Skip to main content

Non-Closed-Shell Nuclear Clusters and the Algebraic Approach

  • Conference paper
Clustering Phenomena in Atoms and Nuclei

Part of the book series: Springer Series in Nuclear and Particle Physics ((SSNUCLEAR))

  • 225 Accesses

Abstract

The U(3) basis of the vibron model connects this phenomenological algebraic approach to the harmonic oscillator cluster model. This connection enables us to study the consequences of the antisymmetrization, and it gives preference to the description of the internal cluster degrees of freedom in terms of the SU(3) shell model. This new form of the model is better suited to several cluster problems, and its relation to the microscopic description becomes transparent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Iachello, Phys. Rev. C23, 2778 (1981).

    ADS  Google Scholar 

  2. F. Iachello and R. D. Levine, J. Chem. Phys. 77, 3046 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  3. F. Iachello, Proc. 4th Int. Conf. on Clustering Aspects of Nuclear Structure and Nuclear Reactions, Chester, 1984, eds.: J. S. Lilley and M. A. Nagarajan (Riedel, Dordrecht, 1985) p. 101.

    Google Scholar 

  4. F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, England 1987).

    Book  Google Scholar 

  5. R. Lemus and A. Frank, Ann. Phys. (N.Y.) 206, 122 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  6. F. Iachello, Nucl. Phys. A497, 23c (1989).

    Article  Google Scholar 

  7. P. Halse, Phys. Lett. 253B, 9 (1991).

    Google Scholar 

  8. F. Iachello, N. C. Mukhopadhyay, and L. Zhang, Phys. Lett. 256B, 295 (1991)

    MathSciNet  Google Scholar 

  9. K. A. Erb and D. A. Bromley, Phys. Rev. C23, 2781 (1981).

    ADS  Google Scholar 

  10. D. A. Bromley, Proc. 4th Int. Conf. on Clustering Aspects of Nuclear Structure and Nuclear Reactions, Chester, 1984, eds.: J. S. Lilley and M. A. Nagarajan (Riedel, Dordrecht, 1985) p. 1.

    Google Scholar 

  11. J. Cseh, Phys. Rev. C31, 692 (1985).

    Article  ADS  Google Scholar 

  12. F. Iachello and A. D. Jackson, Phys. Lett. 108B, 151 (1982).

    Google Scholar 

  13. H. J. Daley and F. Iachello, Ann. Phys. (N.Y.) 167, 73 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  14. H. J. Daley and B. Barrett, Nucl. Phys. A449, 256 (1986).

    Article  Google Scholar 

  15. H. J. Daley, Symmetries and Nuclear Structure (Dubrovnik 1986) Nucl. Sei. Conf. Ser. 13 eds.: R. A. Meyer and V. Paar (Harwood Acad. Publ., 1987) p. 359.

    Google Scholar 

  16. J. Cseh and G. Lévai, Phys. Rev. C38, 972 (1988).

    ADS  Google Scholar 

  17. J. Cseh, J. Phys. Soc. Jpn. Suppl. 58, 604 (1989).

    Google Scholar 

  18. J. Cseh, G. Lcvai, and K. Katö, Phys. Rev. C43, 165 (1991).

    ADS  Google Scholar 

  19. K. Wildermuth and Th. Kanellopoulos, Nucl. Phys. 7, 150 (1958).

    Article  Google Scholar 

  20. K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus, (Acad. Press, N. Y., 1977).

    Book  Google Scholar 

  21. G. Levai and J. Cseh, Phys. Rev. C, in press

    Google Scholar 

  22. J. P. Elliott, Proc. Roy. Soc. A245, 128 and 562 (1958).

    Article  ADS  MATH  Google Scholar 

  23. M. Harvey, Adv. Nucl. Phys. 1, 67 (1968).

    Article  Google Scholar 

  24. M. Ichimura, A. Arima, E. C. Halbert, and T. Terasowa, Nucl. Phys. A204, 225 (1973).

    Article  Google Scholar 

  25. A. Arima, Heavy Ion Collisions, ed.: R. Bock (North-Holland, Amsterdam, 1979) Vol. 1, p. 417.

    Google Scholar 

  26. B. F. Bayman and A. Bohr, Nucl. Phys. 9, 596 (1958/59).

    Article  Google Scholar 

  27. H. Horinchi, Prog. Theor. Phys. 51, 745 (1974).

    Article  ADS  Google Scholar 

  28. K. T. Hecht, Nucl. Phys. A238, 223 (1974).

    Google Scholar 

  29. K. T. Hecht, E. J. Reske, T. H. Seligman, and W. Zahn, Nucl. Phys. A356, 146 (1981).

    Article  MathSciNet  Google Scholar 

  30. S. Saito, Prog. Theor. Phys. Suppl. 62, 11 (1977).

    Article  ADS  Google Scholar 

  31. J. Cseh, to be publisched

    Google Scholar 

  32. J. P. Elliott and T. H. K. Skyrme, Proc. Roy. Soc. A232, 561 (1955).

    Article  ADS  MATH  Google Scholar 

  33. D. M. Brink and G. F. Nash, Nucl. Phys. 40, 608 (1963)

    Article  Google Scholar 

  34. K. T. Hecht, Nucl Phys. A170, 34 (1971).

    Article  Google Scholar 

  35. J. P. Draayer, Nucl. Phys. A520, 259c (1990).

    Article  Google Scholar 

  36. A. Arima and F. Iachello, Adv. Nucl. Phys. 13, 139 (1984).

    Article  Google Scholar 

  37. F. Ajzenberg-Selove, Nucl. Phys. A460, 1 (1986).

    Article  Google Scholar 

  38. Y. Goto and H. Horiuchi, Prog. Theor. Phys. 62, 662 (1979).

    Article  ADS  Google Scholar 

  39. A. B. Volkov, Nucl. Phys. 74, 33 (1965).

    Article  Google Scholar 

  40. U. Abbondanno, S. Datta, N. Cindro, Z. Basrak, and G. Vannini, J. Phys. G15, 1845 (1989).

    Article  ADS  Google Scholar 

  41. K. T. Hecht, H. M. Hoffmann, and W. Zahn, Phys. Lett. 103B, 92 (1981).

    Google Scholar 

  42. R. K. Sheline, S. Kubono, K. Morita, and M. H. Tanaka, Phys. Lett. 119B, 263 (1982).

    Google Scholar 

  43. N. Cindro and W. Greiner, J. Phys. G9, L175 (1983).

    Article  ADS  Google Scholar 

  44. J. Cseh and J. Suhonen, Phys. Rev. C33, 1553 (1986).

    Article  ADS  Google Scholar 

  45. H. J. Rose and G. A. Jones, Nature (London) 307, 245 (1984).

    Article  ADS  Google Scholar 

  46. J. Cseh, R. K. Gupta, and W. Scheid, contribution to this conference.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cseh, J. (1992). Non-Closed-Shell Nuclear Clusters and the Algebraic Approach. In: Brenner, M., Lönnroth, T., Malik, F.B. (eds) Clustering Phenomena in Atoms and Nuclei. Springer Series in Nuclear and Particle Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02827-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02827-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02829-2

  • Online ISBN: 978-3-662-02827-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics