Skip to main content

Investigation of thermodynamic and chemical influences on knock for the working process calculation

  • Conference paper
  • First Online:
17. Internationales Stuttgarter Symposium

Part of the book series: Proceedings ((PROCEE))

Abstract

The most significant operation limit prohibiting the further reduction of the CO2 emissions of gasoline engines is the occurrence of knock. Thus, being able to predict the incidence of this phenomenon is of vital importance for the working process calculation – a tool widely used in the engine development. Common knock models in the 0D/1D simulation are based on the calculation of a pre-reaction state of the unburnt mixture (also called knock integral), which is a simplified approach for modeling the progress of the chemical reactions in the unburnt zone where knock occurs. Simulations performed at in-cylinder conditions using a detailed chemical reaction mechanism have shown that, at specific boundary conditions, the auto-ignition of the unburnt mixture resulting in knock happens in two stages. It is demonstrated that the knock integral is not capable of representing this behavior of the detailed chemical mechanism, meaning an improved approach for modeling the progress of the chemical reactions is needed for the calculation of the knock boundary. Furthermore, an enhanced approach for modeling the influence of various parameters on the ignition delay times of the mixture is presented. Additionally, thermodynamic investigations demonstrate the interrelation of engine proneness to knock expressed by the position of 50% MFB at the knock boundary and unburnt mass flowing out of the piston top land that is supposed to have an effect on knock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this paper

Cite this paper

Fandakov, A., Grill, M., Bargende, M., Casal Kulzer, A. (2017). Investigation of thermodynamic and chemical influences on knock for the working process calculation. In: Bargende, M., Reuss, HC., Wiedemann, J. (eds) 17. Internationales Stuttgarter Symposium. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-16988-6_13

Download citation

Publish with us

Policies and ethics