Skip to main content

Experimental Aspects of Optically Detected EPR and ENDOR

  • Chapter
Structural Analysis of Point Defects in Solids

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 43))

  • 229 Accesses

Abstract

In this chapter some of the essential features of spectrometers for optical detection of EPR and ENDOR are described. Unless necessary, we will not distinguish between ODEPR and ODENDOR, but simply refer to ODMR. Basically, there are two kinds of ODMR spectrometers. In one, the ODMR effect is measured as a microwave- or rf-induced change of the fluorescence or phosphorescence light intensity. It is often achieved by adding optical components to an ordinary EPR spectrometer and providing it with a special cavity (emission-type spectrometer). Since such spectrometers were described elsewhere previously [9.1–3], they will be dealt with only briefly here. The other type of ODMR spectrometer is based on a spectrometer to measure the magnetic circular dichroism of the absorption (MCDA) or the magnetic circular polarization of emitted light (MCPE), be it fluorescence or phosphorescence, to which the microwave and rf components are added (MCDA-type spectrometer). This type of spectrometer was described earlier [9.4,2] for the special purpose of investigating excited states of F centers in alkali halides. It has since been developed further for a more general use to study EPR and ENDOR of ground and excited states of many types of defects, and will, therefore, be described here in more detail. Several of the more critical components of the MCDA-type spectrometer are discussed in view of experience gathered in the Paderborn group over the last ten years. The MCDA-type spectrometer requires a higher degree of precision for the optical components compared to the emission-type spectrometer. It is usually not used for conventional detection of EPR, although this would be possible by including a microwave bridge. The emission-type spectrometer is usually also operated as a conventional EPR spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. B.C. Cavenett: Adv. in Phys. 30, 475 (1981)

    Article  ADS  Google Scholar 

  2. S. Geschwind: “Optical Techniques in EPR in Solids”, in Electron Paramagnetic Resonance, ed. by S. Geschwind (Plenum, New York 1972)

    Google Scholar 

  3. K.P. Dinse, C.J. Winscon: “Optically Detected ENDOR Spectroscopy”, in Triplet State ODMR Spectroscopy, ed. by R.H. Clarke (Wiley, New York 1984)

    Google Scholar 

  4. L.F. Mollenauer, S. Pan: Phys. Rev. B 6, 772 (1972)

    Article  ADS  Google Scholar 

  5. 9.5 F. Lohse: private communication

    Google Scholar 

  6. H.W. van Kesteren, W.T. Wenckebach, J.A.J.M. Disselhorst: J. Phys. E: Sci. Instrum. 20, 648 (1987)

    Article  ADS  Google Scholar 

  7. J. Donecker, J. Kluge: J. Phys. D: Appl. Phys.19, L 199 (1986)

    Google Scholar 

  8. J.J. Davies: Contemp. Phys. 17, 275 (1976)

    Article  ADS  Google Scholar 

  9. S.N. Jasperson, S.E. Schnattely: Rev. Sei. Instrum. 40, 761 (1969)

    Article  ADS  Google Scholar 

  10. R.M.A. Azzam, N.M. Bashara: Ellipsometry and Polarized Light (North— Holland, Amsterdam, New York, Oxford 1977)

    Google Scholar 

  11. J.C. Kemp: J. Opt. Soc. Am. 59, 950 (1970)

    ADS  Google Scholar 

  12. J.C. Kemp: in Polarized Light and Its Interaction with Modulating Devices ed. Hinds International Inc. Hillsboro, USA, 1987

    Google Scholar 

  13. M. Billardon, J. Badoz: C. R. Acad. Sei. Paris 262, 1672 (1966)

    Google Scholar 

  14. L.F. Mollenauer, D. Downie, H. Engstrom, W B. Grant, Appl. Optics 8, 661 (1969)

    Article  ADS  Google Scholar 

  15. R.M.A. Azzam: J. Opt. Soc. Am.68, 1756 (1978)

    Article  ADS  Google Scholar 

  16. Y. Shindo, M. Nakagawa: Rev. Sei. Instrum.56, 32 (1985)

    Article  ADS  Google Scholar 

  17. R. Takakuwa: Jasco Application Notes 1/4, 1 (Japan Spectroscopic Co. Ltd., Tokyo)

    Google Scholar 

  18. K. Tuzimura, T. Konno, H. Meguro, M. Hatano, T. Murakami, K. Ka- shiwabara, K. Saito, Y. Kondo, T.M. Suzuki: Anal. Biochem.81, 167 (1977)

    Article  Google Scholar 

  19. R.C. Jones: J. Opt. Soc. Am.38, 671 (1948)

    Article  ADS  Google Scholar 

  20. H. Kubo, R. Nagata: J. Opt. Soc. Am.73, 1719 (1983)

    Article  ADS  Google Scholar 

  21. H. Kubo, R. Nagata: J. Opt. Soc. Am. A 2,30 (1985)

    Article  ADS  Google Scholar 

  22. H.G. Jerrard: Optics and Laser Technology, (Butterworth & Co. 1982)

    Google Scholar 

  23. B. Drevillon, J. Perrin, R. Marbot, A. Violet, J.L. Dalby: Rev. Sei. Instrum. 53, 969 (1982)

    Article  ADS  Google Scholar 

  24. S.C. Rashleigh, R.H. Stolen: Laser Focus, 1983

    Google Scholar 

  25. J.M. Beckers: Applied Optics 10, 973 (1971)

    Article  ADS  Google Scholar 

  26. L.F. Mollenauer, C.D. Grandt, H. Panepucci: Rev. Sei. Instrum. 39, 1958 (1968)

    Article  ADS  Google Scholar 

  27. O. Burghaus, E. Haindl, M. Plato, K. Möbius: J. Phys. E: Sei. Instrum. 18, 294 (1985)

    Article  ADS  Google Scholar 

  28. M. Charnel, R. Chicault, Y. Merle d’Aubigné: J. Phys. E: Sei. Instrum. 9, 87 (1967)

    ADS  Google Scholar 

  29. E.H. Izen, F.A. Modine: Rev. Sei. Instrum.43, 1563 (1972)

    Article  Google Scholar 

  30. M. Gehrtz, C. Bräuchle, J. Voitländer: J. Phys. E: Sei. Instrum. 17, 1046 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spaeth, JM., Niklas, J.R., Bartram, R.H. (1992). Experimental Aspects of Optically Detected EPR and ENDOR. In: Structural Analysis of Point Defects in Solids. Springer Series in Solid-State Sciences, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84405-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84405-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84407-2

  • Online ISBN: 978-3-642-84405-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics