Skip to main content
  • 76 Accesses

Zusammenfassung

Wie aus den im vorigen Kapitel geschilderten Zusammenhängen hervorgeht, wird die Berechnung eines Spektrums bei kleinen Abtastlängen N rasch problematisch. Benutzt man die Methode der Fensterung, so resultieren verwaschene Spektren mit einer — der Gewichtsfolge entsprechenden — Struktur aus Haupt- und Nebenkeulen. Eine bezüglich der Qualität der erhaltenen Spektren signifikante Erhöhung der Stützstellenzahl N ist oft aus praktischen Gründen nicht möglich. Es sind immerhin Verdopplungen der Beobachtungslänge für halbierte Hauptkeulenbreiten erforderlich, Aufwand und Kosten wachsen entsprechend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Prony, G. R.: Essai experimental et analytique, etc, Paris, J. de L’Ecole Polytechnique Vol. 1 cahier 2, S. 24 – 75 (1795)

    Google Scholar 

  2. McDounough, R. N.: Best least-squares representation of signals by exponentials, IEEE Trans. Auto. Contr. 13 (1968), S. 408 – 412

    Article  Google Scholar 

  3. Holtz, H.: Pronys method and related approaches to exponential approximation, Aerospace Corp. Rep. ATR-73 (9990)-5 (1973)

    Google Scholar 

  4. Hildebrand, F. B.: Introduction to numerical analysis, McGraw Hill, New York 1956

    MATH  Google Scholar 

  5. Yule, G. U.: On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers, Phil. Trans. Royal Soc., London (1927), Series A 226, S. 267 – 298

    Google Scholar 

  6. Walker, G.: On periodicity in series of related terms, Proc. Roy. Soc, London (1931), Series A 131, S. 518 – 532

    Google Scholar 

  7. Makhoul, J.: Spectral Analysis of Speech by Linear Prediction, IEEE Trans. Audio Electroacoust. 21 (1973), S. 140 – 148

    Article  Google Scholar 

  8. Makhoul, J.: Adaptive Noise Spectral Shaping and Entropy Coding in Predicitve Coding of Speech, IEEE Trans. Acoust. Speech Sig. Proc. 27 (1979), S. 63 – 73

    Article  Google Scholar 

  9. Lang, S. W.; McClellan, J. H.: A Simple Proof of Stability for All-Pole Linear Prediction Models, Proc. IEEE 67 (1979), S. 860 – 861

    Article  Google Scholar 

  10. Levinson, N.: The Wiener (root mean square) error criterion in filter design and prediction, J. Math Phys. 25 (1947), S. 261 – 278

    MathSciNet  Google Scholar 

  11. Durbin, J.: The fitting of time series models, Rev. Inst. Int. de Stat. 28 (1960) S. 233 – 244

    Article  MATH  Google Scholar 

  12. Akaike, H.: Statistical predictor identification, Ann. Inst. Statist. Math. 22 (1970), S. 203 – 217

    Article  MATH  MathSciNet  Google Scholar 

  13. Akaike, H.: Autoregressive model fitting for control, Ann. Inst. Statist. Math. 23 (1971), S. 163–180

    Article  MATH  MathSciNet  Google Scholar 

  14. Kozin, F.; Nakajima, F.: The order determination problem for linear time-varying AR models, IEEE Trans. Automat. Contr. 25 (1980), S. 250 – 257

    Article  MATH  MathSciNet  Google Scholar 

  15. Kay, S. M.; Marple, S. L.: Spectrum Analysis — A Modern Perspective, Proc. IEEE 69 (1981), S. 1380 – 1419

    Article  Google Scholar 

  16. Makhoul, J.: Linear Prediciton: A Tutorial Review, Proc. IEEE 63 (1975) S. 561 – 580

    Article  Google Scholar 

  17. Burg, J. P.: A new analysis technique for time series data, NATO Advanced Study Inst. on Signal Processing with Emphasis on Underwater Acoustics, Enschede, The Netherlands, 1968

    Google Scholar 

  18. Ulrych, T. J.; Clayton, R. W.: Time series modelling and maximum entropy, Phys. Earth Planetary Interiors 12 (1976), S. 188 – 200

    Article  Google Scholar 

  19. Nuttall, A. H.: Spectral analysis of a univariate p process with bad data points, via maximum entropy, and linear predictive techniques, Naval Underwater Systems Center, Tech. Rep.5303, New London 1976

    Google Scholar 

  20. Marple, S. L.: A new autoregressive spectrum analysis algorithm, IEEE Trans. Acoust. Speech Sig. Proc. 28 (1980), S. 441 – 451

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Möser, M. (1988). Spektrales Modellieren. In: Analyse und Synthese akustischer Spektren. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93374-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93374-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18947-3

  • Online ISBN: 978-3-642-93374-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics