Anderson, J. R. (1996). Kognitive Psychologie (2. Aufl.). Heidelberg: Spektrum Akad. Verl.
Google Scholar
Baroody, A. J., Feil, Y. & Johnson, A. R. (2007). An Alternative Reconceptualization of Procedural and Conceptual Knowledge. Journal for Research in Mathematics Education, 38(2), 115–131.
Google Scholar
Bruder, R. (2006). Grundlagen für Analogieschlüsse: Mathematisierungsmuster und Vorgehensstrategien in Anwendungssituationen. Der Mathematikunterricht, 6, 5–18.
Google Scholar
Corbin, J. M. & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative sociology, 13(1), 3–21.
Google Scholar
cosh-Katalog (2014). Mindestanforderungskatalog Mathematik (Version 2.0) der Hochschulen Baden-Württembergs für ein Studium von WiMINT-Fächern. Verfügbar unter http://www.cosh-mathe.de/download/makV2.0neu.pdf [10.06.2020].
Dorko, A. & Speer, N. M. (2013). Calculus Students’ Understanding of Volume. Investigations in Mathematics Learning, 6(2), 48–68.
Google Scholar
Duval, R. (1995). Geometrical Pictures: Kinds of Representation and Specific Processings. In R. Sutherland & J. Mason (Hrsg.), Exploiting Mental Imagery with Computers in Mathematics Education (Bd. 138, S. 142–157). Berlin, Heidelberg: Springer Berlin Heidelberg.
Google Scholar
Duval, R. (1998). Geometry from a Cognitive Point a View. In C. Mammana & V. Villani (Hrsg.), Perspectives on the Teaching of Geometry for the 21st Century: an ICMI study (S. 37 – 52). Dordrecht: Kluwer.
Google Scholar
Duval, R. (2006). A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational Studies in Mathematics, 61(1–2), 103–131.
Google Scholar
Ehlert, A., Fritz, A., Arndt, D. & Leutner, D. (2013). Arithmetische Basiskompetenzen von Schülerinnen und Schülern in den Klassen 5 bis 7 der Sekundarstufe. Journal für Mathematik-Didaktik, 34(2), 237–263.
Google Scholar
Führer, L. (2002). Über einige Grundfragen künftiger Geometriedidaktik. Mathematica Didactica, 25, 55–78.
Google Scholar
Gaab, K. (2015). Raumgeometrie in der Sekundarstufe 1. In A. Filler & A. Lambert (Hrsg.), Geometrie zwischen Grundbegriffen und Grundvorstellungen Raumgeometrie (S. 33–56). Hildesheim: Franzbecker.
Google Scholar
Götz, G. & Wankerl, S. (2019). Adaptives Online-Training für mathematische Übungsaufgaben. In F. Schacht & G. Pinkernell, Arbeitskreis Mathematikunterricht und Digitale Werkzeuge: Herbsttagung, Heidelberg, 27.–28.09.2019. Mitteilungen der Gesellschaft für Didaktik der Mathematik [im Erscheinen].
Google Scholar
Götz G. (2020). Automatisierte, adaptive Aufgabentrainings. In Beiträge zum Mathematikunterricht 2020 [im Erscheinen].
Google Scholar
Greefrath, G. & Hußmann, S. (2010). Geometrie bewegen. PM: Praxis der Mathematik in der Schule, 52(34), 1–8.
Google Scholar
Greefrath, G. & Laakmann, H. (2014). Mathematik eben – Flächen messen. PM: Praxis der Mathematik in der Schule, 56(55), 2–10.
Google Scholar
Greefrath, G. & Leuders, T. (2009). Nicht von ungefähr: Runden – Schätzen – Nähern. PM: Praxis der Mathematik in der Schule, 51(28), 1–6.
Google Scholar
Griesel, H. (1996). Grundvorstellungen zu Größen. Mathematik lehren, 78, 15–19.
Google Scholar
Griesel, H. (2016). Die Vergleichstheorie des Messens und ihre Anwendung in der mathematikdidaktischen Grundlagenforschung. Journal für Mathematik-Didaktik, 37(1), 5–30.
Google Scholar
Holland, G. (2007). Geometrie in der Sekundarstufe. Berlin, Hildesheim: Franzbecker.
Google Scholar
Kadunz, G. & Strässer, R. (2009). Didaktik der Geometrie in der Sekundarstufe I (3. Aufl.). Berlin, Hildesheim: Franzbecker.
Google Scholar
Kirsch, A. (2004). Mathematik wirklich verstehen. Köln: Aulis.
Google Scholar
Kliemann, S. (2007). Unmögliche Figuren – das Spiel mit der Perspektive. PM: Praxis der Mathematik in der Schule, 49(16), 22–29.
Google Scholar
Kospentaris, G., Spyrou, P. & Lappas, D. (2011). Exploring Students’ Strategies in Area Conservation Geometrical Tasks. Educational Studies in Mathematics, 77(1), 105–27.
Google Scholar
Kultusministerkonferenz (KMK) (2004). Bildungsstandards im Fach Mathematik für den mittleren Schulabschluss. Verfügbar unter https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2003/2003_12_04-Bildungsstandards-Mathe-Mittleren-SA.pdf [10.06.2020].
Kuntze, S. (2009). Flächeninhalt und Volumen. In H.-G. Weigand, A. Filler, R. Hölzl, S. Kuntze, M. Ludwig, J. Roth, B. Schmidt-Thieme & G. Wittmann, Didaktik der Geometrie für die Sekundarstufe I (S. 157–185). Berlin Heidelberg: Springer Spektrum.
Google Scholar
Malle, G. (1993). Didaktische Probleme der elementaren Algebra. Wiesbaden: Vieweg.
Google Scholar
Malle, G. (2000). Zwei Aspekte von Funktionen: Zuordnung und Kovariation. Mathematik lehren, 103, 8–11.
Google Scholar
McIntosh, A., Reys, R. E. & Reys, B. J. (1992). A Proposed Framework for Examining Basic Number Sense. For the Learning of Mathematics, 12(3), 2–8.
Google Scholar
Möwes-Butschko, G. (2009). Wie groß ist der kleine Elefant? Umgang mit Ungenauigkeiten bei offenen Modellierungsaufgaben. PM: Praxis der Mathematik in der Schule, 51(28), 14–16.
Google Scholar
Musgrave, S., Hatfield, N. & Thompson, P. (2015). Teachers’ meanings for the substitution principle. In T. Fukawa-Connely, N. E. Infante, K. Keene & M. Zandieh (Hrsg.), Proceedings of the 18th meeting of the MAA special interest group on research in undergraduate mathematics education (S. 801–808). Pittsburgh, Pennsylvania. Verfügbar unter https://www.researchgate.net/publication/282049444_Teachers%27_meanings_for_the_substitution_principle [12.06.2020].
Neubrand, J. & Neubrand, M. (2007). Geometrie: Was sollen Haupt-Schülerinnen und Schüler wissen? Lernchancen, 55, 28–33.
Google Scholar
Neubrand, J., Neubrand, M. & Sibberns, H. (1998). Die TIMSS-Aufgaben aus mathematikdidaktischer Sicht: Stärken und Defizite deutscher Schülerinnen und Schüler. In W. Blum & M. Neubrand (Hrsg.), TIMSS und der Mathematikunterricht. Informationen, Analysen, Konsequenzen (S. 17–27). Hannover: Schroedel.
Google Scholar
Neubrand, M., Biehler, R., Blum, W., Cohors-Fresenborg, E., Flade, L., Knoche, N., Lind, D., Löding, W., Möller, G. & Wynands, A. (2004). Eine systematische und kommentierte Auswahl von Beispielaufgaben des Mathematiktests in PISA 2000. In M. Neubrand (Hrsg.), Mathematische Kompetenzen von Schülerinnen und Schülern in Deutschland (S. 259–270). Wiesbaden: VS Verlag für Sozialwissenschaften.
Google Scholar
Obara, S. (2009). Where Does the Formula Come from? Students Investigating Total Surface Areas of a Pyramid and Cone Using Models and Technology. Australian Mathematics Teacher, 65(1), 25–33.
Google Scholar
Padberg, F. (2009). Didaktik der Bruchrechnung für Lehrerausbildung und Lehrerfortbildung. Heidelberg: Spektrum Akad. Verlag
Google Scholar
Pinkernell, G., Düsi, C. & Vogel, M. (2017). Aspects of proficiency in elementary algebra. In T. Dooley & G. Gueudet (Hrsg.), Proceedings of CERME 10 (S. 464–471). DCU Institute of Education & ERME.
Google Scholar
Reimann, K. (2011). Probleme des Mathematikunterrichtes beim Übergang von Arithmetik zur Algebra. In R. Haug & L. Holzäpfel (Hrsg.), Beiträge zum Mathematikunterricht 2011 (Bd. 2, S. 671–674). Münster: WTM. Verfügbar unter https://eldorado.tu-dortmund.de/handle/2003/32225 [12.06.2020].
Rezat, S. (2012). Rechnen mit ganzen Zahlen. Den Zahlenblick für Addition und Subtraktion schulen. Mathematik lehren, 171, 23–43.
Google Scholar
Rittle-Johnson, B. & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. Journal of Educational Psychology, 99(3), 561–574.
Google Scholar
Roos, A. K., Götz, G., Weigand, H. G. & Wörler, J. (2019). OPTES+–A Mathematical Bridging Course for Engineers. In U. T. Jankvist, M. Van den Heuvel-Panhuizen & M. Veldhuis (Hrsg.), Proceedings of the 11th Congress of the European Society for Research in Mathematics Education (S. 2642–2643). Cerme 11: Utrecht University, the Netherlands, 6. –10.02.2019.
Google Scholar
Rosch, E. (1983). Prototype Classification and Logical Classification: The Two Systems. In E. K. Scholnick (Hrsg.), New trends in conceptual representation: challenges to Piaget’s theory? The Jean Piaget symposium series (S. 73–86). N.J.: L. Erlbaum Associates.
Google Scholar
Roth, J. & Wittman, G. (2009). Ebene Figuren und Körper. In H.-G.Weigand, A. Filler, R. Hölzl, S. Kuntze, M. Ludwig, J. Roth, B. Schmidt-Thieme & G. Wittmann (Hrsg.), Didaktik der Geometrie für die Sekundarstufe I (S. 123-156). Berlin Heidelberg: Springer Spektrum.
Google Scholar
Rüede, C. (2012a). Strukturieren eines algebraischen Ausdrucks als Herstellen von Bezügen. Journal für Mathematik-Didaktik, 33(1), 113–141.
Google Scholar
Rüede, C. (2012b). Zur Förderung des Strukturierens algebraischer Ausdrücke. In M. Ludwig & M. Kleine (Hrsg.), Beiträge zum Mathematikunterricht (Bd. 2, S. 721–724). Münster: WTM. Verfügbar unter http://www.mathematik.uni-dortmund.de/ieem/bzmu2012/files/BzMU12_0028_Rueede.pdf [12.06.2020].
Schelldorfer, R. (2015). Flächeninhalte und Terme. PM: Praxis der Mathematik in der Schule, 57(61), 38–39.
Google Scholar
Sill, H.-D., Funk, T., Grueter, H. J., Luther, K., Marschke, E., Schädel, I. Schwedhelm, G., Siefke, S. (2005). Sicheres Wissen und Können im Arbeiten mit Größen in der Sekundarstufe I. (2. Aufl.) Verfügbar unter http://www.math.uni-rostock.de/~sill/Publikationen/Curriculumforschung/SWK_Groessen.pdf [10.06.2020].
Steele, M. D. (2013). Exploring the Mathematical Knowledge for Teaching Geometry and Measurement through the Design and Use of Rich Assessment Tasks. Journal of Mathematics Teacher Education, 16(4), 245–68.
Google Scholar
Tan-Sisman, G. & Aksu, M. (2012). The Length Measurement in the Turkish Mathematics Curriculum: Its Potential to Contribute to Students’ Learning. International Journal of Science and Mathematics Education, 10(2), 363–85.
Google Scholar
Tietze, U.-P., Förster, F., Klika, M. & Wolpers, H. (2000). Mathematikunterricht in der Sekundarstufe II. (Bd. 1: Fachdidaktische Grundfragen). Braunschweig/Wiesbaden: Vieweg.
Google Scholar
Tůmová, V. (2017). What influences grade 6 to 9 pupils’ success in solving conceptual tasks on area and volume. In T. Dooley & G. Gueudet (Hrsg.), Proceedings of CERME 10 (S. 669–676). DCU Institute of Education & ERME.
Google Scholar
Ulfig, F. (2014). Geometrische Denkweisen beim Lösen von PISA-Aufgaben: Eine Verbindung quantitativer und qualitativer Analysen. Wiesbaden: Springer Vieweg.
Google Scholar
Vollrath, H.-J. (1989). Funktionales Denken. Journal für Mathematik-Didaktik, 10(1), 3–37.
Google Scholar
Vollrath, H.-J. (1999a). An geometrischen Formeln Zusammenhänge erkennen. Mathematik in der Schule, 37, 70–75. Verfügbar unter http://www.history.didaktik.mathematik.uni-wuerzburg.de/vollrath/papers/078.pdf [10.06.2020].
Vollrath, H.-J. (1999b). Mit geometrischen Formeln Beziehungen erkennen. BLKBeitrag zu Modul 4. Verfügbar unter http://blk.mat.uni-bayreuth.de/material/db/35/geobeziehungen.pdf [10.06.2020].
Wankerl, S., Götz, G., & Hotho, A. (2019). Solving Mathematical Exercises: Prediction of Students’ Success. In: R. Jäschke & M. Weidlich (Hrsg.), LWDA 2019: Proceedings of the Conference on „Lernen, Wissen, Daten, Analysen“ (Vol. 2454, S. 190–194). Berlin: Humboldt-Universität zu Berlin.
Google Scholar
Weigand, H.-G., Filler, A., Hölzl, R., Kuntze, S., Ludwig, M., Roth, J., Schmidt-Thieme, B. & Wittmann, G. (2009). Didaktik der Geometrie für die Sekundarstufe 1. Berlin: Springer Spektrum.
Google Scholar
Weigand, H-G. (2004). Funktionales Denken. Der Mathematikunterricht, 50(6), 4–10.
Google Scholar
Weiher, D. F. & Ruwisch, S. (2018). Kognitives Schätzen aus Sicht der Mathematikdidaktik: Schätzen von visuell erfassbaren Größen und dazu erforderliche Fähigkeiten. mathematica didactica, 41, 1–27.
Google Scholar