Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 59))

Abstract

Eleven Alu elements have thus far been found in the primate DRB genes: HLA-DRB1*04- Alul, HLA-DRBVII-Alu2, HLA-DRBVII-Alu3, HLA-DRBVII-Alu4, HLA-DRBVII-Alu5, HLA-DRBVIII-Alu6, HLA-DRBVIII-Alu7, HLA-DRBVIII-Alu8, Gogo-DRB8-Alu7, Gogo-DRB8-Alu8, and Patr-DRB6-Alu9. Comparison with consensus sequences indicates that the DRB-Alu elements belong to five different subfamilies -- Sp, Sx, Sq, Sc, and Sb (in the classification scheme of Jurka and Milosavljevic). The Alu-Sp elements are the oldest of the five subfamilies, most of them having been inserted at their current locations more than 38 million years (myr) ago. The Alu-Sb elements are the youngest, having spread through the genome in the last 18 myr. The presence of Alu7 and Alu8 at corresponding positions in orthologous genes provides evidence that they were inserted in the DRB8 gene more than 6 myr ago. The presence of Alu9 in the Patr-DRB6 but not in the orthologous HLA-DRBVI gene indicates that this element is less than 6 myr old. The presence of old Alu elements in several DRB pseudogenes supports the notion of the pseudogenes being very old. No evidence of sequence homogenization could be found for the DRB-Alu elements: they have all conserved their diagnostic nucleotides scattered over the entire length of each element. Hence, no gene conversion apparently occurred in the elements, even in those that are more than 30 myr old. Whether the Alu elements might be responsible for the truncation of some of the DRB pseudogenes cannot be decided at the present time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, G., Larhammar, D., Widmark, E., Servenius, B., Peterson, P.A., and Rask, L.: Class II genes of the human major histocompatibility complex: Organization and evolutionary relationship of the DRß genes. J Biol Chem 262: 8748–8758, 1987

    PubMed  CAS  Google Scholar 

  • Britten, R.J.: Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–1398, 1986

    Article  PubMed  CAS  Google Scholar 

  • Britten, R.J., Will, F.B., Stout, D.B., and Davidson, E.H.: Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci USA 85: 4770–4774, 1988

    Article  PubMed  CAS  Google Scholar 

  • Britten, R.J., Stout, D.B., and Davidson, E.H.: The current source of human Alu retrotransposons is a conserved gene shared with Old World monkey. Proc Natl Acad Sci USA 86: 3718–3722, 1989

    Article  PubMed  CAS  Google Scholar 

  • Carroll, R.L.: Vertebrate Paleontology and Evolution. W.H. Freeman, New York 1988

    Google Scholar 

  • Daniels, G.R. and Deininger, P.L.: A second major class family of Alu family repeated DNA sequences in a primate genome. Nucleic Acids Res 11: 7595–7610, 1983

    Article  PubMed  CAS  Google Scholar 

  • Daniels, G.R. and Deininger, P.L.: Integration site preferences of the Alu family and similar repetitive DNA sequences. Nucleic Acids Res 13: 8939–8954, 1985

    Article  PubMed  CAS  Google Scholar 

  • Deininger, P.L. and Daniels, G.R.: The recent evolution of mammalian repetitive DNA elements. TIGS 2: 76–80, 1986

    Article  CAS  Google Scholar 

  • Dover, G.: Molecular drive: a cohesive mode of species evolution. Nature 299: 111–117, 1982

    Article  PubMed  CAS  Google Scholar 

  • Duncan, C., Biro, P.A., Choudary, P.V., Elder, J.T., Wang, R.R.C., Forget, B.G., DeRiel, J.K., and Weissman, S.M.: RNA polymerase III transcriptional units are interspersed among human non-a-globin genes. Proc Natl Acad Sci USA 10:5095–5099, 1979

    Article  Google Scholar 

  • Felsenstein, J.: Phylogenies from molecular sequences: Inference and reliability. Annu Rev Genet 22:521–565, 1988

    Article  PubMed  CAS  Google Scholar 

  • Figueroa, F., O’hUigin, C., Inoko, H., and Klein, J.: Primate DRB6 pseudogene — a clue to the evolutionary origin of the HLA-DR2 haplotype. Submitted, 1991

    Google Scholar 

  • Gundelfinger, E.D., di Carlo, M., Zopf, D., and Melli, M.: Structure and evolution of the 7SL RNA component of the signal recognition particle. EMBO J 3: 2325–2332, 1984

    PubMed  CAS  Google Scholar 

  • Houck, M., Rinehart, F.P., and Schmid, C.W.: Ubiquitous family of repeated DNA sequences in the human genome. J Mol Biol 132: 289–306, 1979

    Article  PubMed  CAS  Google Scholar 

  • Hwu, H.R., Roberts, J.W., Dawidson, E.H., and Britton, R.J.: Insertion and/or deletion of many repeated DNA sequences in human and higher ape evolution. Proc Natl Acad Sci USA 83: 3875–3879, 1986

    Article  PubMed  CAS  Google Scholar 

  • Jelinek, W.R:, Toomey, T.P., Leinwald, L., Duncan, C.H., Biro, P.A., Choundary, P.V., Weissman, S.M., Rubin, C.M., Houck, C.M., Deininger, P.O., and Schmid, C.W.: Ubiquitous interspersed repeated sequences in mammaliana genomes. Proc Natl Acad Sci USA 77: 1398–1402, 1980

    Article  PubMed  CAS  Google Scholar 

  • Jukes, T.H. and Cantor, C.R.: Evolution of protein molecules. In Mammalian Protein Metabolism III H.N. Munro (ed.), pp. 21–132, Acad. Press, New York, 1969

    Google Scholar 

  • Jurka, J. and Milosavljevic, A.: Reconstruction and analysis of human Alu genes. J Mol Evol 32: 105–121, 1991

    Article  PubMed  CAS  Google Scholar 

  • Jurka, J. and Smith, T.: A fundamental division in the Alu family of repeated sequences. Proc Natl Acad Sci USA 85: 4775–4778, 1988

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M.: A simple method of estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120, 1980

    Article  PubMed  CAS  Google Scholar 

  • Klein, D., Vincek, V., Kasahara, M., Schönbach, C., O‘hUigin, C., and Klein, J.: Gorilla- Mhc-DRB pseudogene: implications for the evolution of the HLA-DR4 haplotype. Submitted, 1991

    Google Scholar 

  • Labuda, D. and Striker, G.: Sequence conservation in Alu evolution. Nucleic Acids Res 17: 2477–2491, 1989

    Article  PubMed  CAS  Google Scholar 

  • Larhammar, D., Servenius, B., Rask, L., and Peterson, P.A.: Characterization of an HLA- DRß pseudogene. Proc Natl Acad Sci USA 82: 1475–1479, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lehrman, M.A., Schneider, W.J., Südhof, T.C., Brown, M.S., Goldstein, J.L., and Russell, D.W.: Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science 227: 140–146, 1985

    Article  PubMed  CAS  Google Scholar 

  • Limborska, S.A., Korneev, S.A., Maleeva, N.E., Slominsky, P.A., Jincharadze, A.G., Ivanov, P.L., and Ryskov, A.P.: Cloning of Alu-containing cDNAs from human fibroblasts and identification of small Alu+ poly(A)+ RNAs in a variety of human normal and tumor cells. FEBS Lett 212 (2): 208–212, 1987

    Article  PubMed  CAS  Google Scholar 

  • Martin, R.D.: Primate Origins and Evolution: A Phylogenetic Reconstruction. Chapman and Hall, London 1990

    Google Scholar 

  • Nei, M. and Gojobori, T.: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418–426, 1986

    PubMed  CAS  Google Scholar 

  • Ottolenghi, S. and Giglioni, B.: The deletion in a type dOO-thalassaemia begins in an inverted Alu I repeat. Nature 300: 770–771, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Rinehart, F.P., Ritch, T.G., Deininger, P.L., and Schmid, C.W.: Biochemistry 20: 3003–3010, 1980

    Article  Google Scholar 

  • Saitou, N. and Nei, M.: The neighbor-joining method. A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425, 1987

    PubMed  CAS  Google Scholar 

  • Sokal. R.R. and Sneath, P.H.A.: Principles of Numerical Taxonomy. W.H. Freeman, New York 1973

    Google Scholar 

  • Ullu, E. and Tschudi, C.: Alu sequences are processed 7SL RNA genes. Nature 312: 171–172, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ullu, E., Murphy, S., and Melli, M.: Human 7S RNA consists of a 140 nucleotide middle repetitive sequence inserted in an Alu sequence. Cell 29: 195–202, 1982

    Article  PubMed  CAS  Google Scholar 

  • Vincek, V., Klein, D., Hauptfeld, V., Kasahara, M., O‘hUigin, C., Mach, B., and Klein, J.: The evolutionary origin of the HLA-DR3 haplotype. Submitted, 1991

    Google Scholar 

  • Willard, C., Nguyen, H.T., and Schmid, C.W.: Existence of at least three different Alu subfamilies. J Mol Evol 26: 180–186, 1987

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, T., Davis, C.G., Brown, M.S., Schneider, W.J., Casey, M.L., Goldstein, J.L., and Russel, D.W.: The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 39: 27–38, 1984

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandel, E., Latter, G., and Jurka, J.: Maintenance of function without selection: Alu sequences as “cheap genes”. J Mol Evol 29: 504–512, 1989

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schönbach, C., Klein, J. (1991). The ALU Repeats of The Primate DRB Genes. In: Klein, J., Klein, D. (eds) Molecular Evolution of the Major Histocompatibility Complex. NATO ASI Series, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84622-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84622-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84624-3

  • Online ISBN: 978-3-642-84622-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics