Skip to main content
Log in

Computational complementarity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Interactivity generates paradox in that the interactive control by one systemC of predicates about another system-under-studyS may falsify these predicates. We formulate an “interactive logic” to resolve this paradox of interactivity. Our construction generalizes one, the Galois connection, used by Von Neumann for the similar quantum paradox. We apply the construction to atransition system, a concept that includes general systems, automata, and quantum systems. In some (classical) automataS, the interactive predicates aboutS show quantumlike complementarity arising from interactivity: The interactive paradox generates the quantum paradox. Some classicalS's have noncommutative algebras of interactively observable coordinates similar to the Heisenberg algebra of a quantum system. SuchS's are “hidden variable” models of quantum theory not covered by the hidden variable studies of Von Neumann, Bohm, Bell, or Kochen and Specker. It is conceivable that some quantum effects in Nature arise from interactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artin, E. (1957).Geometric Algebra, Interscience, New York.

    Google Scholar 

  • Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox,Physics (U.S.A.),3, 195.

    Google Scholar 

  • Bell, J. S. (1966). On the problem of hidden variables in quantum mechanics,Rev. Mod. Phys.,38, 447.

    Google Scholar 

  • Birkhoff, G. (1948).Lattice Theory, Amer. Math. Soc. Colloquium Publications, Vol. 25, rev. ed., New York.

  • Birkhoff, G., and Von Neumann, J. (1936). The logic of quantum mechanics,Ann. Math.,37, 823.

    Google Scholar 

  • Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of “hidden” variables I, Ii,Phys. Rev.,85, 166, 180.

    Google Scholar 

  • Brown, G. S. (1969).Laws of Form, Allen and Unwin, London.

    Google Scholar 

  • Chaitin, G. (1966). On the length of programs for computing finite binary sequences,J. Assoc. Computing Machinery,13, 547, 16, 145.

    Google Scholar 

  • Chaitin, G. (1982). Algorithmic Information Theory 1982,Encycl. of Statistical Sciences 1, Wiley, New York, p. 38.

    Google Scholar 

  • Conway, J. H. (1971).Regular algebra and finite machines, Chapman and Hall, London.

    Google Scholar 

  • Finkelstein, D. (1963). The logic of quantum physics,Trans. N.Y. Acad. Sci.,25, 621–663.

    Google Scholar 

  • Finkelstein, D. (1982). Quantum sets and Clifford algebras,Int. J. Theor. Phys.,21, 489.

    Google Scholar 

  • Finkelstein, D. (1966). Matter, space, and logic,Boston Colloquium on the Philosophy of Science, Vol. 5.

  • Holland, Jr., S. S., (1970). The current interest in orthomodular lattices, inTrends in Lattice Theory, ed. Abbott, J. C., Van Nostrand Reinhold, New York. Reprinted inThe Logico-Algebraic Approach to Quantum Mechanics, Vol. I, ed. Hooker, C. A., Reidel, Dordrecht (1975).

    Google Scholar 

  • Hopcroft, J. E. and Ullman, J. D. (1979).Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Kochen, S., and Specker, E. P. (1967). The problem of hidden variables in quantum mechanics,J. Math. Mech.,17, 59–87.

    Google Scholar 

  • Kaufman, L., private communication.

  • Moore, E. F. (1956). Gedanken experiments on sequential machines, inAutomata Studies, ed. Shannon, C. E., and McCarthy, J., Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Vareia, F. J., private communication.

  • Von Neumann, J. (1960).Continuous geometry, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Von Neumann, J. (1954). Unsolved problems in mathematics, Address to International Mathematical Congress, Amsterdam, September 2, 1954, unpublished. Manuscript, Von Neumann archives, Library of Congress, Washington, D.C.

    Google Scholar 

  • Von Neumann, J. (1932).Mathematische grundlagen der quantenmechanik, Springer Verlag, Berlin. Reprinted, Dover, New York (1943).

    Google Scholar 

  • Wheeler, J. A. (1982). The computer and the universe,Int. J. Theor. Phys.,21, 557.

    Google Scholar 

  • M. Zwick, (1978). Quantum measurement and Gödel's proof,Speculations Sci. Technol.,1, 135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkelstein, D., Finkelstein, S.R. Computational complementarity. Int J Theor Phys 22, 753–779 (1983). https://doi.org/10.1007/BF02085960

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02085960

Keywords

Navigation