Skip to main content

The Microscopic Theory of Nuclear Effective Interactions and Operators

  • Chapter
Advances in Nuclear Physics

Abstract

The atomic nucleus, regarded as a system of interacting fermions, occupies a peculiarly difficult position amongst many-particle systems. It contains too many particles for exact treatment, yet not enough to permit the simplifying assumption of an infinite system, without surface effects. It has no special component playing a dominant, yet tractable, role analogous to that played by the nucleus itself in atomic structure. In short, the nucleus suffers from an overabundance of degrees of freedom. Any theoretical treatment must somehow limit the number of degrees of freedom considered, and this requirement makes imperative the introduction of nuclear models.

This work supported in part by the National Science Foundation under Grant GP-29250.

Alfred P. Sloan Foundation Research Fellow 1972–74.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Arima and I. Hamamoto, Ann. Rev. Nucl. Sci. 21:55 (1971).

    ADS  Google Scholar 

  2. A. Arima, S. Cohen, R. D. Lawson, and M. H. Macfarlane, Nucl. Phys. A108:94 (1968).

    ADS  Google Scholar 

  3. M. Baranger, in: Proceedings of the International School of Physics “Enrico Fermi,” Course XL, 1967, Academic Press, New York (1969), p. 511.

    Google Scholar 

  4. M. Baranger, Nucl. Phys. A149:225 (1970).

    ADS  Google Scholar 

  5. M. Baranger, Comments on Nuclear and Particle Physics 4:81 (1970).

    MathSciNet  Google Scholar 

  6. B. R. Barrett, Bull. Am. Phys. Soc. 16:623 (1971).

    Google Scholar 

  7. B. R. Barrett, Bull. Am. Phys. Soc. 16:1182 (1971).

    Google Scholar 

  8. B. R. Barrett, Phys. Letters 38B:371 (1972).

    ADS  Google Scholar 

  9. B. R. Barrett, to be submitted for publication.

    Google Scholar 

  10. B. R. Barrett, in: Proceedings of the Rome Symposium on “Present Status and Novel Developments in the Nuclear Many-Body Problem”; (1972), to be published by the University of Rome.

    Google Scholar 

  11. B. R. Barrett, Bull. Am. Phys. Soc. 17:911 (1972).

    Google Scholar 

  12. H. A. Bethe, B. H. Brandow, and A. G. Petschek. Phys. Rev. 129:225 (1963).

    ADS  MATH  Google Scholar 

  13. R. L. Becker, Phys. Rev. Letters 24:400 (1970).

    ADS  Google Scholar 

  14. G. F. Bertsch, Nucl. Phys. 74:234 (1965).

    Google Scholar 

  15. G. F. Bertsch, Phys. Rev. Letters 21:1694 (1968).

    ADS  Google Scholar 

  16. K. A. Brueckner and J. L. Gammel, Phys. Rev. 109:1023 (1958).

    MathSciNet  ADS  Google Scholar 

  17. C. Bloch and J. Horowitz, Nucl. Phys. 8:91 (1958).

    MATH  Google Scholar 

  18. B. R. Barrett, R. G. L. Hewitt, and R. J. McCarthy, Phys. Rev. C3:1137 (1971).

    ADS  Google Scholar 

  19. B. R. Barrett, E. C. Halbert, and J. B. McGrory, Bull. Am. Phys. Soc. 17:553 (1972) and preprint.

    Google Scholar 

  20. G. E. Brown and T. T. S. Kuo, Nucl. Phys. A92:481 (1967).

    ADS  Google Scholar 

  21. B. R. Barrett and M. W. Kirson, Phys. Letters 30B:8 (1969).

    ADS  Google Scholar 

  22. J. Blomqvist and T. T. S. Kuo, Phys. Letters 29B:544 (1969).

    ADS  Google Scholar 

  23. B. R. Barrett and M. W. Kirson, Nucl. Phys. A148:145 (1970)

    ADS  Google Scholar 

  24. B. R. Barrett and M. W. Kirson, Nucl. Phys. A196:638 (1972).

    Google Scholar 

  25. R. L. Becker, A. D. MacKellar, and R. M. Morris, Phys. Rev. 174:1264 (1968).

    ADS  Google Scholar 

  26. B. H. Brandow, Phys. Rev. 152:863 (1966).

    ADS  Google Scholar 

  27. B. H. Brandow, Rev. Mod. Phys. 39:771 (1967).

    ADS  Google Scholar 

  28. B. H. Brandow, in: Lectures in Theoretical Physics, Vol. XIB (K. T. Mahanthappa and W. E. Brittin, eds.) Gordon and Breach, New York (1969), p. 55.

    Google Scholar 

  29. B. H. Brandow, Ann. Phys. (N. Y.) 57:214 (1970).

    ADS  Google Scholar 

  30. B. H. Brandow, private communication.

    Google Scholar 

  31. G. E. Brown, Unified Theory of Nuclear Models and Forces (2nd ed.), North-Holland, Amsterdam (1967), p. 230.

    Google Scholar 

  32. G. E. Brown, Rev. Mod. Phys. 43:1 (1971).

    ADS  Google Scholar 

  33. E. U. Baranger and J. P. Vary, Phys. Letters 41B:568 (1972).

    ADS  Google Scholar 

  34. J. A. Becker and D. H. Wilkinson, Phys. Rev. 134:B1200 (1964).

    ADS  Google Scholar 

  35. D. M. Clement and E. U. Baranger, Nucl Phys. A108:27 (1968).

    ADS  Google Scholar 

  36. F. Coester, S. Cohen, B. Day, and C. M. Vincent, Phys. Rev. C1:769 (1970).

    ADS  Google Scholar 

  37. S. Cohen, R. D. Lawson, M. H. Macfarlane, S. P. Pandaya, and M. Soga, Phys. Rev. 160:903 (1967).

    ADS  Google Scholar 

  38. B. D. Day, Rev. Mod. Phys. 39:719 (1967).

    ADS  Google Scholar 

  39. B. D. Day, Phys. Rev. 187:1269 (1969).

    ADS  Google Scholar 

  40. A.E.L. Dieperink and P. J. Brussaard, International Conference on Properties of Nuclear States, Montreal, 1969, Contribution 5.27.

    Google Scholar 

  41. A. E. L. Dieperink and P. J. Brussaard, Nucl. Phys. A129:33 (1969).

    ADS  Google Scholar 

  42. J. Dey, J. P. Elliott, A. D. Jackson, H. A. Mavromatis, E. A. Sanderson, and B. Singh, Nucl. Phys. A134:385 (1969).

    ADS  Google Scholar 

  43. K. T. R. Davies and R. J. McCarthy, Phys. Rev. C4:81 (1971).

    ADS  Google Scholar 

  44. G. Dahll, E. Østgaard, and B. H. Brandow, Nucl. Phys. A124:481 (1969).

    ADS  Google Scholar 

  45. J. F. Dawson, I. Talmi, and J. D. Walecka, Ann. Phys. (N. Y.) 18:339 (1962).

    ADS  Google Scholar 

  46. P. J. Ellis, A. D. Jackson, and E. Osnes, Nucl. Phys. A196:161 (1972).

    ADS  Google Scholar 

  47. J. P. Elliott, A. D. Jackson, H. A. Mavromatis, E. A. Sanderson, and B. Singh, Nucl. Phys. A121:241 (1968).

    ADS  Google Scholar 

  48. P. J. Ellis and H. A. Mavromatis, Nucl. Phys. A175:309 (1971).

    ADS  Google Scholar 

  49. P. J. Ellis, and E. Osnes, Phys. Letters 41B:97 (1972) and preprint.

    ADS  Google Scholar 

  50. P. J. Ellis and S. Siegel, Nucl. Phys. A152:547 (1970).

    ADS  Google Scholar 

  51. P. J. Ellis and S. Siegel, Phys. Letters 34B:177 (1971).

    ADS  Google Scholar 

  52. P. J. Ellis and S. Siegel, private communication.

    Google Scholar 

  53. L. M. Frantz and R. L. Mills, Nucl. Phys. 15:16 (1960).

    MathSciNet  Google Scholar 

  54. P. Federman and I. Talmi, Phys. Letters 19:490 (1965).

    ADS  Google Scholar 

  55. P. Federman and L. Zamick, Phys. Rev. 177:1534 (1969).

    ADS  Google Scholar 

  56. M. Gmitro, A. Rimini, J. Sawicki, and T. Weber, Phys. Rev. Letters 20:1185 (1968).

    ADS  Google Scholar 

  57. M. Gmitro, A. Rimini, J. Sawicki, and T. Weber, Phys. Rev. 175:1243 (1968).

    ADS  Google Scholar 

  58. A. E. S. Green, M. H. MacGregor, and R. Wilson, eds., “International conference on the nucleon-nucleon interaction,” Rev. Mod. Phys. 39:495 (1967).

    Google Scholar 

  59. P. Goode, Nucl. Phys. A172:66 (1971).

    ADS  Google Scholar 

  60. E. C. Halbert, Bull. Am. Phys. Soc. 16:1168 (1971).

    Google Scholar 

  61. E. C. Halbert, J. B. McGrory, B. H. Wildenthal, and S. P. Pandya, in: Advances in Nuclear Physics, Vol. 4 (M. Baranger and E. Vogt, eds.) Plenum Press, New York (1971), p. 324.

    Google Scholar 

  62. T. Hamada and I. D. Johnston, Nucl. Phys. 34:382 (1962).

    Google Scholar 

  63. M. Harvey, and F. C. Khanna, Nucl. Phys. A152:588 (1970).

    MathSciNet  ADS  Google Scholar 

  64. M. Harvey and F. C. Khanna, Nucl. Phys. A155:377 (1970).

    MathSciNet  ADS  Google Scholar 

  65. M. I. Haftel and F. Tabakin, Phys. Rev. C3:921 (1971).

    ADS  Google Scholar 

  66. M. B. Johnson and M. Baranger, Ann. Phys. (N. Y.) 62:172 (1971).

    ADS  Google Scholar 

  67. R. W. Jones and F. Mohling, Nucl. Phys., A151:420 (1970).

    MathSciNet  ADS  Google Scholar 

  68. T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85:40 (1966).

    Google Scholar 

  69. T. T. S. Kuo and G. E. Brown, Nucl. Phys. A114:241 (1968).

    ADS  Google Scholar 

  70. M. W. Kirson, Nucl. Phys. A99:353 (1967).

    ADS  Google Scholar 

  71. M. W. Kirson, Nucl. Phys. A115:49 (1968).

    ADS  Google Scholar 

  72. M. W. Kirson, Nucl Phys. A139:57 (1969).

    ADS  Google Scholar 

  73. M. W. Kirson, Phys. Letters 32B:33 (1970).

    ADS  Google Scholar 

  74. M. W. Kirson, Ann. Phys. (N. Y.) 66:624 (1971)

    ADS  Google Scholar 

  75. F. C. Khanna, H. C. Lee, and M. Harvey, Nucl. Phys. A164:612 (1971).

    ADS  Google Scholar 

  76. T. T. S. Kuo, S. Y. Lee, and K. F. Ratcliff, Nucl. Phys. A176:65 (1971).

    ADS  Google Scholar 

  77. S. Kahana, H. C. Lee, and C. K. Scott, Phys. Rev. 180:956 (1969).

    ADS  Google Scholar 

  78. T. T. S. Kuo, Nucl. Phys. A103:71 (1967).

    ADS  Google Scholar 

  79. T. T. S. Kuo, Nucl Phys. A90:199 (1967).

    ADS  Google Scholar 

  80. T. T. S. Kuo, Phys. Letters 26B:63 (1967).

    ADS  Google Scholar 

  81. M. W. Kirson and L. Zamick, Ann. Phys. (N. Y.) 60:188 (1970).

    ADS  Google Scholar 

  82. R. D. Lawson, Nucl. Phys. A148:401 (1970).

    ADS  Google Scholar 

  83. R. D. Lawson, M. H. Macfarlane, and T. T. S. Kuo, Phys. Letters 22:168 (1966).

    ADS  Google Scholar 

  84. P. O. Löwdin, in: Perturbation Theory and its Applications in Quantum Mechanics (Calvin H. Wilcox, ed.), Wiley and Sons, Inc., New York (1966).

    Google Scholar 

  85. N. Lo Iudice, D. J. Rowe, and S. S. M. Wong, Phys. Letters 37B:44 (1971).

    ADS  Google Scholar 

  86. R. Mercier, E. U. Baranger, and R. J. McCarthy, Nucl. Phys. A130:322 (1969).

    ADS  Google Scholar 

  87. R. J. McCarthy, Nucl. Phys. A130:305 (1969).

    MathSciNet  ADS  Google Scholar 

  88. T. Morita, Prog. Theor. Phys. 29:351 (1963).

    ADS  MATH  Google Scholar 

  89. S. A. Moszkowski and B. L. Scott, Ann. Phys. (N. Y.) 11:65 (1960).

    MathSciNet  ADS  MATH  Google Scholar 

  90. H. A. Mavromatis and B. Singh, Nucl Phys. A139:451 (1969).

    ADS  Google Scholar 

  91. J. W. Negele, Phys. Rev. C1:1260 (1970).

    ADS  Google Scholar 

  92. E. Osnes, T. T. S. Kuo, and C. S. Warke, Nucl. Phys. A168:190 (1971).

    ADS  Google Scholar 

  93. G. Oberlechner, F. Owono-N’-Guema, and J. Richert, Nuovo Cim. B68:23 (1970).

    MathSciNet  ADS  Google Scholar 

  94. E. Osnes, Phys. Letters 26B:274 (1968).

    ADS  Google Scholar 

  95. E. Osnes and C. S. Warke, Phys. Letters 30B:306 (1969).

    ADS  Google Scholar 

  96. H. C. Pradhan, Ph. D. thesis, M. I. T. (1971) and private communication.

    Google Scholar 

  97. H. C. Pradhan and C. M. Shakin, Phys. Letters 37B:151 (1971).

    ADS  Google Scholar 

  98. H. C. Pradhan, P. U. Sauer, and J. P. Vary, in: The Two-Body Force in Nuclei (S. M. Austin and G. M. Crawley, eds.), Plenum Press, New York (1972), p. 126,

    Google Scholar 

  99. H. C. Pradhan, P. U. Sauer, and J. P. Vary, and Phys. Rev. C6:407 (1972).

    ADS  Google Scholar 

  100. C. Quesne, Phys. Letters 31B:7 (1970).

    ADS  Google Scholar 

  101. R. Rajaraman, Phys. Rev. 155:1105 (1967).

    ADS  Google Scholar 

  102. R. Rajaraman and H. A. Bethe, Rev. Mod. Phys. 39:745 (1967).

    ADS  Google Scholar 

  103. R. V. Reid, Jr., Ann. Phys. (N. Y.) 50:411 (1968).

    ADS  Google Scholar 

  104. J. Rajewski and M. W. Kirson, Nucl. Phys. A181:409 (1972).

    ADS  Google Scholar 

  105. P. U. Sauer, Nucl. Phys. A150:467 (1970).

    ADS  Google Scholar 

  106. M. M. Stingl and M. W. Kirson, Nucl. Phys. A137:289 (1969).

    ADS  Google Scholar 

  107. D. W. L. Sprung and M. K. Srivastava, Nucl. Phys. A139:605 (1969).

    ADS  Google Scholar 

  108. L. Schäfer and H. A. Weidenmüller, Nucl. Phys. A174:l (1971).

    Google Scholar 

  109. T. H. Schucan and H. A. Weidenmüller, Ann. Phys. (N. Y.) 73:108 (1972) and preprint.

    ADS  Google Scholar 

  110. S. Siegel and L. Zamick, Nucl. Phys. A145:89 (1970).

    ADS  Google Scholar 

  111. F. Tabakin, Ann. Phys. (N. Y.) 30:51 (1964).

    ADS  Google Scholar 

  112. F. Tabakin, in: The Two-Body Force in Nuclei (S. M. Austin and G. M. Crawley, eds.), Plenum Press, New York (1972), p. 101.

    Google Scholar 

  113. I. Talmi, Rev. Mod. Phys. 34:704 (1962).

    ADS  Google Scholar 

  114. B. H. Wildenthal, E. C. Halbert, J. B. McGrory, and T. T. S. Kuo, Phys. Letters 32B:339 (1970).

    ADS  Google Scholar 

  115. C. W. Wong, Nucl. Phys. A91:399 (1967).

    ADS  Google Scholar 

  116. L. Zamick, Phys. Rev. Letters 23:1406 (1969).

    ADS  Google Scholar 

  117. L. Zamick, Phys. Letters 31B:160 (1970).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Barrett, B.R., Kirson, M.W. (1973). The Microscopic Theory of Nuclear Effective Interactions and Operators. In: Baranger, M., Vogt, E. (eds) Advances in Nuclear Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9041-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9041-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9043-9

  • Online ISBN: 978-1-4615-9041-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics