Skip to main content

Effects of the Marine Biota on Global Carbon Cycling

  • Conference paper
The Global Carbon Cycle

Part of the book series: NATO ASI Series ((ASII,volume 15))

Abstract

Natural carbon cycling in the global ocean and its influence on atmospheric CO2 concentrations can be examined conveniently in terms of a solubility pump, an organic carbon pump and a calcium carbonate pump (Volk and Hoffert 1985). Here a review is presented of the physical, chemical and biological processes which determine the strength of these pumps. Ocean new (export) production and biogenic calcium carbonate production lie in the ranges 5–10 GtCyr-1 and 1–2 GtCyr-1 respectively. A new analysis using the High Latitude exchange/ interior Diffusion-Advection (HILDA) model (Shaffer and Sarmiento 1992, Shaffer 1992) shows that the organic carbon pump is about twice as strong as the solubility pump in terms of atmospheric CO2 drawdown. Model results for the modem, pre-industrial ocean imply that atmospheric transport of CO2 between high and low-mid latitudes associated with the solubility pump (0.7 GtCyr-1 poleward) and the two “biological” pumps (0.8 GtCyr-1 equatorward) tended to balance. This indicates that CO2 outgassing from equatorial upwelling was balanced by CO2 uptake at mid latitudes. Model results are also used to study the sensitivity of atmospheric CO2 levels to changes in ocean physics and biology. It is concluded that even very large changes in ocean biology would probably not make a large impact on ocean uptake of CO2 in the near future. However over century time scales such changes could be important for atmospheric CO2 evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacastow R, Maier-Reimer E (1990) Ocean-circulation model of the carbon cycle. Climate Dynamics 4:95–125

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408–414

    Article  Google Scholar 

  • Berner RA (1977) Sedimentation and dissolution of pteropods in the oceans. In: Anderson K, Malahoff A (eds) The Fate of Fossil Fuel CO2 in the Oceans, Plenum, New York, p 243–260

    Google Scholar 

  • Berger WH, Fischer K, Lai C, Wu G (1987) Ocean productivity and organic carbon flux. Part 1. Overview and maps of primary production and export production. Univ. of California, San Diego, SIO Reference 87–30

    Google Scholar 

  • Bolin B (1986) How much CO2 will remain in the atmosphere? In: Bolin B, Döös BR, Jäger J, Warrick RA (eds) The Greenhouse Effect, Climatic Change and Ecosystems, SCOPE 29, John Wiley, p 93–155

    Google Scholar 

  • Boyle EA (1988) The role of vertical fractionation in controlling Late Quaternary atmospheric carbon dioxide. J Geophys Res 93: 15701–15714

    Article  Google Scholar 

  • Broecker WS (1982) Ocean chemistry during glacial time. Geochim Cosmochim Acta 46:1689–1705

    Article  Google Scholar 

  • Broecker WS, Peng TH (1982) Tracers in the Sea, Eldigio Press, Lamont-Doherty Geological Observatory, Palisades, N.Y.

    Google Scholar 

  • Eppley RW, Peterson BW (1979) Particulate organic matter flux and planktonic new production in the ocean. Nature 282: 677–680

    Article  Google Scholar 

  • Fiadeiro M (1980) The alkalinity of the deep Pacific. Earth and Planet Sci Let, 49, 499–505

    Article  Google Scholar 

  • Fasham MJR, Ducklow HW, McKelvie SM (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J Marine Res 48: 591–639

    Google Scholar 

  • Froelich PN, Bender ML, Luedtke NA, Heath GR, DeVries T (1982) The marine phosphorus cycle. Am J Sci 282:474–511

    Article  Google Scholar 

  • Garçon V, Minster JF (1988) Heat, carbon and water fluxes in a 12-box model of the world ocean. Tellus 40B: 161–177

    Article  Google Scholar 

  • Goldman JC, McCarthy JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215.

    Article  Google Scholar 

  • Houghton JT, Jenkins GJ, Ephraums JJ (eds) (1990) Climate Change, The IPCC Scientific Assessment, Cambridge University Press, Cambridge

    Google Scholar 

  • Joos F, Siegenthaler U, Sarmiento JL (1991) Possible effects of iron fertilization in the Southern Ocean on atmospheric CO2 concentration. Global Biogeochem Cycles 5:135–150

    Article  Google Scholar 

  • Keeling CD, Piper SC, Heimann M (1989) A three dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. In: Peterson DH (ed) Aspects of Climate Variability in the Pacific and the Western Americas, Geophys Monogr, 55, AGU, Washington, p 305–363

    Chapter  Google Scholar 

  • Knox F, McElroy M (1984) Changes in atmospheric CO2: influence of the marine biota at high latitudes. J Geophys Res 89: 4629–4637

    Article  Google Scholar 

  • Levitus S (1982) Climatological Atlas of the World Ocean, NOAA Professional Paper 13 (Government Printing Office), Washington D.C.

    Google Scholar 

  • Longhurst AR, Harrison WG (1988) Vertical nitrogen flux from the oceanic photic zone by diel migrant Zooplankton and nekton. Deep-Sea Res 35: 881–889

    Article  Google Scholar 

  • Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX; Carbon cycling in the northeast Pacific. Deep-Sea Res 34: 267–285

    Article  Google Scholar 

  • Maier-Reimer E, Hasselmann K (1987) Transport and storage of carbon dioxide in the ocean in an inorganic ocean-circulation carbon cycle model. Climate Dynam 2: 63–90

    Article  Google Scholar 

  • Mortlock RA, Charles CD, Froelich PN, Zibello MA, Saltzman J, Hays JD, Burckle LH (1991) Evidence for lower productivity in the antarctic ocean during the last glaciation. Nature 351:220

    Article  Google Scholar 

  • Najjar RG (1990) Simulations of the phosphorus and oxygen cycles in the world ocean using a general circulation model. Dissertation, Princeton University, 190 pp.

    Google Scholar 

  • Packard TT, Denis M, Rodier M, Garfield P (1988) Deep ocean metabolic CO2 production: calculations from ETS activity. Deep-Sea Res 35: 371–382

    Article  Google Scholar 

  • Sarmiento JL, Toggweiler JR (1984) A new model for the role of the oceans in determining atmospheric pCO2. Nature 308: 621–624

    Article  Google Scholar 

  • Sarmiento JL, Orr JC, Siegenthaler U (1992). A perturbation simulation of CO2 uptake in an ocean general circulation model. J Geophys Res 97: 3621–3645

    Article  Google Scholar 

  • Sarmiento JL, Sundqvist E (1992) Oceanic Uptake of anthropogenic CO2: a new budget. Nature 356, 589–593

    Article  Google Scholar 

  • Shaffer G (1989) A model of biogeochemical cycling of phosphorus, nitrogen, oxygen and sulphur in the ocean: one step toward a global climate model. J Geophy Res 94(C2): 1979–2004

    Article  Google Scholar 

  • Shaffer G (1990) A non-linear climate oscillator controlled by biogeochemical cycling in the ocean: an alternative model of Quaternary ice age cycles. Climate Dynam 4: 127–143

    Article  Google Scholar 

  • Shaffer G (1992). Biogeochemical cycling in the global ocean 2. New production, Redfield ratios and remineralization scales in the organic pump. Submitted to J Geophys Res

    Google Scholar 

  • Shaffer G, Sarmiento JR (1992) Biogeochemical cycling in the global ocean 1. A new analytical model with continuous vertical resolution and high latitude dynamics. Submitted to J Geophys Res

    Google Scholar 

  • Siegenthaler U, Wenk T (1984) Rapid atmospheric CO2 variations and ocean circulation. Nature 308:624–625

    Article  Google Scholar 

  • Siegenthaler U, Oeschger H (1987) Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus 39b: 140–154

    Article  Google Scholar 

  • Skirrow G (1975) The dissolved gases-carbon dioxide. In: Riley JP, Skirrow G (eds) Chemical Oceanography, Vol. 2, Academic Press, London, p 1–192.

    Google Scholar 

  • Toggweiler JR (1989) Is the downward dissolved organic matter (DOM) flux important in carbon transport? In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: Present and Past, J. Wiley and Sons, New York, p 65–85.

    Google Scholar 

  • Takahashi T, Broecker WS, Langer S (1985) Redfield ratios based on chemical data from iso-pycnal surfaces. J Geophys Res 90(C4): 6907–6924

    Article  Google Scholar 

  • Volk T, Hoffert MI (1985) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric pCO2 changes. In: Sundqvist ET, Broecker WS (eds) The carbon cycle and Atmospheric CO2, Natural Variations Archaen to Present, AGU Monograph 32, AGU, Washington, D.C., p 99–110

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shaffer, G. (1993). Effects of the Marine Biota on Global Carbon Cycling. In: Heimann, M. (eds) The Global Carbon Cycle. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84608-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84608-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84610-6

  • Online ISBN: 978-3-642-84608-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics