Skip to main content

Networks of Extracellular Fibers and the Generation of Morphogenetic Forces

  • Conference paper
Dynamical Networks in Physics and Biology

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 10))

Abstract

During the development of multicellular organisms the earliest tissues to appear are epithelioid, consisting of cells in direct contact with one another. In contrast, the connective tissues, which appear somewhat later, are composed of cells surrounded by complex microenvironments known as extracellular matrices (ECM). ECMs consist of proteins, polysaccharides, hybrid molecules known as proteoglycans, and sometimes mineral, all in a highly hydrated state (see Comper, 1996 for reviews). When all categories are taken into consideration, the physical state of living tissues can range from liquid (blood), to elastic sheet (skin), to solid (bone), but mostly fall into the category of semi-solid condensed materials which de Gennes has termed “soft matter” (de Germes, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Armstrong P.B., Crit. Rev. Biochem. Mol. Biol. 24 (1989) 119–149.

    Article  Google Scholar 

  • Brokaw J.L., Doillon C.J., Hahn R.A., Birk D.E., Berg R.A. and Silver F.H., Int. J. Biol. Macromol. 7 (1985) 135–140.

    Article  Google Scholar 

  • Bug A., Safran S. and Webman I., Phys. Rev. Lett. 54 (1985) 1412–1415.

    Article  ADS  Google Scholar 

  • Campbell G.A. and Forgacs G., Phys. Rev. A 41 (1990) 4570–4573.

    Article  ADS  Google Scholar 

  • Cheng P., Li D., Boruvka L., Rotenberg Y. and Neumann A.W., Colloids Surf. 43 (1990) 151–167.

    Article  Google Scholar 

  • Comper W.D., Extracellular Matrix, Vols. 1 and 2 (Harwood Academic Publishers, Amsterdam, 1996).

    Google Scholar 

  • Comper W.D. and Veis A., Biopolymers 16 (1977a) 2113–2131.

    Article  Google Scholar 

  • Comper W.D. and Veis A., Biopolymers 16 (1977b) 2133–2142.

    Article  Google Scholar 

  • Critchley D.R., England M.A., Wakely J. and Hynes R.O., Nature 280 (1979) 498–499.

    Article  ADS  Google Scholar 

  • de Gennes P.G., Rev. Mod. Phys. 57 (1985) 827–863.

    Article  ADS  Google Scholar 

  • de Gennes P.G., Science 256 (1992) 495–497.

    Article  ADS  Google Scholar 

  • Elsdale T. and Bard J., J. Cell. Biol. 54 (1972) 626–637.

    Article  Google Scholar 

  • Forgacs G., Jaikaria N.S., Frisch H.L. and Newman S.A., J. Theor. Biol. 140 (1989) 417–430.

    Article  Google Scholar 

  • Forgacs G. and Newman S.A., Int. Rev. Cytol. 150 (1994) 139–148.

    Article  Google Scholar 

  • Forgacs G., Newman S.A., Obukhov S.P. and Birk D.E., Phys. Rev. Lett. 67 (1991) 2399–2402.

    Article  ADS  Google Scholar 

  • Forgacs G., Newman S.A., Polikova Z. and Neumann A.W., Colloids Surf. 3 (1994) 139–146.

    Article  Google Scholar 

  • Foty R.A., Forgacs G., Pfleger C.M. and Steinberg M. S., Phys. Rev. Lett. 72 (1994) 2298–2301.

    Article  ADS  Google Scholar 

  • Foty R.A., Pfleger C.M., Forgacs G. and Steinberg M.S., Development 122 (1996) 1611–1620.

    Google Scholar 

  • Gelman R.A., Williams B.R. and Piez K.A., J. Biol. Chem. 254 (1979) 180–186.

    Google Scholar 

  • Glazier J.A. and Graner F., Phys. Rev. 47 (1993) 2128–2154.

    Article  ADS  Google Scholar 

  • Hay E.D., Int. Rev. Cytol. 63 (1980) 263–322.

    Article  Google Scholar 

  • Jaikaria N.S., Rosenfeld L., Khan M.Y., Danishefsky I. and Newman S.A., Biochemistry 30 (1991) 1538–1544.

    Article  Google Scholar 

  • Jeffrey D.J. and Acrivos A., Amer. Inst. Chem. Eng. J. 22 (1976) 417–432.

    Article  Google Scholar 

  • Jozefonvicz J. and Jozefowicz M., J. Biomater. Sci. Polym. Ed. 1 (1990) 147–165.

    Article  Google Scholar 

  • Kishore R., Samuel M., Khan M.Y., Hand J., Frenz D.A. and Newman S.A., J. Biol. Chem. 272 (1997) 17078–17085.

    Article  Google Scholar 

  • McPherson J.M., Sawamura S.J., Condell R.A., Rhee W. and Wallace D.G., Coll. Relat. Res. 8 (1988) 65–82.

    Article  Google Scholar 

  • Newgreen D.F. and Erickson C.A., Int. Rev. Cytol. 103 (1986) 89–145.

    Article  Google Scholar 

  • Newman S.A., “Epithelial Morphogenesis: A Physico-Evolutionary Interpretation”, in Molecular Basis of Epithelial Appendage Morphogenesis, edited by C.-M. Chuong (R.G. Landes Co., Austin, 1998) pp. 341–358.

    Google Scholar 

  • Newman S., Cloître M., Allain C., Forgacs G. and Beysens D., Biopolymers 41 (1997) 337–347.

    Article  Google Scholar 

  • Newman S.A., Frenz D.A., Hasegawa E. and Akiyama S.K., Proc. Natl. Acad. Sci. USA 84 (1987) 4791–4795.

    Article  ADS  Google Scholar 

  • Newman S.A., Frenz D.A., Tomasek J.J. and Rabuzzi D.D., Science 228 (1985) 885–889.

    Article  ADS  Google Scholar 

  • Newman S.A. and Tomasek J.J., “Morphogenesis of Connective Tissues”, in Extracellular Matrix, Vol. 2: Molecular Components and Interactions, edited by W.D. Comper (Harwood Academic Publishers, Amsterdam, 1996) pp. 335–369.

    Google Scholar 

  • Perrot F., Guenoun P., Baumberger T., Beysens D., Garrabos Y., and Le Neindre B., Phys. Rev. Lett. 73 (1994) 688–691.

    Article  ADS  Google Scholar 

  • Stanley H.E., Texeira J., Geiger A. and Blumberg R.L. Physica 106A (1981) 260–277.

    ADS  Google Scholar 

  • Stauffer D., Introduction to Percolation Theory (Taylor and Francis, London, 1985)

    Book  MATH  Google Scholar 

  • Steinberg M. S., “Specific Cell Ligands and the Differential Adhesion Hypothesis: How Do They Fit Together?”, in Specificity of Embryological Interactions, edited by D.R. Garrod (London: Chapman and Hall, 1978) pp. 97–130.

    Google Scholar 

  • Thomas D.G., J. Colloid Sci. 20 (1965) 267–277.

    Article  Google Scholar 

  • Tomasek J.J., Hay E.D. and Fujiwara K., Dev. Biol. 92 (1982) 107–122.

    Article  Google Scholar 

  • Veis A. and George A., “Fundamentals of Interstitial Collagen Self-Assembly”, in Extracellular Matrix Assembly and Structure, edited by P.D. Yurchenco, D.E. Birk and R.P. Mecham (Academic Press, San Diego, 1994) pp. 15–45.

    Google Scholar 

  • Wakely J. and England M.A., Proc. R. Soc. Lond. B 206 (1979) 329–352.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag France

About this paper

Cite this paper

Newman, S.A. (1998). Networks of Extracellular Fibers and the Generation of Morphogenetic Forces. In: Beysens, D.A., Forgacs, G. (eds) Dynamical Networks in Physics and Biology. Centre de Physique des Houches, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03524-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03524-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65349-3

  • Online ISBN: 978-3-662-03524-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics