Rev. C54, 1665

    Article  ADS  Google Scholar 

  146. Kusnezov, D., Brown, B.A., Zelevinsky, V. (1996) Phys. Lett. B385, 5

    Google Scholar 

  147. Rekstad, J., Tveter, T.S., Guttormsen, M. (1988) Phys. Rev. Lett. 65, 2122

    Article  ADS  Google Scholar 

  148. Whelan, N., Alhassid, Y. (1993) Nucl. Phys. A586, 42

    Google Scholar 

  149. Zhang, W.M., Feng, D.H. (1991) Phys. Rev. C43, 1127

    Article  MathSciNet  ADS  Google Scholar 

  150. The field of very hot nuclei also contains many facets; too many to go into detail here. We have singled out the dramatic case of the discovery of two-phonon excitations that “survive” at very high excitation energy inside the nucleus. Auerbach, N. (1987) in Proc. Workshop on Pion—Nucleus Physics: Future Directions and New Facilities at LAMPF (American Institute of Physics) 163, 34

    Google Scholar 

  151. Auerbach, N. (1990) Ann. Phys. (N.Y.) 197, 376

    Article  ADS  Google Scholar 

  152. Boretzky, K. et al. (1996) Phys. Lett. B384, 30

    Google Scholar 

  153. Mordechai, S., Moore, S.F. (1991) Nature 352, 293

    Article  Google Scholar 

  154. Mordechai, S., Moore, S.F. (1994) Int. J. Mod. Phys. E3, 39

    ADS  Google Scholar 

  155. In reaching regions far from stability, besides the technical literature, a number of more popular texts have appeared recently: Armbruster, P., Munzenberg, G. (1989) Scientific American, May, 36

    Google Scholar 

  156. Austin, S.M., Bertsch, G.F. (1995) Scientific American, June, 62

    Google Scholar 

  157. CERN Courier, (1994) March, 3

    Google Scholar 

  158. CERN Courier, (1995) December, 2

    Google Scholar 

  159. Hansen, P.G. (1993) Nature 361, February, 501

    Article  ADS  Google Scholar 

  160. Hansen, P.G. (1993) New Scientist, 9th October, 38

    Google Scholar 

  161. Nitschke, M. (1989) New Scientist, 25th February, 55

    Google Scholar 

  162. Technical review papers and some original papers on light, exotic nuclei: Hamilton, J.H. (1989) Treatise on Heavy-Ion studies, ed. by Bromley, D.A. (Plenum, New-York) Vol. 8, 1

    Google Scholar 

  163. Hansen, P.G. (1993) Nucl. Phys. A553, 89c

    Article  Google Scholar 

  164. Hansen, P.G., Jonson, B. (1987) Europhys. Lett. 4, 409

    Article  ADS  Google Scholar 

  165. Hansen, P.G., Jensen, A.S., Jonson, B. (1995) Ann. Rev. Nuc. Sci. 45, 591

    Article  ADS  Google Scholar 

  166. Jonson, B. (1995) Nucl. Phys. A583, 733

    Article  Google Scholar 

  167. Riisager, K. (1994) Rev. Mod. Phys. 66, 1105

    Article  ADS  Google Scholar 

  168. Tanihata, I. (1996) J. Phys. G 22, 157

    Article  ADS  Google Scholar 

  169. Recently, the doubly magic nucleus 100Sn has been discovered; some of the keynote papers are: Chartier, M. et al. (1996) Phys. Rev. Lett. 77, 2400

    Article  ADS  Google Scholar 

  170. Lewitowicz, M. et al. (1994) Phys. Lett. B322, 20

    Google Scholar 

  171. Schneider, R. et al. (1994) Z. Phys. A348, 241

    Article  ADS  Google Scholar 

  172. Exploratory theoretical studies on how the nuclear mean-field might change as one approaches the drip-line are reported in the following recent papers: Dobaczewski, J., Hamamoto, I., Nazarewicz, W., Seikh, J.A. (1994) Phys. Rev. Lett. 72, 981

    Article  ADS  Google Scholar 

  173. Dobaczewski, J., Nazarewicz, W., Werner, T.R., Berger, J.F., Chinn, C.R., Dechargé, J. (1996) Phys. Rev. C53, 2809

    Article  ADS  Google Scholar 

  174. Nazarewicz, W., Werner, T.R., Dobaczewksi, J. (1994) Phys. Rev. C50, 2860

    ADS  Google Scholar 

  175. Otsuka, T., Fukunishi, N. (1996) Phys. Rep. 264, 297

    Article  ADS  Google Scholar 

  176. Great efforts continue to produce in the laboratory the heaviest nuclei possible in our universe: Armbruster, P. (1985) Ann. Rev. Nucl. Part. Sci. 35, 135

    Article  MathSciNet  ADS  Google Scholar 

  177. Münzenber, G. (1988) Rep. Prog. Phys. 51, 57

    Article  ADS  Google Scholar 

  178. Schmidt, K.-H., Morawek, W. (1991) Rep. Prog. Phys. 54, 949

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heyde, K. (1998). Introducing the Atomic Nucleus: Nuclear Structure. In: From Nucleons to the Atomic Nucleus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03633-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03633-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08318-1

  • Online ISBN: 978-3-662-03633-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics