Skip to main content

The Stability of Matter: From Atoms to Stars

  • Chapter
The Stability of Matter: From Atoms to Stars

Abstract

Why is ordinary matter (e.g., atoms, molecules, people, planets, stars) as stable as it is? Why is it the case, if an atom is thought to be a miniature solar system, that bringing very large numbers of atoms together (say 1030) does not produce a violent explosion? Sometimes explosions do occur, as when stars collapse to form supernovae, but normally matter is well behaved. In short, what is the peculiar mechanics of the elementary particles (electrons and nuclei) that constitute ordinary matter so that the material world can have both rich variety and stability?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Institute of Physics Handbook,McGraw-Hill, New York, 1972 third ed., p. 7–6.

    Google Scholar 

  2. P. Armbruster and G. Münzenberg, Creating superheavy elements, Scientific American 260 (1989), 66–72.

    Article  ADS  Google Scholar 

  3. J. Auchmuty and R. Beals, Variational solution of some nonlinear free boundary problems, Arch. Rat. Mech. Anal. 43 (1971), 255–271. See also Models of rotating stars, Astrophys. J. 165 (1971), L79 - L82.

    Google Scholar 

  4. G. Baym, Neutron stars, in Enclyclopedia of Physics, ( R. G. Lerner and G. L. Trigg eds.) Addison-Wesley, London, 1981, pp. 659–660.

    Google Scholar 

  5. BM] M. Born, Quantenmechanik der Stossvorgänge,Z. Phys. 38 (1926) 803–827.

    Google Scholar 

  6. S. Chandrasekhar, The maximum mass of ideal white dwarfs, Astrophys. J. 74 (1931), 81–82. See also On stars, their evolution and stability, Rev. Mod. Phys. 56 (1984), 137–147.

    Google Scholar 

  7. J. Conlon, The ground state energy of a classical gas, Comm. Math. Phys. 94 (1984), 439–458.

    Article  ADS  Google Scholar 

  8. CLY] J. G. Conlon, E. H. Lieb and H-T. Yau, The N 7 í5 law for charged bosons,Comm. Math. Phys. 116 (1988) 417–448.

    Google Scholar 

  9. I. Daubechies, An uncertainity principle for fermions with generalized kinetic energy, Comm. Math. Phys. 90 (1983), 511–520.

    Article  ADS  Google Scholar 

  10. I. Daubechies and E. H. Lieb, One electron relativistic molecules with Coulomb interactions, Comm. Math. Phys. 90 (1983), 497–510.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. F. J. Dyson, Ground state energy of a finite system of charged particles, J. Math. Phys. 8 (1967), 1538–1545.

    Article  MathSciNet  ADS  Google Scholar 

  12. F. J. Dyson and A. Lenard, Stability of matter. I and II, J. Math. Phys. 8 (1967), 423–434; ibid 9 (1968), 698–711.

    MathSciNet  MATH  Google Scholar 

  13. C. Fefferman and R. de la Llave, Relativistic stability of matter. I., R.v. Math. Iberoamericana 2 (1986), 119–215.

    Google Scholar 

  14. E. Fermi, Un metodo statistico per la determinazione di alcune priorieta dell’atomo, Atti Acad. Naz. Lincei, Rend. 6 (1927), 602–607.

    Google Scholar 

  15. A. P. French, Atoms, in Encyclopedia of Physics, ( R. G. Lerner and G. L. Trigg eds.), Addison-Wesley, London (1981), p. 64.

    Google Scholar 

  16. I. Herbst, Spectral theory of the operator (p2 + m2) l i2 - ze 2 Ir, Comm. Math. Phys. 53 (1977), 285–294. Errata, ibid. 55 (1977), 316.

    Article  Google Scholar 

  17. P. Hertel, H. Narnhofer and W. Thirring, Thermodynamic functions for fermions with gravostatic and electrostatic interactions, Comm. Math. Phys. 28 (1972), 159–176.

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Hertel and W. Thirring, Free energy of gravitating fermions, Comm. Math. Phys. 24 (1971), 22–36.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. J. H. Jeans, The mathematical theory of electricity and magnetism, Cambridge Univ. Press, Cambridge, third edition, 1915, p. 168.

    Google Scholar 

  20. M. Jammer, The conceptual development of quantum mechanics, McGraw-Hill, New York, 1966.

    Google Scholar 

  21. K] T. Kato, Perturbation theory for linear operators,Springer-Verlag, Heidelberg, 1966. See Remark 5.12 on p. 307.

    Google Scholar 

  22. H. Kalf, U.-W. Schminke, J. Walter and R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, Lecture Notes in Math., vol. 448 Springer-Verlag, Berlin and New York, 1974, pp. 182–226.

    Google Scholar 

  23. A. Lenard, Lectures on the Coulomb stability problem, Lecture Notes in Physics 20 (1973), 114–135.

    Article  ADS  Google Scholar 

  24. E. H. Lieb, Stability of matter, Rev. Mod. Phys. 48 (1976), 553–569.

    Article  ADS  Google Scholar 

  25. E. H. Lieb, On characteristic exponents in turbulence, Comm. Math. Phys. 92 (1984), 473–480.

    Article  ADS  Google Scholar 

  26. E. H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys. 53 (1981), 603–641; errata ibid 54 (1982), 311.

    Google Scholar 

  27. E. H. Lieb, Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. 29A (1984), 3018–3028. A summary is in Phys. Rev. Lett. 52 (1984), 315–317.

    Google Scholar 

  28. E. H. Lieb, The N 513 law for bosons, Phys. Lett. A 70 (1979), 71–73.

    Article  ADS  Google Scholar 

  29. E. H. Lieb and J. L. Lebowitz, The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei, Adv. in Math. 9 (1972), 316–398.

    Article  MathSciNet  Google Scholar 

  30. E. H. Lieb and S. Oxford, An improved lower bound on the indirect Coulomb energy, Int. J. Quant. Chem. 19 (1981), 427–439.

    Article  Google Scholar 

  31. E. H. Lieb and B. Simon, The Thomas-Fermi theory of atoms, molecules and solids, Adv. in Math. 23 (1977), 22–116.

    Article  MathSciNet  Google Scholar 

  32. E. H. Lieb and W. E. Thirring, Bound for the kinetic energy offermions which proves the stability of matter, Phys. Rev. Lett. 35 (1975), 687–689. Errata ibid. 35 (1975), 1116.

    Google Scholar 

  33. E. H. Lieb and W. E. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, in Studies in Mathematical Physics, ( E. Lieb, B. Simon and A. Wightman, eds.), Princeton Univ. Press, Princeton, New Jersey, 1976, pp. 269–330.

    Google Scholar 

  34. E. H. Lieb and W. E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. of Phys. (NY) 155 (1984), 494–512.

    Article  MathSciNet  ADS  Google Scholar 

  35. LYI] E. H. Lieb and H-T. Yau, The stability and instability of relativistic matter,Comm. Math. Phys. 118 (1988) 177–213. A summary is in Many-body stability implies a bound on the fine structure constant,Phys. Rev. Lett. 61 (1988) 1695–1697.

    Google Scholar 

  36. E. H. Lieb and H-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys. 112 (1987), 147–174. A summary is in A rigorous examination of the Chandrasekhar theory of stellar collapse, Astrophys. J. 323 (1987), 140–144.

    ADS  Google Scholar 

  37. J. Messer, Temperature dependent Thomas-Fermi theory, Lectures Notes in Physics no. 147, Springer-Verlag, Berlin and New York, 1981.

    Google Scholar 

  38. P] W. Pauli, Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren,Z. Phys. 31 (1925) 765–785.

    Google Scholar 

  39. RB]R. Ruffini and S. Bonazzola, Systems of self-gravitating particles in general relativity and the concept of equation of state,Phys. Rev. 187 (1969) 17671783.

    Google Scholar 

  40. E. Schrödinger, Quantisierung als Eigenwertproblem, Ann. Phys. 79 (1926), 361–376. See also ibid. 79 (1926), 489–527; 80 (1926), 437–490; 81 (1926), 109–139.

    MATH  Google Scholar 

  41. S. L. Shapiro and S. A. Teukolsky, Black holes, white dwarfs and neutron stars, Wiley, New York, 1983.

    Google Scholar 

  42. L. H. Thomas, The calculation of atomic fields, Proc. Cambridge Philos. Soc. 23 (1927), 542–548.

    MATH  Google Scholar 

  43. W. Thirring, A course in mathematical physics, vol. 4, Springer-Verlag, Berlin and New York, 1983.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H. (1997). The Stability of Matter: From Atoms to Stars. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03436-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03436-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03438-5

  • Online ISBN: 978-3-662-03436-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics