Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 44))

Abstract

A new approach to the brain and the world is presented. A chaotic Hamiltonian universe is set up, in 1 D, such that an explicit internal observer — an excitable system — becomes amenable to complete understanding. The Gibbs symmetry and the Wigner symmetry, when taken into explicit regard, imply that to this observer, his world appears quite different from what one would expect at first sight — such as when one is doing a molecular dynamics simulation of the same system, for example. Specifically, both stochastic mechanics and the quantum nonlorcality turn out to be formal implications of the present “deterministic local hidden variables” approach to quantum mechanics — despite the fact that it never was an approach to quantum mechanics in the first place. Bell’s well-known impossibility theorem is circumvented because all quantum effects arising are nonexistent objectively. They are valid only within the “interface” that develops internally between the observer and his world. For the first time, the Kantian notion that the world is objectively different from the way we perceive it can be demonstrated — not for our own world, but for a lower-level model world as it appears to an artificial observer living inside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. Alder, and T.E. Wainwright, “Phase Transitions for a Hard Sphere System”, J. Chem. Phys. 27, 1208 (1957).

    Article  CAS  Google Scholar 

  2. J.S. Bell, “On the Einstein-Podolsky-Rosen Paradox”, Physics 1, 195 (1964).

    Google Scholar 

  3. J.S. Bell, “Quantum Mechanics for Cosmologists”, Quantum Gravity Vol. 2, edits. C.J. Isham, R. Penrose, and D.W. Sciama, Oxford Univesity Press, (1981) p. 611

    Google Scholar 

  4. B.J. Berne, Statistical Mechanics, Part B: Time-Dependent Processes, Plenum Press, New York (1977).

    Google Scholar 

  5. P.C.W. Davies, The Physics of Time Asymmetry, London, Surrey University Press (1974).Sa D. Deutsch, “The Connection between Everett’s Interpretation and Experiment”, Quantum Concepts in Space and Time edits. R. Penrose and C.J. Isham, Oxford, Clarendon (1986) p. 215

    Google Scholar 

  6. P.A.M. Dirac, “The Versatility of Niels Bohr”, Niels Bohr, edit. S. Rozental, Elsevier, Amsterdam (1967), p. 306.

    Google Scholar 

  7. H. Everett, “Relative State Formulation of Quantum Mechanics”, Rev. Mod. Phys. 29, 454 (1957).

    Article  Google Scholar 

  8. D. Finkelstein, “The Holistic Methods in Quantum Logic”. Quantum Theory and the Structures of Time and Space Volume III, edits. L. Castell and C.F. Weizsäcker, Carl Hanser Verl., München (1979) p. 37.

    Google Scholar 

  9. D. Finkelstein and S.R. Finkelstein, “Computer Interactivity Simulates Quantum Complementarity”, Int. J. Theor. Phys. 22, 753 (1983).

    Article  Google Scholar 

  10. E. Fredkin and T. Toffoli, “Conservative Logic”, Int. J. Theor. Phys. 21, 219 (1982).

    Article  Google Scholar 

  11. J.W. Gibbs, Elementary Principles in Statistical Mechanics, CT: Yale University Press, New Haven, (1902) ch.15.

    Google Scholar 

  12. K. Gödel, On Formally Undecidable Propositions, Basic Books, New York (1962), (originally published in 1931 ).

    Google Scholar 

  13. M. Heinrichs and F.W. Schneider, “Molecular Dynamics Calculations of a Second-Order Kinetic Phase Transition in an Open System (CSTR)” Ber. Bunsenges. Phys. Chem. 87, 1195 (1983).

    CAS  Google Scholar 

  14. J.L. Hudson and O.E. Rössler, “Chaos and Complex Oscillations in Stirred Chemical Reactors”, Dynamics of Nonlinear Systems, edit. Vladimir Hlavacek, Gordon and Breach, New York (1986) p. 193.

    Google Scholar 

  15. G.W. Leibniz, The Leibniz Clark Correspondence, edit. H.G. Alexander, Manchester University Press Barnes and Noble, Manchester (1956) pp. 26, 38, and 63.

    Google Scholar 

  16. G. Luders, “On Motion Reversal in Quantized Field Theories” (in German) Z. Pysik 133, 325 (1952).

    Google Scholar 

  17. R.L. Devaney, “Reversible Endomorphisms and Flows”, Trans. Amer. Math. Soc., 218, 89 (1976).

    Article  Google Scholar 

  18. J.C. Maxwell, Theory of Heat, Appleton, New York (1872) p. 309.

    Google Scholar 

  19. E. Nelson, “Derivation of the Schrödinger Equation from Newtonian Mechanics”, Phys. Rev. 150, 1079 (1966).

    Article  CAS  Google Scholar 

  20. E. Nelson, “The Locality Problem in Stochastic Mechanics”, Ann. N.Y. Acad. Sci. •..i, 533 (1987).

    Google Scholar 

  21. G. Nicolis, and I, Prigogine, The Investigation of the Complex, (in German), Piper Verl., Munchen (1987).

    Google Scholar 

  22. D. Page, and W.K. Wootters, “Evolution without Evolution - Physics Described by Stationary Variables”, Phys. Rev. 2ím, 2885 (1983).

    Google Scholar 

  23. H. Putman, Reason, Truth and History, Cambridge University Press, Cambridge, (1981), ch. 1.

    Google Scholar 

  24. O.E. Rössler, “A System-Theoretic Model of Biogenesis” (in German) Z, Naturforsch., «, 741 (1971).

    Google Scholar 

  25. O.E. Rössler, “Design of Autonomous Chemical Growth under Different Environmental Constraints”, Progr. Theor. Biol. 2, 167 (1972).

    Google Scholar 

  26. O.E. Rössler, “A Synthetic Approach to Exotic Kinetics (with Examples)”, Lect. Not. Biomath. 4, 546 (1974).

    Google Scholar 

  27. O.E. Rössler, “Adequate Locomotion Strategies for an Abstract Organism in an Abstract Environment: A Relational Approach to Brain Function”, Lect. Not. Biomath. 4, 342 (1974).

    Google Scholar 

  28. O.E. Rössler, “Chemical Automata in Homogeneous and Reaction-Diffusion Kinetics”, Lect. Not. Biomath. 4, 399 (1974).

    Google Scholar 

  29. O.E. Rössler, “Chaotic Behaviour in Simple Reaction Systems”, Z. Naturforsch. 31a, 259 (1976).

    Google Scholar 

  30. O.E. Rössler, “Chaos and Chemistry”, Nonlinear Phenomena in Chemical Dynamics, edits. C. Vidal and A. Pacault, Springer Verl. New York, Heidelberg, (1981) p. 79.

    Google Scholar 

  31. O.E. Rössler, “Macroscopic Behaviour in a Simple Chaotic Hamiltonian System”, Lect. Not. Phys. 179, 67 (1983).

    Article  Google Scholar 

  32. O.E. Rössler, “A Chaotic 1-D Gas: Some Implications”, Lect. Not. Phys. 278, 9 (1987).

    Article  Google Scholar 

  33. O.E. Rössler, “Endophysics”, Real Brains, Artificial Minds, edits. John 1. Casti and Anders Karlqvist, North-Holland Publ., New York, Amsterdam, (1987), p. 25.

    Google Scholar 

  34. O.E. Rössler, “Explicit Dissipative Structures”, Found. Phys. 17, 679 (1987).

    Article  Google Scholar 

  35. O.E. Rössler, “Symmetry-Induced Disappearance of Reality: The Leibniz Effect”, Leonardo 21,4 (1988), Special Issue on Art and the New Biology: Biological Forms and Patterns, edit. Peter Erdi, December.

    Google Scholar 

  36. O.E. Rössler and C. Kahlert, “Winfree Meandering in a 2-Dimensional 2-Variable Excitable Medium”, Z. Naturforsch. 34 a, 565 (1979).

    Google Scholar 

  37. O.E. Rössler and M. Hoffmann, “Quasiperiodization in Classical Hyperchaos”, J. Comp. Chem. 8, 510 (1987).

    Article  Google Scholar 

  38. O. Sackur, “Applying the Kinetic Theory of Gases to Chemical Problems”, (in German), Ann. der Phys. 36, 958 (1911).

    Google Scholar 

  39. W.R. Schneider, “Stochastic Mechanics”, Quantum Mechanics Today, Lect. Not. 11th Gwatt Workshop, October 15–17, (1987), edits. D. Baeriswyl, M. Droz, C.P. Enz and A. Malaspinas (B.B.0, CH-5405 Baden), p. 234.

    Google Scholar 

  40. R. Shaw, “Strange Attractors, Chaotic Behaviour and Information Flow”, Z. Naturforsch. 36 a, 80 (1981).

    Google Scholar 

  41. Ya.G. Sinai, “Dynamical Systems with Elastic Reflections”, Russian Math. Surveys 25, 137 (1970).

    Article  Google Scholar 

  42. R. Wegscheider, “On Simultaneous Equilibria and the Relations Between the Thermodynamics and the Reaction Kinetics of Homogeneous Systems” (in German), Z. Phys. Chem. 39, 257 (1902).

    Google Scholar 

  43. H. Weyl, Philosophy of Mathematics and Science, Princeton University Press, Princeton, N.J. (1949), ch. 22 e, append. B.3.

    Google Scholar 

  44. E.P. Wigner, “Relativistic Invariance and Quantum Phenomena”, Rev. Mod. Phys. 29, 255 (1957).

    Article  Google Scholar 

  45. E.P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, (1959) ch. 26; (Material originally published in 1932 ).

    Google Scholar 

  46. A.T. Winfree, The Geometry of Biological Time, Springer Verl., New York, Heidelberg, (1980) p. 240.

    Google Scholar 

  47. Solitons (particle-like solutions) that arise in 2-D Hamiltonian media indeed come in discrete classes so that the present theory is applicable (Richard Bagley, private communication 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rössler, O.E. (1989). Explicit Observers. In: Plath, P.J. (eds) Optimal Structures in Heterogeneous Reaction Systems. Springer Series in Synergetics, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83899-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83899-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83901-6

  • Online ISBN: 978-3-642-83899-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics