Skip to main content

Abstract

For nearly half a century following the classical researches with water cultures of Sachs and Knop in 1860 it was generally accepted that for the vast majority of plant species, if not all, ten elements, and ten elements only, were essential for healthy growth. The ten elements were carbon, hydrogen, oxygen, nitrogen, phosphorus, sulphur, potassium, calcium, magnesium and iron. For a few plants it had been suggested that some additional element might be necessary; thus as early as 1862 Nobbe and Siegert came to the conclusion that chlorine was necessary for the healthy development of buckwheat (Fagopyrum esculentum). Again, the nutrient solution proposed by Pfeffer contained a certain amount of chlorine and Pfeffer (1900) stated that probably no plant had been grown in complete absence of that element. However, convincing confirmation of these conclusions was not forthcoming in any instance for many years, and the opinion that ten elements were all that were essential for the growth of plants was accepted almost without question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Alben, A. O., J. R. Cole and R. D. Lewis: [1] Chemical treatment of pecan rosette. Phytopathology 22, 596–601 (1932).

    Google Scholar 

  • [2] New developments in treating pecan rosette with chemicals. Phytopathology 22, 979–980 (1932).

    Google Scholar 

  • Anderson, I., and H. J. Evans: Effect of manganese and certain other metal cations on iso-citric dehydrogenase and malic enzyme activities in Phaseolus vulgaris. Plant Physiol. 31, 22–28 (1956).

    PubMed  CAS  Google Scholar 

  • Anderssen,G. F.: Chlorosis of deciduous fruit trees due to a copper deficiency. J. Pomology 10, 130–146 (1932).

    CAS  Google Scholar 

  • Argawala, S. C.: Relation of nitrogen supply to the molybdenum requirement of cauliflower grown in sand culture. Nature (Lond.) 169, 1099 (1952).

    Google Scholar 

  • Ark, P. A.: Little-leaf or rosette of fruit trees. VII. Soil microflora and little-leaf or rosette disease. Proc. Amer. Soc. Horticult. Sci. 34, 216–221 (1937).

    CAS  Google Scholar 

  • Arnon, D. I.: A memorandum regarding nomenclature. In: Trace elements in Plant Physiology. Lotsya 3, 40 (1950).

    Google Scholar 

  • Arnon, D. I., and P. R. Stout: Molybdenum as an essential element for higher plants. Plant Physiol. 14, 599–602 (1939).

    PubMed  CAS  Google Scholar 

  • Aso, K.: On the physiological influence of manganese compounds on plants. Bull. Coll. Agricult., Tokyo 5, 177–185 (1902).

    CAS  Google Scholar 

  • Bailey, L. F., and J. S. Mc Hargue: Effect of boron, copper, manganese and zinc on the enzyme activity of tomato and alfalfa plants grown in the greenhouse. Plant Physiol. 19, 105–116 (1944).

    PubMed  CAS  Google Scholar 

  • Baker, J. E., H. G. Gauch and W. M. Duggar: Effects of boron on the water relations of higher plants. Plant Physiol. 31, 89–94 (1956).

    PubMed  CAS  Google Scholar 

  • Barnette, R. M., and J. D. Warner: A response of chlorotic corn plants to the application of zinc sulfate to the soil. Soil Sci. 39, 145–156 (1935).

    CAS  Google Scholar 

  • Barshad, I.: [1] Molybdenum content of pasture plants in relation to toxicity to cattle. Soil Sci. 66, 187–195 (1948).

    CAS  Google Scholar 

  • [2] Factors affecting the molybdenum content of pasture plants. I. Nature of soil molybdenum, growth of plants and soil pH. Soil Sci. 71, 297–313 (1951).

    Google Scholar 

  • [3] Factors affecting the molybdenum content of pasture plants. II. Effect of soluble phosphates, available nitrogen and soluble sulfates. Soil Sci. 71, 387–398 (1951).

    Google Scholar 

  • Berger, K. C., and G. C. Gerloff: Manganese toxicity of potatoes in relation to strong soil acidity. Proc. Soil Sci. Soc. Amer. 12, 310–314 (1947).

    Google Scholar 

  • Bertrand, G.: Sur l’emploi favorable du manganèse comme engrais. C. r. Acad. Sci. Paris 124, 1032–1035 (1905).

    Google Scholar 

  • Bertrand, G., et M. Javillier: Influence combinée du zinc et du manganèse sur le developpement de l’Aspergillus niger. C. r. Acad. Sci. Paris 152, 900–903 (1911).

    CAS  Google Scholar 

  • Boken, E.: [1] On the effect of ferrous sulphate on the available manganese in the soil. Plant a. Soil 6, 97–112 (1955).

    CAS  Google Scholar 

  • [2] On the effect of ferrous sulphate on the available manganese in the soil and the uptake of manganese by the plant. II. Plant a. Soil 7, 237–252 (1956).

    Google Scholar 

  • [3] The effect of ferrous sulphate on the yield and manganese uptake of oats on sandy soil fertilized with pyrolucite. Plant a. Soil 8, 160–169 (1957).

    Google Scholar 

  • Bolle-Jones, E. W.: [1] The effect of varied nutrient levels on the concentration and distribution of manganese within the potato plant. Plant a. Soil 6, 45–60 (1955).

    CAS  Google Scholar 

  • [2] Molybdenum status of laminae as determined by bioassay and chemical methods. Plant a. Soil 7, 130–134 (1957).

    Google Scholar 

  • Bortels, H.: Molybdän als Katalysator bei der biologischen Stickstoffbindung. Arch. Mikrobiol. 1, 333–342 (1930).

    CAS  Google Scholar 

  • Bould, C., D. J. D. Nicholas, J. M. S. Potter, J. A. H. Tolhurst and T. Wallace: Zinc and copper deficiency of fruit trees. Ann. Rep. Agricult. Hort. Res. Stat., Long Ashton 1949, 45–49.

    Google Scholar 

  • Brandenburg, E.: [1] Onderzoekingen over ontginningsziekte. II.Tijdschr. Pl. Ziekt. 39, 189–192 (1933).

    Google Scholar 

  • [2] Ãœber die Bedeutung des Kupfers für die Entwicklung einiger Pflanzen im Vergleich zu Bor und Mangan und über Kupfermangelerscheinungen. Angew. Bot. 16, 505–509 (1934).

    Google Scholar 

  • Brenchley, W. E.: Inorganic plant poisons and stimulants. Cambridge: Cambridge University Press 1914.

    Google Scholar 

  • Brenchley, W. E., and H. G. Thornton: The relation between the development, structure and functioning of the nodules on Vicia Faba, as influenced by the presence or absence of boron in the nutrient solution. Proc. Roy. Soc. Lond., Ser. B 98, 373–398 (1925).

    CAS  Google Scholar 

  • Brenchley, W. E., and K. Warington: The role of boron in the growth of plants. Ann. of Bot. 41, 167–187 (1927).

    CAS  Google Scholar 

  • Brown, J. C., and R. S. Holmes: Iron, the limiting element in a chlorosis. Part I. Availability and utilisation of iron dependent upon nutrition and plant species. Plant Physiol. 30, 451–457 (1955).

    PubMed  CAS  Google Scholar 

  • Brown, J. C., R. S. Holmes and A. W. Specht: Iron, the limiting element in a chlorosis. Part II. Copper-phosphorus induced chlorosis dependent upon plants pecies and varieties. Plant Physiol. 30, 457–462 (1955).

    PubMed  CAS  Google Scholar 

  • Burström, H.: Ãœber die Schwermetallkatalyse der Nitrat-Assimilation. Planta (Berl.) 29, 292–305 (1939).

    Google Scholar 

  • Chandler, W. H., D. R. Hoagland and P. L. Hibbard: Little-leaf or rosette in fruit trees. Proc. Amer. Soc. Horticult. Sci. 28, 556–560 (1932).

    Google Scholar 

  • Chesters, C. G. C., and G. N. Rolinson: Role of zinc in metabolism. Nature (Lond.) 165, 851–852 (1950).

    CAS  Google Scholar 

  • Collander, R. Selective absorption of cations by higher plants. Plant Physiol. 16, 691–720 (1941).

    PubMed  CAS  Google Scholar 

  • Davis, A. R., R. H. Marloth and C. J. Bishop: The inorganic nutrition of the fungi. I. The relation of calcium and boron to growth and spore formation. Phytopathology 18, 949 (1928).

    Google Scholar 

  • Dawson, C. R.: In: Copper Metabolism, pp. 76–88. Baltimore: Johns Hopkins University Press 1950.

    Google Scholar 

  • Dufrénoy, J., and H. S. Reed: [1] Pathological effects of the deficiency or excess of certain ions on the leaves of Citrus plants. Ann. Agron., N. S. 4, 637–653 (1934).

    Google Scholar 

  • [2] Coacervates in physical and biological systems. Phytopathology 32, 568–579 (1942).

    Google Scholar 

  • Dunne, T. C.: ‘Wither-tip’ or ‘Summer die-back’. J. Agric. W. Australia, II. Ser. 15, 120–126 (1938).

    CAS  Google Scholar 

  • Emerson, R., and C. M. Lewis: Factors influencing the efficiency of photosynthesis. Amer. J. Bot. 26, 802–822 (1939).

    Google Scholar 

  • Erkama, J.: [1] Ãœber die Rolle von Kupfer und Mangan im Leben der höheren Pflanzen. Ann. Acad. Sci. fenn., Ser. A, II. 25, 1–105 (1947).

    Google Scholar 

  • [2] On the effect of copper and manganese on the iron status of higher plants. In: Trace elements in Plant Physiology. Lotsya 3, 53–62 (1950).

    Google Scholar 

  • Finch, A. H., and A. F. Kinnison: Pecan rosette: soil, chemical and physical studies. Techn. Bull. Arizona Exper. Stat. 1933, No 47, 407–442.

    Google Scholar 

  • Floyd, B. F.: Dieback, or exanthema of Citrus trees. Bull. Florida Agricult. Exper. Stat. 1917, No 140, 31.

    Google Scholar 

  • Foster, J. W., and F. W. Denison: Role of zinc in metabolism. Nature (Lond.) 166, 833–834 (1950).

    CAS  Google Scholar 

  • Fukutome, T.: On the influence of manganese salts on flax. Bull. Coll. Agricult., Tokyo 6, 137–138 (1904).

    Google Scholar 

  • Gallagher, P. H., and T.Walsh: The susceptibility of cereal varieties to manganese deficiency. J. Agricult. Sci. 33, 197–203 (1943).

    CAS  Google Scholar 

  • Gerretsen, F. C.: Manganese deficiency of oats and its relation to soil bacteria. Ann. of Bot., N. S. 1, 207–230 (1937).

    CAS  Google Scholar 

  • Gile, P. L.: Chlorosis of pineapples induced by manganese and carbonate of lime. Science (Lancaster, Pa.) 44, 855–857 (1916).

    CAS  Google Scholar 

  • Gisiger, L.: Deficiencies of minor elements caused by excesses. In: Trace elements in plant physiology. Lotsya 3, 19–30 (1950).

    Google Scholar 

  • Glasscock, H. H., and R. L. Wain: Distribution of manganese in the pea seed in relation to marsh spot. J. Agricult. Sci. 30, 132–140 (1940).

    CAS  Google Scholar 

  • Gram, E.: Bormangel og nogle andre mangelsygdomme. Tidsskr. Planteavl 41, 401–449 (1936).

    Google Scholar 

  • Haas, A. R. C.: Injurious effects of manganese and iron deficiencies on the growth of Citrus. Hilgardia 7, 181–206 (1932).

    CAS  Google Scholar 

  • Haas, A. R. C., and H. J. Quayle: Copper content of Citrus leaves and fruit in relation to exanthema and fumigation injury. Hilgardia 9, 143–177 (1935).

    CAS  Google Scholar 

  • Henderson, J. H. M., and M. P. Veal: The effect of the interrelationship of boron and manganese on the growth and calcium uptake of blue lupine (Lupinus angustifolius L.) in solution culture. Plant Physiol. 23, 609–620 (1948).

    PubMed  CAS  Google Scholar 

  • Hewitt, E. J.: [1] Marsh spot in beans. Nature (Lond.) 155, 22–23 (1945).

    Google Scholar 

  • [2] Relation of manganese and some other metals to the iron status of plants. Nature (Lond.) 161, 489 (1948).

    Google Scholar 

  • [3] Experiments on iron metabolism in plants. Ann. Rep. Long Ashton Res. Stat. 1948, 66–76.

    Google Scholar 

  • [4] Metal interrelationships in plant nutrition. I. Effects of some metal toxicities on sugar beet, tomato, oat, potato, and marrowstem kale grown in sand culture. J. of Exper. Bot. 4, 59–64 (1953).

    Google Scholar 

  • [5] Metal interrelationships in plant nutrition. II. The relation of metal toxicity, molybdenum and nitrogen source to chlorophyll and magnesium content. J. of Exper. Bot. 5, 110–118 (1954).

    Google Scholar 

  • Hewitt, E. J., S. C. Agarwala and E. W. Jones: Effect of molybdenum status on the ascorbic acid content of plants in sand culture. Nature (Lond.) 166, 1119–1120 (1950).

    CAS  Google Scholar 

  • Hewitt, E. J., and E. W. Jones: [1] The production of molybdenum deficiency in plants in sand culture with special reference to tomato and Brassica crops. J. Pomol. Hort. Sci. 23, 254–262 (1947).

    CAS  Google Scholar 

  • [2] Molybdenum as a plant nutrient. II. Effect of molybdenum deficiency on some Brassica crops. Ann. Rep. Agricult. Hort. Stat., Long Ashton 1949, 58–63.

    Google Scholar 

  • Hewitt, E. J., E. W. Jones and A. H. Williams: Relation of molybdenum and manganese to the free aminoacid content of the cauliflower. Nature (Lond.) 163, 681–682 (1949).

    CAS  Google Scholar 

  • Hewitt, E. J., and C. C. Mc Cready: Relation of nitrogen supply to the molybdenum requirement of tomato plants grown in sand culture. Nature (Lond.) 174, 186–187 (1954).

    CAS  Google Scholar 

  • Hoagland, D. R., W. H. Chandler and P. L. Hibbard: Little-leaf or rosette of fruit trees. VI. Further experiments bearing on the cause of the disease. Proc. Amer. Soc. Horticult. Sci. 34, 210–212 (1936).

    Google Scholar 

  • Holley, K. T., and T. G. Dulin: A study of ammonia and nitrate nitrogen for cotton. IV. Influence of boron concentration. Bull. Georgia Agricult. Exper. Stat. 1937, No 197.

    Google Scholar 

  • Hopkins, E. F.: [1] The necessity and function of manganese in the growth of Chlorella sp. Science (Lancaster, Pa.) 72, 609–610 (1930).

    CAS  Google Scholar 

  • [2] Manganese an essential element for a green alga. Amer. J. Bot. 17, 1047 (1930).

    Google Scholar 

  • Johnston, E. S., and W. H. Dore: The influence of boron on the chemical composition and growth of the tomato plant. Plant Physiol. 4, 31–62 (1929).

    PubMed  CAS  Google Scholar 

  • Jones, L. H., W. B. Shepardson and C. A. Peters: The function of manganese in the assimilation of nitrates. Plant Physiol. 24, 300–306 (1949).

    PubMed  CAS  Google Scholar 

  • Keilin, D., and T. Mann: [1] Polyphenol oxidase. Purification and nature of the enzyme. Proc. Roy. Soc. Lond., Ser. B 125, 187–204 (1938).

    CAS  Google Scholar 

  • [2] Carbonic anhydrase. Purification and nature of the enzyme. Biochemic. J. 34, 1163–1176 (1940).

    Google Scholar 

  • Kelley, W. P.: [1] The influence of manganese on the growth of pineapples. U. S. Dep. Agricult. Hawaii Stat. Press Bull. 23 (1909).

    Google Scholar 

  • [2] The function and distribution of manganese in plants and soils. Hawaii Agricult. Exper. Stat. Bull. 1912, 26.

    Google Scholar 

  • Kessell, S. L., and T. N. Stoate: [1] Plant nutrients and pine growth. Aust. For. 1, 4–13 (1936).

    CAS  Google Scholar 

  • [2] Pine nutrition. Bull. W. Aust. For. Dep. 1938, No 50.

    Google Scholar 

  • Knop, W.: Ãœber die Ernährung der Pflanzen durch wässerige Lösungen bei Ausschlußdes Bodens. Landwirtsch. Versuchsst. 2, 65–99, 270–293 (1860).

    Google Scholar 

  • Kubowitz, F.: Ãœber die chemische Zusammensetzung der Kartoffeloxydase. Biochem. Z. 292, 221–229 (1937).

    CAS  Google Scholar 

  • Lewis, A. H.: [1] The teart pastures of Somerset. II. Relation between soil and teartness. J. Agricult. Sci. 33, 52–57 (1943).

    CAS  Google Scholar 

  • [2] The teart pastures of Somerset. III. Reducing the teartness of pasture herbage. J. Agricult. Sci. 33, 58–63 (1943).

    Google Scholar 

  • Lipman, C. B., and G. Mackinney: Proof of the essential nature of copper for higher green plants. Plant Physiol. 6, 593–599 (1931).

    PubMed  CAS  Google Scholar 

  • Lockwood, L. B.: A study of the physiology of Penicillium Javanicum Van Beikma with special reference to the production of fat. Catholic Univ. Amer. Biol. Ser. 13 (1933).

    Google Scholar 

  • Löhnis, M. P.: [1] Injury through excess of manganese. In: Trace elements in plant physiology. Lotsya 3, 63–76 (1950).

    Google Scholar 

  • [2] Manganese toxicity in field and market garden crops. Plant a. Soil 3, 193–222 (1951).

    Google Scholar 

  • Lovett-Janison, P. L., and J. M. Nelson: Ascorbic acid oxidase from summer crook-neck squash (C. pepo condensa). J. Amer. Chem. Soc. 62, 1409–1412 (1940).

    CAS  Google Scholar 

  • Lundegârdh, H.: [1] Die Nährstoffaufnahme der Pflanze. Jena: Gustav Fischer 1932.

    Google Scholar 

  • [2] Mangan als Katalysator der Pflanzenatmung. Planta (Berl.) 29, 419–426 (1939).

    Google Scholar 

  • Mac Vicar, R., and R. H. Burris: Relation of boron to certain plant oxidases. Arch. of Biochem. 17, 31–39 (1948).

    CAS  Google Scholar 

  • Marsh, R. P., and J. W. Shive: Boron as a factor in the calcium metabolism of the corn plant. Soil Sci. 51, 141–151 (1941).

    CAS  Google Scholar 

  • Martin, J. P.: Boron deficiency symptoms in sugar cane. Hawaii Plant Rec. 38, 95–107 (1934).

    CAS  Google Scholar 

  • Maschhaupt, J. G.: Das Rätsel der Dörrfleckenkrankheit. Z. Pflanzenernähr., Düng. u. Bodenkde 13, 313–320 (1934).

    Google Scholar 

  • Mazé, P.: [1] Influences respectives des éléments de la solution minérale sur le developpement du maïs. Ann. Inst. Pasteur 28, 1–48 (1914).

    Google Scholar 

  • [2] Détermination des éléments minéraux rares nécessaires au développement du maïs. C. r. Acad. Sci. Paris 160, 211–214 (1915).

    Google Scholar 

  • Mc Ilrath, W. J., and B. F. Palser: Responses of tomato, turnip and cotton to variations in boron nutrition. I. Physiological responses. Bot. Gaz. 118, 43–52 (1956).

    CAS  Google Scholar 

  • Medina, A., and D. J. D. Nicholas: Some properties of a zinc-dependent hexokinase from Neurospora crassa. Biochemic. J. 66, 573–578 (1957).

    CAS  Google Scholar 

  • Meiklejohn, G. T., and C. P. Stewart: Ascorbic acid oxidase from cucumber. Biochemic. J. 35, 755–760 (1941).

    CAS  Google Scholar 

  • Melchers, W. J., and H. J. Gerritsen: Koper als onmisbaar element voor plant en dier. Wageningen: Gebr. Zomer en Keuning 1944.

    Google Scholar 

  • Millikan, C. R.: [1] Effect of molybdenum on the severity of toxicity symptoms in flax induced by an excess of either manganese, zinc, copper, nickel or cobalt in the nutrient solution. J. Austral. Inst. Agric. Sci. 13, 180–186 (1947).

    CAS  Google Scholar 

  • [2] Antagonism between molybdenum and certain heavy metals in plant nutrition. Nature (Lond.) 161, 528 (1948).

    Google Scholar 

  • [3] Relation between nitrogen sources and the effects on flax of an excess of manganese or molybdenum in the nutrient solution. Austral. J. Sci. Res., B 3, 450–473 (1950).

    Google Scholar 

  • Minarik, C. E., and J. W. Shive: The effect of boron in the substrate on calcium accumulation by soy beans. Amer. J. Bot. 26, 827–831 (1939).

    CAS  Google Scholar 

  • Morris, A. A.: Effects of boron treatment in the control of hard fruit Citrus. J. Pomol. Hort. Sci. 16, 167–181 (1938).

    CAS  Google Scholar 

  • Morris, H. D., and W. H. Pierre: The effect of calcium, phosphorus and iron on the tolerance of Lespedeza to manganese toxicity in culture solutions. Proc. Soil Sci. Soc. Amer. 12, 382–386 (1948).

    CAS  Google Scholar 

  • Mowry, H., and A. F. Camp: A preliminary report on zinc sulfate as a corrective for bronzing of tung trees. Bull. Florida Agricult. Exper. Stat. 1934, No 273, 1–34.

    Google Scholar 

  • Mulder, E. G.: [1] Importance of molybdenum in the nitrogen metabolism of microorganisms and higher plants. Planta. Soil. 1, 94–119 (1948).

    CAS  Google Scholar 

  • [2] Importance of copper and molybdenum in the nutrition of higher plants and micro-organisms. In: Trace elements in plant physiology. Lotsya 3, 41–52 (1950).

    Google Scholar 

  • Neish, A. C.: [1] Studies on chloroplasts. I. Separation of chloroplasts, a study of factors affecting their flocculation and the calculation of the chloroplast content of leaf tissue from chemical analysis. Biochemic. J. 33, 293–299 (1939).

    CAS  Google Scholar 

  • [2] Studies on chloroplasts. II. Their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochemic. J. 33, 300–308 (1939).

    Google Scholar 

  • Nelson, J. M., and C. R. Dawson: Tyrosinase. Adv. Enzymol. 4, 99–152 (1944).

    CAS  Google Scholar 

  • Nicholas, D. J. D.: The manganese and iron contents of crop plants as determined by chemical methods. J. Pomol. Hort. Sci. 25, 60–77 (1949).

    CAS  Google Scholar 

  • Nicholas, D. J. D., and A. Nason: Role of molybdenum as a constituent of nitrate reductase from soybean leaves. Plant Physiol. 30, 135–138 (1955).

    PubMed  CAS  Google Scholar 

  • Nicholas, D. J. D., A. Nason and W. D. Mc Elroy: Effect of molybdenum deficiency on nitrate reductase in cell-free extracts of Neurospora and Aspergillus. Nature (Lond.) 172, 34 (1953).

    CAS  Google Scholar 

  • Nobbe, F., u. T. Siegert: Ãœber das Chlor als spezifischer Nährstoff der Buchweizenpflanze. Landwirtsch. Versuchsstat. 4, 318–340 (1962); 5, 116–136 (1863).

    Google Scholar 

  • Oserkowsky, J., and H. E. Thomas: Exanthema in pears and its relation to copper deficiency. Science (Lancaster, Pa.) 78, 315–316 (1933).

    CAS  Google Scholar 

  • O’Kelley, J. C.: Boron effects on growth, oxygen uptake and sugar absorption by germinating pollen. Amer. J. Bot. 44, 239–244 (1957).

    Google Scholar 

  • Palser, B. F., and W. J. Mc Ilrath: Responses of tomato, turnip, and cotton to variations in boron nutrition. II. Anatomical responses. Bot. Gaz. 118, 53–71 (1956).

    CAS  Google Scholar 

  • Pattanaik, S.: The effect of manganese on the catalase activity of rice plant. Plant a. Soil 2, 418–419 (1950).

    CAS  Google Scholar 

  • Pfeffer, W.: The physiology of plants. English edition translated and edited by A. J. Ewart, Vol. 1. Oxford: Oxford University Press 1900.

    Google Scholar 

  • Piper, C. S.: [1] Molybdenum as an essential element for plant growth. J. Austral. Inst. Agricult. Sci. 6, 162–164 (1940).

    CAS  Google Scholar 

  • [2] Marsh spot of peas: a manganese deficiency disease. J. Agricult. Sci. 31, 448–453 (1941).

    Google Scholar 

  • [3] Investigations on copper deficiency in plants. J. Agricult. Sci. 32, 143–178 (1942).

    Google Scholar 

  • Popp, M., J. Contzen U. S. Gericke: Das Rätsel der Dorrfleckenkrankheit. Z. Pflanzenernähr., Düng. u. Bodenkde 13, 66–73 (1934).

    Google Scholar 

  • Pugliese, A.: Sulla biochimica del manganese; contributo alla conoscenza dei rapporti tra manganese en ferro in relazione alla vegetazione. Atti Ist. Sci. Nat. Napoli, Ser. VI 10, 285–326 (1913).

    Google Scholar 

  • Reed, H. S.: [1] Cytology of leaves affected with little-leaf. Amer. J. Bot. 25, 174–186 (1938).

    CAS  Google Scholar 

  • [2] The relation of copper and zinc salts to leaf structure. Amer. J. Bot. 26, 29–33 (1939).

    Google Scholar 

  • [3] Effect of zinc deficiency on phosphate metabolism of the tomato plant. Amer. J. Bot. 33, 778–784 (1946).

    Google Scholar 

  • Reed, H. S., and J. Dufrénoy: [1] The effects of zinc and iron salts on the cell structure of mottled orange leaves. Hilgardia 9, 113–137 (1935).

    CAS  Google Scholar 

  • [2] Catechol aggregates in the vacuoles of cells of zinc deficient plants. Amer. J. Bot. 29, 544–551 (1942).

    Google Scholar 

  • Reeve, E., and J. W. Shive: Potassium-boron and calcium-boron relationships in plant nutrition. Soil Sci. 57, 1–14 (1944).

    CAS  Google Scholar 

  • Rehm, S.: Der Einfluß der Borsäure auf Wachstum und Salzaufnahme von Impatiens balsamina, Jb. wiss. Bot. 85, 788–814 (1937).

    CAS  Google Scholar 

  • Rippel, A.: Ãœber die durch Mangan verursachte Eisenchlorose bei grünen Pflanzen. Biochem. Z. 140, 315–323 (1923).

    CAS  Google Scholar 

  • Sachs, J. v.: Vegetationsversuche mit Ausschluß des Bodens über die Nährstoffe und sonstigen Ernährungsbedingungen von Mais, Bohnen und anderen Pflanzen. Landwirtsch. Versuchsstat. 2, 219–268 (1860); 3, 30–44 (1861).

    Google Scholar 

  • Salm-Horstmar, Le Prince de: [1] Versuche über die notwendigen Aschenbestandtheile einer Pflanzen-Species. J. prakt. Chem. 46, 193 (1849). Reference in Twyman [1].

    Google Scholar 

  • [2] Sur la nutrition de l’avoine, particulièrement en ce qui concerne les matières inorganiques qui sont nécessaires à cette nutrition. Ann. Chim. (Phys.) 3, 461 (1851). Reference in Twyman [1].

    Google Scholar 

  • Samuel, G., and C. S. Piper: Grey speck (manganese deficiency) disease of oats. J. Agricult. Sci. Austral. 31, 696–705, 789–799 (1928).

    CAS  Google Scholar 

  • Scharrer, K., and W. Schropp: Wasser- und Sandkulturversuche mit Mangan. Z. Pflanzenernähr., Düng. u. Bodenkde, A 36, 1–15 (1934).

    Google Scholar 

  • Schmucker, T.: [1] Zur Blütenbiologie tropischer Nymphaea-Arten. (Bor als entscheidender Faktor.) Planta (Berl.) 18, 642–650 (1933).

    Google Scholar 

  • [2] Ãœber den Einfluß von Borsäure auf Pflanzen, insbesondere keimende Pollenkörner. Planta (Berl.) 23, 264–283 (1935).

    Google Scholar 

  • Scholz, W.: Ãœber die Chlorose der blauen Lupine und Serradella in ihrer Beziehung zum Eisen und Mangan. Z. Pflanzenernähr., Düng. u. Bodenkde, A 35, 88–101 (1934).

    Google Scholar 

  • Schreven, D. A. van: Uitwendige en inwendige Symptomen van boriumgebrek bij tabak. Tijdschr. Pl. Ziekt. 40, 98–129 (1934).

    Google Scholar 

  • Shive, J. W.: Significant roles of trace elements in the nutrition of plants. Plant Physiol. 16, 435–445 (1941).

    PubMed  CAS  Google Scholar 

  • Sisler, E. C., W. M. Duggar and H. G. Gauch: The role of boron in the translocation of organic compounds in plants. Plant Physiol. 31, 11–17 (1956).

    PubMed  CAS  Google Scholar 

  • Sjollema, B.: Kupfermangel als Ursache von Krankheiten bei Pflanzen und Tieren. Biochem. Z. 267, 151–156 (1933).

    CAS  Google Scholar 

  • Sideris, C. P., and N. Y. Young: Growth and chemical composition of Ananas comosus (L.) Merr. in solution cultures with different iron manganese ratios. Plant Physiol. 24, 416–440 (1949).

    PubMed  CAS  Google Scholar 

  • Skoog, F.: Relationships between zinc and auxin in the growth of higher plants. Amer. J. Bot. 27, 939–951 (1940).

    CAS  Google Scholar 

  • Smith, M. E., and N. S. Bayliss: The necessity of zinc for Pinus radiata. Plant Physiol. 17, 303–310 (1942).

    PubMed  CAS  Google Scholar 

  • Somers, I. I., S. G. Gilbert and J. W. Shive: The iron-manganese ratio in relation to the respiratory CO2 and deficiency-toxicity symptoms in soybeans. Plant Physiol. 17, 317–320 (1942).

    PubMed  CAS  Google Scholar 

  • Somers, I. I., and J. W. Shive: The iron-manganese relation in plant metabolism. Plant Physiol. 17, 582–602 (1942).

    PubMed  CAS  Google Scholar 

  • Sommer, A. L.: Copper as an essential for plant growth. Plant Physiol. 6, 339–345 (1931).

    PubMed  CAS  Google Scholar 

  • Steinberg, R. A.: [1] Role of molybdenum in utilization of ammonium- and nitrate-nitrogen by Aspergillus niger. J. Agricult. Res. 55, 891–902 (1937).

    CAS  Google Scholar 

  • [2] Use of microorganisms to determine essentiality of minor elements. Soil Sci. 60, 185–189 (1945).

    Google Scholar 

  • [3] Effect of boron deficiency on nicotine formation in tobacco. Plant Physiol. 30, 84–86 (1955).

    Google Scholar 

  • Steinberg, R. A., and R. N. Jeffrey: Effect of micronutrient deficiencies on nicotine formation by tobacco in water culture. Plant Physiol. 31, 377–382 (1956).

    PubMed  CAS  Google Scholar 

  • Steinberg, R. A., A. W. Specht and E. M. Roller: Effect of micronutrient deficiencies on mineral composition, nitrogen fractions, ascorbic acid and burn of tobacco grown to flowering in water culture. Plant Physiol. 30, 123–129 (1955).

    PubMed  CAS  Google Scholar 

  • Stiles, W.: Trace elements in plants and aminals, 2. edit. Cambridge: Cambridge University Press 1951.

    Google Scholar 

  • Stout, P. R., and W.R.Meagher: Studies of the molybdenum nutrition of plants with radioactive molybdenum. Science (Lancaster, Pa.) 108, 471–473 (1948).

    CAS  Google Scholar 

  • Swanback, T. R.: Studies on antagonistic phenomena and cation absorption in tobacco in the presence and absence of manganese and boron. Plant Physiol. 14, 423–446 (1939).

    PubMed  CAS  Google Scholar 

  • Talibli, G. A.: Bedeutung von Mikroelementen und des Verhältnisses von Ca/Mg für das Pflanzenwachstum bei Kalkungen saurer Böden. Z. Pflanzenernähr., Düng. u. Bodenkde, A 39, 257–264 (1935).

    CAS  Google Scholar 

  • Thatcher, R. W.: A proposed classification of the chemical elements with respect to their function in plant nutrition. Science (Lancaster, Pa.) 79, 463–466 (1934).

    CAS  Google Scholar 

  • Tottingham, W. E., and A. J. Beck: Antagonism between manganese and iron in the growth of wheat. Plant World 19, 359–370 (1916).

    CAS  Google Scholar 

  • True, R. H., and W. J. Gies: On the physiological action of some of the heavy metals in mixed solutions. Bull. Torrey Bot. Club 30, 390–402 (1903).

    Google Scholar 

  • Truninger, E.: Borgehalt des Mergels als Ursache der verschiedenen Düngwirkung von gemahlenem Kalkstein und Mergel. Landwirtsch. Jb. Schweiz 54, 689–705 (1940).

    CAS  Google Scholar 

  • Tsui, C.: The role of zinc in auxin synthesis in the tomato plant. Amer. J. Bot. 35, 172–179 (1948).

    CAS  Google Scholar 

  • Twyman, E. S.: [1] The iron-manganese balance and its effect on the growth and development of plants. New Phytologist 45, 18–24 (1946).

    CAS  Google Scholar 

  • [2] The iron and manganese requirements of plants. New Phytologist 50, 210–226 (1951).

    Google Scholar 

  • Undenäs, S. Ett försök med kopparsulfat mot gulspetssjuka. Landboukshogskolano An. Ann. Agricult. Coll. Sweden 4, 99–111 (1937).

    Google Scholar 

  • Vallee, B. L., S. J. Adelstein and J. A. Olsen: Glutamic dehydrogenase of beef liver, a zinc metalloenzyme. J. Amer. Chem. Soc. 77, 5196 (1955).

    CAS  Google Scholar 

  • Vallee, B. L., and F. L. Hoch: Yeast alcohol dehydrogenase, a zinc metalloenzyme. J. Amer. Chem. Soc. 77, 821 (1955).

    CAS  Google Scholar 

  • Vanselow, A. P., and N. P. Datta: Molybdenum deficiency of the Citrus plant. Soil Sci. 67, 363–375 (1949).

    CAS  Google Scholar 

  • Viets, F. G., L. C. Boawn and C. L. Crawford: Zinc content of bean plants in relation to deficiency symptoms and yield. Plant Physiol. 29, 76–79 (1954).

    PubMed  CAS  Google Scholar 

  • Wadleigh, C. H., and J. W. Shive: A microchemical study of the effect of boron deficiency in cotton seedlmgs. Soil Sci. 47, 33–36 (1939).

    CAS  Google Scholar 

  • Walker, J. C.: Internal black spot of garden beet. Phytopathology 29, 120–128 (1939).

    Google Scholar 

  • Walker, T. W., A. F. R. Adams and H. D. Orchiston: The effects and interactions of molybdenum, lime and phosphate treatments on the yield and composition of white clover, growth on acid, molybdenum responsive soils. Plant a. Soil 6, 201–220 (1955).

    CAS  Google Scholar 

  • Wallace, A., and F. E. Bear: Influence of potassium and boron on nutrient-element balance in the growth of ranger alfalfa. Plant Physiol. 24, 664–680 (1949).

    PubMed  CAS  Google Scholar 

  • Warington, K.: [1] The changes induced in the anatomical structure of Vicia Faba by the absence of boron from the nutrient solution. Ann. of Bot. 48, 743–776 (1926).

    Google Scholar 

  • [2] Observations on the effect of molybdenum on plants with special reference to the Solanaceae. Ann. Appl. Biol. 24, 475–493 (1937).

    Google Scholar 

  • [3] Effects of variations in calcium supply, pH value and nitrogen content of nutrient solutions on the response of lettuce and red clover to molybdenum. Ann. Appl. Biol. 37, 607–623 (1950).

    Google Scholar 

  • [4] Some interrelationships between manganese, molybdenum and vanadium in the nutrition of soya beans, flax and oats. Ann. Appl. Biol. 38, 624–641 (1951).

    Google Scholar 

  • Weinstein, L. H., and W. R. Robbins: The effect of different iron and manganese nutrient levels on the catalase and cytochrome oxidase activities of green and albino sunflower leaf tissues. Plant Physiol. 30, 27–32 (1955).

    PubMed  CAS  Google Scholar 

  • Williams D. E., and J. Vlamis: Manganese toxicity in standard culture solutions. Plant a. Soil 8, 183–193 (1957).

    CAS  Google Scholar 

  • Williams, J. H.: The effect of molybdenum on reclaimed Welsh upland pastures. Plant a. Soil 7, 327–340 (1956).

    CAS  Google Scholar 

  • Young, R. S.: Certain rarer elements in soils and fertilisers and their role in plant growth. Mem. Cornell Agricult. Exper. Stat. 1935, No 174, 70.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin . Göttingen . Heidelberg

About this chapter

Cite this chapter

Stiles, W. (1958). Essential micro-(trace) elements. In: Adriani, M.J., et al. Die Mineralische Ernährung der Pflanze / Mineral Nutrition of Plants. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94729-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94729-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94730-8

  • Online ISBN: 978-3-642-94729-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics