Skip to main content

Abstract

Flechsig (1920) was the originator of the view that the degree of myelination of the CNS might be correlated with functional capacity. In his theory he stated that myelination started in projection pathways before association pathways, in peripheral nerves before central pathways, and in sensory areas before motor ones. Although he did modify his theory slightly because of his critics, he maintained that fibers always myelinated in the same order: first the afferent (sensory), then the efferent (motor), then the association fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baierl P, Förster C, Fendel H, Naegele M, Fink U, Kenn W (1988) Magnetic resonance imaging of normal and pathological white matter maturation. Pediatr Radiol 18: 183–189

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros MC, Hansen PE, Soila K (1993) MR imaging of the developing human brain, part 2. Postnatal development. Radiographics 13: 611–622

    Google Scholar 

  • Barkovich AJ, Kjos BO, Jackson DE, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166: 173–180

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Jackson DE (1989) MRI assessment of normal and abnormal brain myelinization. MRI Dec 3: 17–25

    Google Scholar 

  • Barkovich AJ (1990) Normal development of the neonatal and infant brain. In: Barkovich AJ (ed) Pediatric neuroimaging. Raven, New York, pp 5–34

    Google Scholar 

  • Barkovich AJ (1992) Normal and abnormal myelination in children. In: Huckman MS, Forbes GS, Harwood-Nash DC (eds) Neuroradiology. Categorical course syllabus, presented at the American Roentgen Ray Society, Orlando, pp 215222

    Google Scholar 

  • Dietrich RB, Bradley WG, Zaragoza EJ, Otto RJ, Taira RK, Wilson GH, Kangarloo H (1988) MR evaluation of early myelination patterns in normal and developmentally delayed infants. AJNR 9: 69–76

    Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogentischer Grundlage. Thieme, Leipzig

    Google Scholar 

  • Girard N, Raybaud C, Du Lac P (1991) Étude de la myélinisation cerebrale en IRM. J Neuroradiol 18: 291–307

    PubMed  CAS  Google Scholar 

  • Grodd W (1993) Kerspintomographie neuropädiatrischer Erkrankungen. Normale Reifung des kindlichen Gehirns. Klin Neuroradiol 3: 13–27

    Google Scholar 

  • Hashimoto T, Tayama M, Miyazaki M, Kuroda Y (1990) Development of the brainstem: assessment by MR imaging. Neuropediatrics 22: 139–146

    Article  Google Scholar 

  • Holland BA, Haas DK, Norman D, Brant-Zawadzki M, Newton TH (1986) MRI of normal brain maturation. AJNR 7: 20 1208

    Google Scholar 

  • Johnson MA, Pennock JM, Bydder GM, Steiner RE, Thomas DJ, Hayward R, Bryant DRT, Payne JA, Levene MI, Whitelaw A, Dubowitz LMS, Dubowitz V (1983) Clinical NMR imaging of the brain in children:normal and neurologic disease. AJR 141: 1005–1018

    Article  PubMed  CAS  Google Scholar 

  • Kamman RL, Go KG, Brouwer W, Berendsen HJC (1988) Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature. Magn Reson Med 6: 265–274

    Article  PubMed  CAS  Google Scholar 

  • Keene MFL, Hewer EE (1931) Some observations on myelination in the human nervous system. J Anat 6: 1–13

    Google Scholar 

  • Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47: 217–234

    Google Scholar 

  • Koenig SH (1991) Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magn Reson Med 20: 285–291

    Article  PubMed  CAS  Google Scholar 

  • Koenig SH, Brown RD, Spiller M, Lundbom N (1990) Relaxometry of brain: why white matter appears bright in MRI. Magn Reson Med 14: 482–495

    Article  PubMed  CAS  Google Scholar 

  • Konishi Y, Kuriyama M, Hayakawa K, Konishi K, Yasujima M, Fujii Y, Sudo M, Ishii Y (1991) Magnetic resonance imaging in preterm infants. Pediatr Neurol 7: 191–195

    Article  PubMed  CAS  Google Scholar 

  • Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM (1994) Relaxivity and magnetization transfer of white matter lipids at MR imaging:importance of cerebrosides and pH. Radiology 192: 521–529

    PubMed  CAS  Google Scholar 

  • Lee BCP, Lipper E, Nass R, Ehrlich ME, de Ciccio-Bloom E, Auld PAM (1986) MRI of the central nervous system in neonates and young children. AJNR 7: 605–616

    PubMed  CAS  Google Scholar 

  • Maezawa M, Seki T, Imura S, Akiyama K, Takikawa I, Yuasa Y (1993) Magnetic resonance signal intensity ratio of gray/ white matter in children. Brain Dev 15: 198–204

    Article  PubMed  CAS  Google Scholar 

  • Martin E, Kikinis R, Zuerrer M, Boesch C, Briner J, Kewitz G, Kaelin P (1988) Developmental stages of human brain: an MR study. J Comput Assist Tomogr 12: 917–922

    Article  PubMed  CAS  Google Scholar 

  • Martin E, Boesch C, Zuerrer M, Kikinis R, Molinari L, Kaelin P, Boltshauser E, Duc G (1990) MR imaging of brain maturation in normal and developmentally handicapped children. J Comput Assist Tomogr 14: 685–692

    Article  PubMed  CAS  Google Scholar 

  • Martin E, Krassnitzer S, Kaelin P, Boesch C (1991) MR imaging of the brainstem: normal postnatal development. Neuroradiology 33: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Masumura M (1987) Proton relaxation time of immature brain. II. In vivo measurements of proton relaxation times (T1 and T2) in pediatric brain by MRI. Childs Nery Syst 3: 6–11

    Google Scholar 

  • McArdle CB, Richardson CJ, Nicholas DA, Mirfakhraee M, Hayden CK, Amparo EG (1987a) Developmental features of the neonatal brain: MR imaging, part I. Gray-white matter differentiation and myelination. Radiology 162: 223–229

    Google Scholar 

  • McArdle CB, Richardson CJ, Nicholas DA, Mirfakhraee M, Hayden CK, Amparo EG (1987b) Developmental features of the neonatal brain: MR imaging, part II. Ventricular size and extracerebral space. Radiology 162: 230–234

    Google Scholar 

  • Mintz MC, Grossman RI, Isaacson G, Thickman DI, Kundel H, Joseph P, DeSimone D (1987) MR imaging of fetal brain. J Comput Assist Tomogr 11: 120–123

    Article  PubMed  CAS  Google Scholar 

  • Rorke LB, Riggs HE, Showers MJC, Cabrera CV, Cohn M (1969) Myelination of the brain in the newborn. Lippincott, Philadelphia, pp 11–15, 30–63

    Google Scholar 

  • Staudt M, Schropp C, Staudt F, Obletter N, Bise K, Breit A (1993) Myelination of the brain in MRI: a staging system. Pediatr Radiol 23: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Staudt M, Schropp C, Staudt F, Obletter N, Bise K, Breit A, Weinmann HM (1994) MRI assessment of myelination: an age standardization. Pediatr Radiol 24: 122–127

    Article  PubMed  CAS  Google Scholar 

  • Stricker T, Martin E, Boesch C (1990) Development of the human cerebellum observed with high-field-strength MR imaging. Radiology 177: 431–435

    PubMed  CAS  Google Scholar 

  • Triulzi F (1992) Anatomia funzionale RM dellencefalo neonatale. Riv Neuroradiol 5 (Suppl 11: 9–18

    Google Scholar 

  • Valk J (1987) Myelination. In: Valk J (ed) MRI of the brain, head, neck and spine. Nijhoff, Dordrecht, pp 362–397

    Chapter  Google Scholar 

  • Van der Knaap MS, Valk J (1990) MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 31: 459–470

    Article  PubMed  Google Scholar 

  • Wolff SD, Fralix TA, Balaban RS (1989) Lipid bilayer and water proton magnetization transfer (abstract). In: Society of Magnetic Resonance in Medicine (ed) Works in progress. Society of Magnetic Resonance in Medicine, Berkely, p 1149

    Google Scholar 

  • Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Knaap, M.S., Valk, J. (1995). Myelination and Retarded Myelination. In: Magnetic Resonance of Myelin, Myelination, and Myelin Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03078-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03078-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03080-6

  • Online ISBN: 978-3-662-03078-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics