Skip to main content
Log in

Mechanobiology and morphogenesis in living matter: a survey

  • Active behavior in soft matter and Mechanobiology
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Morphogenesis in living tissues is the paramount example of a time- and space-dependent orchestration of living matter where shape and order emerge from undifferentiated initial conditions. The genes encode the protein expression that eventually drives the emergence of the phenotype, while energy supply and cell-to-cell communication mechanisms are necessary to such a process. The overall control of the system likely exploits the laws of chemistry and physics through robust and universal processes. Even if the identification of the communication mechanisms is a question of fundamental nature, a long-standing investigation settled in the realm of chemical factors only (also known as morphogens) faces a number of apparently unsolvable questions. In this paper, we investigate at what extent mechanical forces, alone or through their biological feedbacks, can direct some basic aspects of morphogenesis in development biology. In this branch of mechano-biology, we discuss the typical rheological regimes of soft living matter and the related forces, providing a survey on how local mechanical feedbacks can control global size or even gene expression. We finally highlight the pivotal role of nonlinear mechanics to explain the emergence of complex shapes in living matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Not to be confused with the distinction between active and reactive forces in classical mechanics

References

  1. Ambrosi D, Guana F (2007) Stress modulated growth. Math Mech Solids 12:319–343

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosi D, Pettinati V, Ciarletta V (2015) Active stress as a local regulator of global size in morphogenesis. Int J Non-Linear Mech 75:5–14

    Article  Google Scholar 

  3. Ambrosi D, Preziosi L (2009) Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech Model Mechanobiol 8:397–413

    Article  Google Scholar 

  4. Ambrosi D, Preziosi L, Vitale G (2010) The insight of mixtures theory for growth and remodeling. ZAMP 61:177–191

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Ambrosi D, Pezzuto S (2012) Active stress vs. active strain in mechanobiology: constitutive issues. J Elast. 107(2):199–212

    Article  MATH  MathSciNet  Google Scholar 

  6. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154(5):1047–1059

    Article  Google Scholar 

  7. Auricchio F, Da Veiga LB, Lovadina C, Reali A, Taylor RL, Wriggers P (2013) Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput Mech 52:1153–1167

    Article  MATH  MathSciNet  Google Scholar 

  8. Balbi V, Ciarletta P (2013) Morpho-elasticity of intestinal villi. J R Soc Interface 10(82):20130109

    Article  Google Scholar 

  9. Balbi V, Kuhl E, Ciarletta P (2015) Morphoelastic control of gastro-intestinal organogenesis: theoretical predictions and numerical insights. J Mech Phys Solids 78:493–510

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Belintzev BN, Beloussov LV, Zaraiskii AG (1987) Model of pattern formation in epithelial morphogenesis. J Theor Biol 129:369–394

    Article  MathSciNet  Google Scholar 

  11. Beloussov LV (2015) Morphomechanics of development. Springer, New York

    Book  MATH  Google Scholar 

  12. Beloussov LV, Dorfman JG, Cherdantzev VG (1975) Mechanical stresses and morphological patterns in amphibian embryos. J Embr Exp Morphol 34:559–574

    Google Scholar 

  13. Beloussov LV, Lakirev AV, Naumidi II, Novoselov VV (1990) Effects of relaxation of mechanical tensions upon the early morphogenesis of Xenopuslaevis embryos. Int J Dev Biol 34:409–419

    Google Scholar 

  14. Beloussov LV, Saveliev SV, Naumidi II, Novoselov VV (1994) Mechanical stresses in embryonic tissues: patterns, morphogenetic role and involvement in regulatory feedback. Intern Rev Cytol 150:1–34

    Article  Google Scholar 

  15. Beloussov LV, Luchinskaia NN, Stein AA (2000) Tension-dependent collective cell movements in the early gastrula ectoderm of Xenopus laevis embryos. Dev Genes Evol 210:92–104

    Article  Google Scholar 

  16. Beloussov LV, Luchinskaia NN, Ermakov AS, Glagoleva NS (2006) Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events. Int J Dev Biol 50:113–122

    Article  Google Scholar 

  17. Ben Amar M, Ciarletta P (2010) Swelling instability of surface-attached gels as a model of soft tissue growth under geometrical constraints. J Mech Phys Solids 58:935–954

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Bernard C, Alglave E (1866) Lecons sur les proprietes des tissus vivants. Baillière

  19. Brunet T et al (2013) Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nature Commun 4:2821. doi:10.1038/ncomms3821

