Skip to main content

Altersbedingte Veränderung schlafspezifischer Gehirnoszillation

  • Chapter
  • First Online:
Gesund altern

Zusammenfassung

Jeden Tag verlieren wir durch den Schlaf im Durchschnitt acht Stunden unser Bewusstsein. Hierbei werden in einem 90 minütigen Zyklus zunächst die „Non-Rapid Eye Movement“ Phasen (NREM-1, 2, 3) mit zunehmender Schlaftiefe durchschritten. Beendet wird jeder Zyklus mit dem „Rapid Eye Movement Schlaf“ (REM), der sich durch rasche Augenbewegungen auszeichnet. Neben der erholenden Funktion des Schlafes (Siegel, 2005), ist Schlaf ein Zustand der durch die Weiterverarbeitung und Reaktivierung von neu gelernten Inhalten, die Gedächtniskonsolidierung begünstigt (Diekelmann und Born, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Bodizs R, Kis T, Lazar AS et al. (2005): Prediction of general mental ability based on neural oscillation measures of sleep. J Sleep Res 14, 285-292

    Google Scholar 

  • Bunge SA und Wright SB (2007): Neurodevelopmental changes in working memory and cognitive control. Curr Opin Neurobiol 17, 243-250

    Google Scholar 

  • Campbell IG und Feinberg I (2009): Longitudinal trajectories of non-rapid eye movement delta and theta EEG as indicators of adolescent brain maturation. PNAS 106, 5177-5180

    Google Scholar 

  • De Gennaro L und Ferrara M (2003): Sleep spindles: an overview. Sleep Med Rev 7, 423-440

    Google Scholar 

  • Diekelmann S und Born J (2010): The memory function of sleep. Nat Rev Neurosci 11, 114-126.

    Google Scholar 

  • Doran S (2003): The dynamic topography of individual sleep spindles. Sleep Research Online 5; 133-139

    Google Scholar 

  • Feinberg I (1982): Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 17, 319-334

    Google Scholar 

  • Feinberg I und Campbell IG (2013). Longitudinal sleep EEG trajectories indicate complex patterns of adolescent brain maturation. Am J Physiol Regul Integr Comp Physiol, 304, R296-303

    Google Scholar 

  • Hödlmoser K, Heib DP, Roell, J., et al. (2014). Slow sleep spindle activity, declarative memory, and general cognitive abilities in children. Sleep 37, 1501-1512

    Google Scholar 

  • Huttenlocher PR und Dabholkar AS (1997): Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387, 167-178

    Google Scholar 

  • Kessler RC, Avenevoli S, Costello EJ et al. (2012): Prevalence, persistence, and sociodemographic correlates of DSM-IV disorders in the National Comorbidity Survey Replication Adolescent Supplement. Arch Gen Psychiatry, 69, 372-380

    Google Scholar 

  • Kurth S, Jenni OG, Riedner BA, et al. (2010): Characteristics of sleep slow waves in children and adolescents. Sleep 33, 475-480

    Google Scholar 

  • Lustenberger C, Mouthon AL, Tesler N et al. (2016): Developmental trajectories of EEG sleep slow wave activity as a marker for motor skill development during adolescence: a pilot study. Dev Psychobiol 59, 5-14

    Google Scholar 

  • Massimini M, Huber R, Ferrarelli F, et al. (2004): The sleep slow oscillation as a traveling wave. J Neurosci 24, 6862-6870

    Google Scholar 

  • Nagata K, Shinomiya S, Takahashi K et al. (1996): [Developmental characteristics of frontal spindle and centro-parietal spindle]. No To Hattatsu 28, 409-417

    Google Scholar 

  • Nicolas A, Petit D, Rompre S et al. (2001): Sleep spindle characteristics in healthy subjects of different age groups. Clin Neurophysiol 112, 521-527

    Google Scholar 

  • Ohayon MM, Carskadon MA, Guilleminault C et al. (2004): Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27, 1255-1273

    Google Scholar 

  • Schabus M, Gruber G, Parapatics S et al. (2004): Sleep spindles and their significance for declarative memory consolidation. Sleep 27, 1479-1485

    Google Scholar 

  • Scholle S, Zwacka G und Scholle HC (2007): Sleep spindle evolution from infancy to adolescence. Clin Neurophysiol 118, 1525-1531

    Google Scholar 

  • Shinomiya S, Nagata K, Takahashi K und Masumura T (1999): Development of sleep spindles in young children and adolescents. Clin Electroencephalogr 30, 39-43

    Google Scholar 

  • Siegel JM (2005): Clues to the functions of mammalian sleep. Nature 437, 1264-1271

    Google Scholar 

  • Steriade M (1999): Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci 22, 337-345

    Google Scholar 

  • Tesler N, Gerstenberg M, Franscini M et al. (2015): Reduced sleep spindle density in early onset schizophrenia: a preliminary finding. Schizophr Res 166, 355-357

    Google Scholar 

  • Tesler N, Gerstenberg M und Huber R (2013): Developmental changes in sleep and their relationships to psychiatric illnesses. Curr Opin Psychiatry 26, 572-579

    Google Scholar 

  • Twisk JWR (2013): Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide, 2nd Edition. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide, 2nd Edition 1-321

    Google Scholar 

  • Wilhelm I, Diekelmann S und Born J (2008): Sleep in children improves memory performance on declarative but not procedural tasks. Learn Mem 15, 373-377

    Google Scholar 

  • Zeitlhofer J, Gruber G, Anderer P et al. (1997) Topographic distribution of sleep spindles in young healthy subjects. J Sleep Res 6, 149-155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Hahn, M., Hödlmoser, K. (2018). Altersbedingte Veränderung schlafspezifischer Gehirnoszillation. In: Schimke, M., Lepperdinger, G. (eds) Gesund altern. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-19973-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-19973-9_15

  • Published:

  • Publisher Name: Springer VS, Wiesbaden

  • Print ISBN: 978-3-658-19972-2

  • Online ISBN: 978-3-658-19973-9

  • eBook Packages: Social Science and Law (German Language)

Publish with us

Policies and ethics