Gesund altern pp 239-249 | Cite as

Altersbedingte Veränderung schlafspezifischer Gehirnoszillation

Chapter

Zusammenfassung

Jeden Tag verlieren wir durch den Schlaf im Durchschnitt acht Stunden unser Bewusstsein. Hierbei werden in einem 90 minütigen Zyklus zunächst die „Non-Rapid Eye Movement“ Phasen (NREM-1, 2, 3) mit zunehmender Schlaftiefe durchschritten. Beendet wird jeder Zyklus mit dem „Rapid Eye Movement Schlaf“ (REM), der sich durch rasche Augenbewegungen auszeichnet. Neben der erholenden Funktion des Schlafes (Siegel, 2005), ist Schlaf ein Zustand der durch die Weiterverarbeitung und Reaktivierung von neu gelernten Inhalten, die Gedächtniskonsolidierung begünstigt (Diekelmann und Born, 2010).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bodizs R, Kis T, Lazar AS et al. (2005): Prediction of general mental ability based on neural oscillation measures of sleep. J Sleep Res 14, 285-292Google Scholar
  2. Bunge SA und Wright SB (2007): Neurodevelopmental changes in working memory and cognitive control. Curr Opin Neurobiol 17, 243-250Google Scholar
  3. Campbell IG und Feinberg I (2009): Longitudinal trajectories of non-rapid eye movement delta and theta EEG as indicators of adolescent brain maturation. PNAS 106, 5177-5180Google Scholar
  4. De Gennaro L und Ferrara M (2003): Sleep spindles: an overview. Sleep Med Rev 7, 423-440Google Scholar
  5. Diekelmann S und Born J (2010): The memory function of sleep. Nat Rev Neurosci 11, 114-126.Google Scholar
  6. Doran S (2003): The dynamic topography of individual sleep spindles. Sleep Research Online 5; 133-139Google Scholar
  7. Feinberg I (1982): Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 17, 319-334Google Scholar
  8. Feinberg I und Campbell IG (2013). Longitudinal sleep EEG trajectories indicate complex patterns of adolescent brain maturation. Am J Physiol Regul Integr Comp Physiol, 304, R296-303Google Scholar
  9. Hödlmoser K, Heib DP, Roell, J., et al. (2014). Slow sleep spindle activity, declarative memory, and general cognitive abilities in children. Sleep 37, 1501-1512Google Scholar
  10. Huttenlocher PR und Dabholkar AS (1997): Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387, 167-178Google Scholar
  11. Kessler RC, Avenevoli S, Costello EJ et al. (2012): Prevalence, persistence, and sociodemographic correlates of DSM-IV disorders in the National Comorbidity Survey Replication Adolescent Supplement. Arch Gen Psychiatry, 69, 372-380Google Scholar
  12. Kurth S, Jenni OG, Riedner BA, et al. (2010): Characteristics of sleep slow waves in children and adolescents. Sleep 33, 475-480Google Scholar
  13. Lustenberger C, Mouthon AL, Tesler N et al. (2016): Developmental trajectories of EEG sleep slow wave activity as a marker for motor skill development during adolescence: a pilot study. Dev Psychobiol 59, 5-14Google Scholar
  14. Massimini M, Huber R, Ferrarelli F, et al. (2004): The sleep slow oscillation as a traveling wave. J Neurosci 24, 6862-6870Google Scholar
  15. Nagata K, Shinomiya S, Takahashi K et al. (1996): [Developmental characteristics of frontal spindle and centro-parietal spindle]. No To Hattatsu 28, 409-417Google Scholar
  16. Nicolas A, Petit D, Rompre S et al. (2001): Sleep spindle characteristics in healthy subjects of different age groups. Clin Neurophysiol 112, 521-527Google Scholar
  17. Ohayon MM, Carskadon MA, Guilleminault C et al. (2004): Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27, 1255-1273Google Scholar
  18. Schabus M, Gruber G, Parapatics S et al. (2004): Sleep spindles and their significance for declarative memory consolidation. Sleep 27, 1479-1485Google Scholar
  19. Scholle S, Zwacka G und Scholle HC (2007): Sleep spindle evolution from infancy to adolescence. Clin Neurophysiol 118, 1525-1531Google Scholar
  20. Shinomiya S, Nagata K, Takahashi K und Masumura T (1999): Development of sleep spindles in young children and adolescents. Clin Electroencephalogr 30, 39-43Google Scholar
  21. Siegel JM (2005): Clues to the functions of mammalian sleep. Nature 437, 1264-1271Google Scholar
  22. Steriade M (1999): Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci 22, 337-345Google Scholar
  23. Tesler N, Gerstenberg M, Franscini M et al. (2015): Reduced sleep spindle density in early onset schizophrenia: a preliminary finding. Schizophr Res 166, 355-357Google Scholar
  24. Tesler N, Gerstenberg M und Huber R (2013): Developmental changes in sleep and their relationships to psychiatric illnesses. Curr Opin Psychiatry 26, 572-579Google Scholar
  25. Twisk JWR (2013): Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide, 2nd Edition. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide, 2nd Edition 1-321Google Scholar
  26. Wilhelm I, Diekelmann S und Born J (2008): Sleep in children improves memory performance on declarative but not procedural tasks. Learn Mem 15, 373-377Google Scholar
  27. Zeitlhofer J, Gruber G, Anderer P et al. (1997) Topographic distribution of sleep spindles in young healthy subjects. J Sleep Res 6, 149-155Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.PsychologieUniversität SalzburgSalzburgÖsterreich

Personalised recommendations