    Article  Google Scholar 

  20. Butler JK (1952) An experimental anaysis of cardiac loop formation in the chick, M.S. thesis, University of Texas Austin, TX

  21. Cao Y, Hutchinson JW (2012) From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling. Proc R Soc A 468:94–115

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Chalut KJ, Guck J (2012) Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells. Biophys J 103:2060–2070

    Article  Google Scholar 

  23. Cherdantzeva EM, Cherdantzev VG (2006) Geometry and mechanics of teleost gastrulation and the formation of primary embryonic axes. Int J Dev Biol 50:157–168

    Article  Google Scholar 

  24. Chuong CJ, Fung YC (1986) Residual stress in arteries. In: Frontiers in biomechanics, ,pp 117–129. Springer, New York

  25. Ciarletta P, Ambrosi D, Maugin GA (2012) Mass transport in morphogenetic processes: a second gradient theory for volumetric growth and material remodeling. J Mech Phys Solids 60:432–450

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Ciarletta P, Amar MB (2012) Papillary networks in the dermalepidermal junction of skin: a biomechanical model. Mech Res Commun 42:68–76

    Article  Google Scholar 

  27. Ciarletta P, Preziosi L, Maugin GA (2013) Mechanobiology of interfacial growth. J Mech Phys Solids 61(3):852–872

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Ciarletta P, Balbi V, Kuhl E (2014) Pattern selection in growing tubular tissues. Phys Rev Lett 113(24):248101

    Article  ADS  Google Scholar 

  29. Ciarletta P, Destrade M, Gower AL, Taffetani M (2016) Morphology of residually stressed tubular tissues: beyond the elastic multiplicative decomposition. J Mech Phys Solids 90:242–253

    Article  ADS  MathSciNet  Google Scholar 

  30. Ciarletta P, Destrade M, Gower AL (2016) On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter. Scientific reports, 6

  31. Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13:167–178

    Article  MATH  MathSciNet  Google Scholar 

  32. Davies J (2013) Mechanisms of morphogenesis. Academic Press, Cambridge

    Google Scholar 

  33. Dervaux J, Couder Y, Guedeau-Boudeville MA, Amar MB (2011) Shape transition in artificial tumors: from smooth buckles to singular creases. Phys Rev Lett 107(1):018103

    Article  ADS  Google Scholar 

  34. Desprat N, Supatto W, Poille PA, Beaurepaire E, Farge E (2008) Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev Cell 15:470–477

    Article  Google Scholar 

  35. Destrade M, Murphy JG, Ogden RW (2010) On deforming a sector of a circular cylindrical tube into an intact tube: existence, uniqueness, and stability. Int J Eng Sci 48(11):1212–1224

    Article  MATH  MathSciNet  Google Scholar 

  36. Destrade M, Liu Y, Murphy JG, Kassab GS (2012) Uniform transmural strain in pre-stressed arteries occurs at physiological pressure. J Theor Biol 303:93–97

    Article  MATH  MathSciNet  Google Scholar 

  37. Di Carlo A, Quiligotti S (2007) On growth and balance. Mech Res Commun 29:449–456

    MATH  MathSciNet  Google Scholar 

  38. Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16:951–978

    Article  MATH  Google Scholar 

  39. Epstein M (2015) Mathematical characterization and identification of remodeling, growth, aging and morphogenesis. J Mech Phys Solids 84:72–84

    Article  ADS  MathSciNet  Google Scholar 

  40. Eskandari M, Pfaller MR, Kuhl E (2013) On the role of mechanics in chronic lung disease. Materials 6:5639–5658

    Article  ADS  Google Scholar 

  41. Etienne J, Fouchard J, Mitrossilis D, Bufi N, Durand-Smet P, Asnacios A (2015) Cells as liquid motors: mechanosensitivity emerges from collective dynamics of actomyosin cortex. Proc Natl Acad Sci USA 112(9):2740–2745

    Article  ADS  Google Scholar 

  42. Yu Evstifeeva A, Beloussov LV (2016) Surface microdeformations and regulations of cell movements in Xenopus development. Russ J Dev Biol 47:1–10

    Article  Google Scholar 

  43. Farge E (2003) Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol 13:1365–1377

    Article  Google Scholar 

  44. Fu YB, Ciarletta P (2015) Buckling of a coated elastic half-space when the coating and substrate have similar material properties. Proc Royal Soc A 471(2178):20140979

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Ganghoffer JF (2010) Mechanical modeling of growth considering domain variation Part II: volumetric and surface growth involving Eshelby tensors. J Mech Phys Solids 58(9):1434–1459

    Article  ADS  MATH  Google Scholar 

  46. Ganghoffer JF, Plotnikov PI, Sokoowski J (2014) Mathematical modeling of volumetric material growth in thermoelasticity. J Elast 117:111–138

    Article  MATH  MathSciNet  Google Scholar 

  47. Guillou A, Ogden RW (2006) Growth in soft biological tissue and residual stress development. In: Mechanics of biological tissue, pp 47–62. Springer, Berlin Heidelberg

  48. Guirao B et al (2015) Unified quantitative characterization of epithelial tissue development. eLIFE 4:e08519

    Article  Google Scholar 

  49. Harris AK, Stopak D, Warner P (1984) Generation of spatially periodic patterns by a mechanical instability: a mechanical alternative to the Turing model. J Embryol Exp Morphol 80:1–20

    Google Scholar 

  50. Himpel G, Kuhl E, Menzel A, Steinmann P (2005) Computational modelling of isotropic multiplicative growth. Comp Mod Eng Sci 8:119–134

    MATH  Google Scholar 

  51. His W (1878) Unsere Krpers Form. Engelmann, Leipzig

    Google Scholar 

  52. Hohlfeld E, Mahadevan L (2011) Unfolding the sulcus. Phys Rev Lett 106:105702

    Article  ADS  Google Scholar 

  53. Hufnagel L, Teleman AA, Rouault H, Cohen SM, Shraiman BI (2007) On the mechanism of wing size determination in fly development. Proc Natl Acad Sci USA 104:3835–3840

    Article  ADS  Google Scholar 

  54. Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Mod Methods Appl Sci 12:407–430

    Article  MATH  MathSciNet  Google Scholar 

  55. Johnson BE, Hoger A (1993) The dependence of the elasticity tensor on residual stress. J Elast 33:145–165

    Article  MATH  MathSciNet  Google Scholar 

  56. Kornikova ES, Korvin-Pavlovskaya EG, Beloussov LV (2009) Relocations of cell convergence sites and formation of pharyngula-like shapes in mechanically relaxed Xenopus embryos. Dev Genes Evol 219:1–10

    Article  Google Scholar 

  57. Kornikova ES, Troshina TG, Kremnyov SV, Beloussov LV (2010) Neuro-mesodermal patterns in artificially deformed embryonic explants: a role for mechanogeometry in tissue differentiation. Dev Dyn 239:885–896

    Article  Google Scholar 

  58. Kraus YA (2006) Morphomechanical programming of morphogenesis in Cnidarian embryos. Int J Dev Biol 50:267–276

    Article  Google Scholar 

  59. Kremnyov SV, Troshina TG, Beloussov LV (2012) Active reinforcement of externally imposed folding in amphibian embryonic tissues. Mech Dev 129:51–60

    Article  Google Scholar 

  60. Kroner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z Phys 151(4):504–518

    Article  ADS  Google Scholar 

  61. Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth. Comput Mech 32(1-2):71–88

    Article  MATH  Google Scholar 

  62. Lecuit T, Le Goff L (2007) Orchestrating size and shape during morphogenesis. Nature 450:189–192

    Article  ADS  Google Scholar 

  63. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Article  Google Scholar 

  64. Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M (2014) YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett 588(16):2663–2670

    Article  Google Scholar 

  65. Manning A, McLachlan JC (1990) Looping of chick embryo hearts in vitro. J Anat 168:257–263

    Google Scholar 

  66. Mansurov AN, Stein AA, Beloussov LV (2012) A simple model for estimating the active reactions of embryonic tissues to a deforming mechanical force. Biomech Mod Mechbiol 11:1123–1136

    Article  Google Scholar 

  67. Mao Y, Tournier AL, Bates PA, Gale JE, Tapon N, Thompson BJ (2011) Planar polarization of the atypical myosin Dachs orients cell division in Drosophila. Genes Dev 25:131–136

    Article  Google Scholar 

  68. Mazumder A, Shivashankar GV (2010) Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development. J R Soc Interface 7:S321–S330

    Article  Google Scholar 

  69. Maugin GA, Trimarco C (1992) Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture. Acta Mech 94(1–2):1–28

    Article  MATH  MathSciNet  Google Scholar 

  70. Meinhardt H (1982) Models of biological pattern formation. Acad Press, New York

    Google Scholar 

  71. Moulton DE, Goriely A (2011) Circumferential buckling instability of a growing cylindrical tube. J Mech Phys Solids 59(3):525–537

    Article  ADS  MATH  MathSciNet  Google Scholar 

  72. Ogden RW (1997) Nonlinear elastic deformations. Dover Publications, Mineola

    MATH  Google Scholar 

  73. Rivlin RS (1948) Large elastic deformations of isotropic materials. III. Some simple problems in cylindrical polar co-ordinates. Philos Trans R Soc Lond A 240:509–525

    Article  ADS  MATH  Google Scholar 

  74. Ranft J, Basan M, Elgeti J, Joanny JF, Prost J, Julicher F (2010) Fluidization of tissues by cell division and apoptosis. Proc Natl Acad Sci USA 107(49):20863–20868

    Article  ADS  Google Scholar 

  75. Rauzi M, Lenne PF (2011) Cortical forces in cell shape changes and tissue morphogenesis. Curr Top Dev Biol 95:93–144

    Article  Google Scholar 

  76. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4):455–467

    Article  Google Scholar 

  77. Shams M, Destrade M, Ogden RW (2011) Initial stresses in elastic solids: constitutive laws and acoustoelasticity. Wave Motion 48(7):552–567

    Article  MATH  MathSciNet  Google Scholar 

  78. Shi Y, Yao J, Xu G, Taber LA (2014) Bending the looping heart: differential growth revisited. J Biomech Eng 136:081002

    Article  Google Scholar 

  79. Spencer AJM (2004) Continuum mechanics. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  80. Skalak R (1981) Growth as a finite displacement field. In: Proceedings of the IUTAM symposium on finite elasticity, pp 347–355. Springer, Netherlands

  81. Skalak R, Dasgupta G, Moss M, Otten E, Dullemeijer P, Vilmann H (1982) Analytical description of growth. J Theor Biol 94(3):555–577

    Article  MathSciNet  Google Scholar 

  82. Skalak R, Farrow DA, Hoger A (1997) Kinematics of surface growth. J Math Biol 35(8):869–907

    Article  MATH  MathSciNet  Google Scholar 

  83. Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 48:487–545

    Article  ADS  Google Scholar 

  84. Taber L, Humphrey JD (2001) Stress modulated growth, residual stress and vascular heterogeneity. ASME J Biomech Eng 123:528–535

    Article  Google Scholar 

  85. Taber LA (2009) Towards a unified theory for morphomechanics. Philos Trans R Soc A 367:3555–3583

    Article  ADS  MATH  MathSciNet  Google Scholar 

  86. Takamizawa K, Hayashi K (1987) Strain energy density function and uniform strain hypothesis for arterial mechanics. J Biomech 20(1):7–17

    Article  Google Scholar 

  87. Tallinen T, Chung JY, Biggins JS, Mahadevan L (2014) Gyrification from constrained cortical expansion. Proc Natl Acad Sci 111(35):12667–12672

    Article  ADS  Google Scholar 

  88. Thompson DArcy (1917) On growth and form. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  89. Tosin A, Ambrosi D, Preziosi L (2006) Mechanics and Chemotaxis in the morphogenesis of vascular networks. Bull Math Biol 68(7):1819–1836

    Article  MATH  MathSciNet  Google Scholar 

  90. Troshina TG, Glagoleva NS, Beloussov LV (2011) Statistical study of rapid mechanodependent cell movements in deformed explants in Xenopuslaevis embryonic tissues. Ontogenez (Russ J Dev Biol) 42:301–310

    Article  Google Scholar 

  91. Truskinovsky L, Vitale G, Smit TH (2014) A mechanical perspective on vertebral segmentation. Int J Eng Sci 83:124–137

    Article  Google Scholar 

  92. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc B 237(641):37–72

    Article  ADS  MathSciNet  Google Scholar 

  93. Verdier C, Etienne J, Duperray A, Preziosi L (2009) Review: rheological properties of biological materials. Comptes Rendus Phys 10(8):790–811

    Article  ADS  Google Scholar 

  94. Vogel G (2013) How do organs know when they have reached the right size? Science 340(6137):1156–1157

    Article  ADS  Google Scholar 

  95. Wilcox CM, Muñoz-Navas M, Sung JJY (2012) Atlas of clinical gastrointestinal endoscopy. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  96. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    Article  Google Scholar 

Download references

Funding

This study was funded by the AIRC grant MFAG 17412. PC and DA are members of GNFM of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ciarletta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosi, D., Beloussov, L.V. & Ciarletta, P. Mechanobiology and morphogenesis in living matter: a survey. Meccanica 52, 3371–3387 (2017). https://doi.org/10.1007/s11012-017-0627-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0627-z

Keywords

Mathematics Subject Classification

Navigation